The Potential Adverse Health Effects of Dental Amalgam

Abstract

There is significant public concern about the potential health effects of exposure to mercury vapour (Hg0) released from dental amalgam restorations. The purpose of this article is to provide information about the toxicokinetics of Hg0, evaluate the findings from the recent scientific and medical literature, and identify research gaps that when filled may definitively support or refute the hypothesis that dental amalgam causes adverse health effects.

Dental amalgam is a widely used restorative dental material that was introduced over 150 years ago. Most standard dental amalgam formulations contain approximately 50% elemental mercury. Experimental evidence consistently demonstrates that Hg0 is released from dental amalgam restorations and is absorbed by the human body. Numerous studies report positive correlations between the number of dental amalgam restorations or surfaces and urine mercury concentrations in non-occupationally exposed individuals. Although of public concern, it is currently unclear what adverse health effects are caused by the levels of Hg0 released from this restoration material. Historically, studies of occupationally exposed individuals have provided consistent information about the relationship between exposure to Hg0 and adverse effects reflecting both nervous system and renal dysfunction. Workers are usually exposed to substantially higher Hg0 levels than individuals with dental amalgam restorations and are typically exposed 8 hours per day for 20–30 years, whereas persons with dental amalgam restorations are exposed 24 hours per day over some portion of a lifetime. This review has uncovered no convincing evidence pointing to any adverse health effects that are attributable to dental amalgam restorations besides hypersensitivity in some individuals.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    US Department of Health and Human Services. Dental amalgam: a scientific review and recommended public health service strategy for research, education and regulation [online]. Available from URL: http://www.health.gov/environment/amalgam1/ct.htm [Accessed 2003 Jul 10]

  2. 2.

    US Department of Health and Human Services. Dental amalgam and alternative restorative materials [online]. Available from URL: http://www.health.gov/environment/amalgam2/contents.html [Accessed 2003 Jul 10]

  3. 3.

    The Commission of the European Union Ad Hoc Working Group on Amalgam. Ad Hoc Working Group Report on Amalgam [online]. Available from URL: http://www.nordiskadental.se/EUamalgam/amalgamrep.pdf [Accessed 2004 Feb 2]

  4. 4.

    Health Canada. Mercury and human health [online]. Available from URL: http://www.hc-sc-gc.ca/english/pdf/iyh/mercury_e.pdf [Accessed 2004 Feb 2]

  5. 5.

    Conseil d’Evaluation des Technologies de la Sante du Quebec (CETS). Reports from the Conseil d’Evaluation des Technologies de la Sante du Quebec (CETS). The safety of dental amalgam: a state-of-the-art review. Int J Technol Assess Health Care 1997; 13(4): 639–42

    Article  Google Scholar 

  6. 6.

    National Health and Medical Research Council. Dental amalgam and mercury in denistry [online]. Available from URL: http://www.health.gov.au/nhmrc/publications/pdf/dl7.pdf [Accessed 2004 Feb 2]

  7. 7.

    WHO consensus statement on dental amalgam. FDI World Dental Federation. FDI World 1997; 6(6): 9

    Google Scholar 

  8. 8.

    German Ministry of Health, German Institute for Drugs and Medical Devices (BrArM), Federal Dental Chamber, Kassenzahnärztliche Bundesvereinigung, German Scientific Dental Association, German Association for Operative Dentistry, et al. Consensus statement on restorative materials in dentistry. Bonn: German Ministry of Health, 1997 Jan 7

    Google Scholar 

  9. 9.

    Berlin M. Mercury in dental-filling materials: an updated risk analysis in environmental medical terms [online]. Available from URL: http://www.dentalmaterial.gov.se/mercury.pdf [Accessed 2003 Jul 10]

  10. 10.

    American Conference of Governmental Industrial Hygienists. Threshold limit values and biological exposure indices. Cincinnati (OH): Signature Publications, 2004

    Google Scholar 

  11. 11.

    American Conference of Governmental Industrial Hygienists. Mercury, all forms except alkyl. In: TLV® chemical substances. 7th ed. Cincinnati (OH): American Conference of Governmental Industrial Hygienists, 2001

    Google Scholar 

  12. 12.

    Satoh H. Occupational and environmental toxicology of mercury and its compounds. Ind Health 2000; 38(2): 153–64

    PubMed  CAS  Article  Google Scholar 

  13. 13.

    Schnellmann RG. Toxic responses of the kidney. In: Klaassen CD, editor. Casarett and Doull’s toxicology. 6th ed. New York: McGraw-Hill, 2001: 491–514

    Google Scholar 

  14. 14.

    Zalups RK. Molecular interactions with mercury in the kidney. Pharmacol Rev 2000; 52(1): 113–43

    PubMed  CAS  Google Scholar 

  15. 15.

    Boogaard PJ, Houtsma AT, Journee HL, et al. Effects of exposure to elemental mercury on the nervous system and the kidneys of workers producing natural gas. Arch Environ Health 1996; 51(2): 108–15

    PubMed  CAS  Article  Google Scholar 

  16. 16.

    Ellingsen DG, Efskind J, Berg KJ, et al. Renal and immunologic markers for chloralkali workers with low exposure to mercury vapor. Scand J Work Environ Health 2000; 26(5): 427–35

    PubMed  CAS  Article  Google Scholar 

  17. 17.

    Mandic L, Radmila M, Jelena A, et al. Change in the iso-enzyme profiles of urinary N-acetyl-beta-D-glucosoaminidase in workers exposed to mercury. Toxicol Ind Health 2002; 18(5): 207–14

    PubMed  CAS  Google Scholar 

  18. 18.

    Agency for Toxic Substances and Disease Registry. Toxicological profile for mercury [online]. Available from URL: http://www.atsdr.cdc.gov/toxprofiles/tp46.html [Accessed 2003 Jul 10]

  19. 19.

    US General Accounting Office. Reproductive and developmental toxicants: regulatory actions provide uncertain protection. GAO/PEMD-92-3. Washington, DC: US General Accounting Office, 1991

    Google Scholar 

  20. 20.

    Mackert Jr JR, Berglund A. Mercury exposure from dental amalgam fillings: absorbed dose and the potential for adverse health effects. Crit Rev Oral Biol Med 1997; 8(4): 410–36

    PubMed  CAS  Article  Google Scholar 

  21. 21.

    Eley BM. The future of dental amalgam: a review of the literature. Part 3: mercury exposure from amalgam restorations in dental patients. Br Dent J 1997; 182(9): 333–8

    PubMed  CAS  Article  Google Scholar 

  22. 22.

    Lyons K. Direct placement restorative materials for use in posterior teeth: the current options. N Z Dent J 2003; 99(1): 10–5

    PubMed  Google Scholar 

  23. 23.

    Eley BM. The future of dental amalgam: a review of the literature. Part 2: mercury exposure in dental practice. Br Dent J 1997; 182(8): 293–7

    PubMed  CAS  Article  Google Scholar 

  24. 24.

    Brown LJ, Kaste LM, Sciwitz RH, et al. Dental caries and sealant usage in US children, 1988–1991: selected findings from the Third National Health and Nutrition Examination Survey. J Am Dent Assoc 1996; 127(3): 335–43

    PubMed  CAS  Google Scholar 

  25. 25.

    Eklund SA, Pittman JL, Smith RC. Trends in dental care among insured Americans: 1980 to 1995. J Am Dent Assoc 1997; 128(2): 171–8

    PubMed  CAS  Google Scholar 

  26. 26.

    US Food and Drug Administration. Consumer update: dental amalgams [online]. Available from URL: http://www.fda.gov/cdrh/consumer/amalgams.html [Accessed 2003 Jul 10]

  27. 27.

    US Environmental Protection Agency Office of Air Quality Standards. Mercury report to Congress [online]. Available from URL: http://www.epa.gov/oar/mercover.html [Accessed 2003 Aug 25]

  28. 28.

    US Food and Drug Administration. Prohibited ingredients and related safety issues [online]. Available from URL: http://vm.cfsan.fda.gov/~dms/cos-210.html [Accessed 2004 Jun 30]

  29. 29.

    National Research Council. Toxicological effects of methylmercury. Washington, DC: National Academy Press, 2000

    Google Scholar 

  30. 30.

    Clarkson TW. The three modern faces of mercury. Environ Health Perspect 2002; 110Suppl. 1: 11–23

    PubMed  CAS  Article  Google Scholar 

  31. 31.

    Hursh JB, Cherian MG, Clarkson TW, et al. Clearance of mercury (Hg-197, Hg-203) vapor inhaled by human subjects. Arch Environ Health 1976; 31(6): 302–9

    PubMed  CAS  Google Scholar 

  32. 32.

    Sandborgh-Englund G, Elinder CG, Johanson G, et al. The absorption, blood levels, and excretion of mercury after a single dose of mercury vapor in humans. Toxicol Appl Pharmacol 1998; 150(1): 146–53

    PubMed  CAS  Article  Google Scholar 

  33. 33.

    Magos L, Halbach S, Clarkson TW. Role of catalase in the oxidation of mercury vapor. Biochem Pharmacol 1978; 27(9): 1373–7

    PubMed  CAS  Article  Google Scholar 

  34. 34.

    Rahola T, Hattula T, Korolainen A, et al. Elimination of free and protein-bound ionic mercury (203Hg2+) in man. Ann Clin Res 1973; 5(4): 214–9

    PubMed  CAS  Google Scholar 

  35. 35.

    Goyer RA, Clarkson TW. Toxic effects of metals. In: Klaassen CD, editor. Casarett & Doull’s toxicology. 6th ed. New York: McGraw-Hill, 2001: 811–67

    Google Scholar 

  36. 36.

    Engqvist A, Colmsjo A, Skare I. Speciation of mercury excreted in feces from individuals with amalgam fillings. Arch Environ Health 1998; 53(3): 205–13

    PubMed  CAS  Article  Google Scholar 

  37. 37.

    af Geijersstam E, Sandborgh-Englund G, Jonsson F, et al. Mercury uptake and kinetics after ingestion of dental amalgam. J Dent Res 2001; 80(9): 1793–6

    PubMed  CAS  Article  Google Scholar 

  38. 38.

    Hursh JB, Clarkson TW, Miles EF, et al. Percutaneous absorption of mercury vapor by man. Arch Environ Health 1989; 44(2): 120–7

    PubMed  CAS  Article  Google Scholar 

  39. 39.

    Cherian MG, Hursh JB, Clarkson TW, et al. Radioactive mercury distribution in biological fluids and excretion in human subjects after inhalation of mercury vapor. Arch Environ Health 1978; 33(3): 109–14

    PubMed  CAS  Google Scholar 

  40. 40.

    Barregard L, Quelquejeu G, Sallsten G, et al. Dose-dependent elimination kinetics for mercury in urine: observations in subjects with brief but high-level exposure. Int Arch Occup Environ Health 1996; 68(5): 345–8

    PubMed  CAS  Article  Google Scholar 

  41. 41.

    Jonsson F, Sandborgh-Englund G, Johanson G. A compartmental model for the kinetics of mercury vapor in humans. Toxicol Appl Pharmacol 1999; 155(2): 161–8

    PubMed  CAS  Article  Google Scholar 

  42. 42.

    Roels H, Abdeladim S, Ceulemans E, et al. Relationships between the concentrations of mercury in air and in blood or urine in workers exposed to mercury vapour. Ann Occup Hyg 1987; 31(2): 135–45

    PubMed  CAS  Article  Google Scholar 

  43. 43.

    Hursh JB, Clarkson TW, Nowak TV, et al. Prediction of kidney mercury content by isotope techniques. Kidney Int 1985; 27(6): 898–907

    PubMed  CAS  Article  Google Scholar 

  44. 44.

    Takahashi Y, Tsuruta S, Hasegawa J, et al. Release of mercury from dental amalgam fillings in pregnant rats and distribution of mercury in maternal and fetal tissues. Toxicology 2001; 163(2–3): 115–26

    PubMed  CAS  Article  Google Scholar 

  45. 45.

    Takahashi Y, Tsuruta S, Arimoto M, et al. Placental transfer of mercury in pregnant rats which received dental amalgam restorations. Toxicology 2003; 185(1–2): 23–33

    PubMed  CAS  Article  Google Scholar 

  46. 46.

    Warfvinge K, Hua J, Logdberg B. Mercury distribution in cortical areas and fiber systems of the neonatal and maternal adult cerebrum after exposure of pregnant squirrel monkeys to mercury vapor. Environ Res 1994; 67(2): 196–208

    PubMed  CAS  Article  Google Scholar 

  47. 47.

    Warfvinge K, Hua J, Berlin M. Mercury distribution in the rat brain after mercury vapor exposure. Toxicol Appl Pharmacol 1992; 117(1): 46–52

    PubMed  CAS  Article  Google Scholar 

  48. 48.

    Oskarsson A, Schultz A, Skerfving S, et al. Total and inorganic mercury in breast milk in relation to fish consumption and amalgam in lactating women. Arch Environ Health 1996; 51(3): 234–41

    PubMed  CAS  Article  Google Scholar 

  49. 49.

    World Health Organization, International Programme on Chemical Safety. Inorganic mercury: environmental health criteria 118. Geneva: World Health Organization, 1991

    Google Scholar 

  50. 50.

    Kostial K, Kello D, Jugo S, et al. Influence of age on metal metabolism and toxicity. Environ Health Perspect 1978; 25: 81–6

    PubMed  CAS  Article  Google Scholar 

  51. 51.

    Nordberg M, Nordberg GF. Toxicological aspects of metallothionein. Cell Mol Biol (Noisy-le-Grand) 2000; 46(2): 451–63

    CAS  Google Scholar 

  52. 52.

    Zalups RK, Koropatnick J. Temporal changes in metallothionein gene transcription in rat kidney and liver: relationship to content of mercury and metallothionein protein. J Pharmacol Exp Ther 2000; 295(1): 74–82

    PubMed  CAS  Google Scholar 

  53. 53.

    Clarkson TW, Friberg LT, Hursh JB, et al. The prediction of intake of mercury vapor from amalgams. In: Clarkson TW, Friberg LT, Nordberg GF, et al., editors. Biological monitoring of toxic metals. New York: Plenum Press, 1988: 247–64

    Chapter  Google Scholar 

  54. 54.

    Richardson GM, Allan M. A Monte Carlo assessment of mercury exposure and risks from dental amalgam. Hum Ecol Risk Assess 1996; 2(4): 709–61

    CAS  Article  Google Scholar 

  55. 55.

    Kingman A, Albertini T, Brown LJ. Mercury concentrations in urine and whole blood associated with amalgam exposure in a US military population. J Dent Res 1998; 77(3): 461–71

    PubMed  CAS  Article  Google Scholar 

  56. 56.

    Barregard L. Biological monitoring of exposure to mercury vapor. Scand J Work Environ Health 1993; 19Suppl. 1: 45–9

    PubMed  Google Scholar 

  57. 57.

    Barregard L, Horvat M, Schutz A. No indication of in vivo methylation of inorganic mercury in chloralkali workers. Environ Res 1994; 67(2): 160–7

    PubMed  CAS  Article  Google Scholar 

  58. 58.

    Kerper LE, Ballatori N, Clarkson TW. Methylmercury transport across the blood-brain barrier by an amino acid carrier. Am J Physiol 1992; 262 (5 Pt 2): R761–5

    PubMed  CAS  Google Scholar 

  59. 59.

    Weiss B, Clarkson TW, Simon W. Silent latency periods in methylmercury poisoning and in neurodegenerative disease. Environ Health Perspect 2002; 110Suppl. 5: 851–4

    PubMed  CAS  Article  Google Scholar 

  60. 60.

    Castoldi AF, Coccini T, Ceccatelli S, et al. Neurotoxicity and molecular effects of methylmercury. Brain Res Bull 2001; 55(2): 197–203

    PubMed  CAS  Article  Google Scholar 

  61. 61.

    Burbacher TM, Rodier PM, Weiss B. Methylmercury developmental neurotoxicity: a comparison of effects in humans and animals. Neurotoxicol Teratol 1990; 12(3): 191–202

    PubMed  CAS  Article  Google Scholar 

  62. 62.

    Clarkson TW, Nordberg GF, Sager PR. Reproductive and developmental toxicity of metals. Scand J Work Environ Health 1985; 11 (3 spec. no.): 145–54

    PubMed  CAS  Article  Google Scholar 

  63. 63.

    Marsh DO, Myers GJ, Clarkson TW, et al. Fetal methylmercury poisoning: clinical and toxicological data on 29 cases. Ann Neurol 1980; 7(4): 348–53

    PubMed  CAS  Article  Google Scholar 

  64. 64.

    Magos L, Brown AW, Sparrow S, et al. The comparative toxicology of ethyl- and methylmercury. Arch Toxicol 1985; 57(4): 260–7

    PubMed  CAS  Article  Google Scholar 

  65. 65.

    Norseth T, Clarkson TW. Studies on the biotransformation of 203Hg-labeled methyl mercury chloride in rats. Arch Environ Health 1970; 21(6): 717–27

    PubMed  CAS  Google Scholar 

  66. 66.

    Syversen TL. Distribution of mercury in enzymatically characterized subcellular fractions from the developing rat brain after injections of methylmercuric chloride and diethylmercury. Biochem Pharmacol 1974; 23(21): 2999–3007

    PubMed  CAS  Article  Google Scholar 

  67. 67.

    Hill AB. The environment and disease: association or causation? Proc R Soc Med 1965; 58: 295–300

    PubMed  CAS  Google Scholar 

  68. 68.

    Becker K, Schulz C, Kaus S, et al. German Environmental Survey 1998 (GerES III): environmental pollutants in the urine of the German population. Int J Hyg Environ Health 2003; 206(1): 15–24

    PubMed  CAS  Article  Google Scholar 

  69. 69.

    Gabrio T, Benedikt G, Broser S, et al. 10 years of observation by public health offices in Baden-Wurttemberg: assessment of human biomonitoring for mercury due to dental amalgam fillings and other sources. Gesundheitswesen 2003; 65(5): 327–35

    PubMed  CAS  Article  Google Scholar 

  70. 70.

    Apostoli P, Cortesi I, Mangili A, et al. Assessment of reference values for mercury in urine: the results of an Italian polycentric study. Sci Total Environ 2002; 289(1–3): 13–24

    PubMed  CAS  Article  Google Scholar 

  71. 71.

    US Department of Health and Human Services. Second national report on human exposure to environmental chemicals (NCEH pub. no. 01-0716) [online]. Available from URL: http://www.cdc.gov/exposurereport/pdf/SecondNER.pdf [Accessed 2003 Dec 19]

  72. 72.

    Ozuah PO, Lesser MS, Woods JS, et al. Mercury exposure in an urban pediatric population. Ambul Pediatr 2003; 3(1): 24–6

    PubMed  Article  Google Scholar 

  73. 73.

    Sallsten G, Thoren J, Barregard L, et al. Long-term use of nicotine chewing gum and mercury exposure from dental amalgam fillings. J Dent Res 1996; 75(1): 594–8

    PubMed  CAS  Article  Google Scholar 

  74. 74.

    Isacsson G, Barregard L, Sciden A, et al. Impact of nocturnal bruxism on mercury uptake from dental amalgams. Eur J Oral Sci 1997; 105(3): 251–7

    PubMed  CAS  Article  Google Scholar 

  75. 75.

    Khordi-Mood M, Sarraf-Shirazi AR, Balali-Mood M. Urinary mercury excretion following amalgam filling in children. J Toxicol Clin Toxicol 2001; 39(7): 701–5

    PubMed  CAS  Article  Google Scholar 

  76. 76.

    Sandborgh-Englund G, Elinder CG, Langworth S, et al. Mercury in biological fluids after amalgam removal. J Dent Res 1998; 77(4): 615–24

    PubMed  CAS  Article  Google Scholar 

  77. 77.

    Halbach S, Kremers L, Willruth H, et al. Systemic transfer of mercury from amalgam fillings before and after cessation of emission. Environ Res 1998; 77(2): 115–23

    PubMed  CAS  Article  Google Scholar 

  78. 78.

    Kremers L, Halbach S, Willruth H, et al. Effect of rubber dam on mercury exposure during amalgam removal. Eur J Oral Sci 1999; 107(3): 202–7

    PubMed  CAS  Article  Google Scholar 

  79. 79.

    Berglund A, Molin M. Mercury levels in plasma and urine after removal of all amalgam restorations: the effect of using rubber dams. Dent Mater 1997; 13(5): 297–304

    PubMed  CAS  Article  Google Scholar 

  80. 80.

    Ellingsen DG, Efskind J, Haug E, et al. Effects of low mercury vapour exposure on the thyroid function in chloralkali workers. J Appl Toxicol 2000; 20(6): 483–9

    PubMed  CAS  Article  Google Scholar 

  81. 81.

    Soleo L, Vacca A, Vimercati L, et al. Minimal immunological effects on workers with prolonged low exposure to inorganic mercury. Occup Environ Med 1997; 54(6): 437–42

    PubMed  CAS  Article  Google Scholar 

  82. 82.

    Ibbotson SH, Speight EL, Macleod RI, et al. The relevance and effect of amalgam replacement in subjects with oral lichenoid reactions. Br J Dermatol 1996; 134(3): 420–3

    PubMed  CAS  Article  Google Scholar 

  83. 83.

    Koch P, Bahmer FA. Oral lesions and symptoms related to metals used in dental restorations: a clinical, allergological, and histologie study. J Am Acad Dermatol 1999; 41 (3 Pt 1): 422–30

    PubMed  CAS  Article  Google Scholar 

  84. 84.

    Thornhill MH, Pemberton MN, Simmons RK, et al. Amalgam-contact hypersensitivity lesions and oral lichen planus. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2003; 95(3): 291–9

    PubMed  Article  Google Scholar 

  85. 85.

    Magnin P, Stuck M, Meier E, et al. Amalgam-associated lichenoid lesions of the oral mucosa: filling replacement therapy. Schweiz Monatsschr Zahnmed 2003; 113(2): 143–50

    PubMed  Google Scholar 

  86. 86.

    Casetta I, Invernizzi M, Granieri E. Multiple sclerosis and dental amalgam: case-control study in Ferrara, Italy. Neuroepidemiology 2001; 20(2): 134–7

    PubMed  CAS  Article  Google Scholar 

  87. 87.

    McGrother CW, Dugmore C, Phillips MJ, et al. Multiple sclerosis, dental caries and fillings: a case-control study. Br Dent J 1999; 187(5): 261–4

    PubMed  CAS  Google Scholar 

  88. 88.

    Factor-Litvak P, Hasselgren G, Jacobs D, et al. Mercury derived from dental amalgams and neuropsychologic function. Environ Health Perspect 2003; 111(5): 719–23

    PubMed  CAS  Article  Google Scholar 

  89. 89.

    Nitschke I, Muller F, Smith J, et al. Amalgam fillings and cognitive abilities in a representative sample of the elderly population. Gerodontology 2000; 17(1): 39–44

    PubMed  CAS  Article  Google Scholar 

  90. 90.

    Bjorkman L, Pedersen NL, Lichtenstein P. Physical and mental health related to dental amalgam fillings in Swedish twins. Community Dent Oral Epidemiol 1996; 24(4): 260–7

    PubMed  CAS  Article  Google Scholar 

  91. 91.

    Echeverria D, Aposhian HV, Woods JS, et al. Neurobehavioral effects from exposure to dental amalgam Hg (o): new distinctions between recent exposure and Hg body burden. FASEB J 1998; 12(11): 971–80

    PubMed  CAS  Google Scholar 

  92. 92.

    Pendergrass JC, Haley BE, Vimy MJ, et al. Mercury vapor inhalation inhibits binding of GTP to tubulin in rat brain: similarity to a molecular lesion in Alzheimer diseased brain. Neurotoxicology 1997; 18(2): 315–24

    PubMed  CAS  Google Scholar 

  93. 93.

    Leong CC, Syed NI, Lorscheider FL. Retrograde degeneration of neurite membrane structural integrity of nerve growth cones following in vitro exposure to mercury. Neuroreport 2001; 12(4): 733–7

    PubMed  CAS  Article  Google Scholar 

  94. 94.

    Fung YK, Meade AG, Rack EP, et al. Mercury determination in nursing home patients with Alzheimer’s disease. Gen Dent 1996; 44(1): 74–8

    PubMed  CAS  Google Scholar 

  95. 95.

    Letz R, Gerr F, Cragle D, et al. Residual neurologic deficits 30 years after occupational exposure to elemental mercury. Neurotoxicology 2000; 21(4): 459–74

    PubMed  CAS  Google Scholar 

  96. 96.

    Gun RT, Korten AE, Jorm AF, et al. Occupational risk factors for Alzheimer disease: a case-control study. Alzheimer Dis Assoc Disord 1997; 11(1): 21–7

    PubMed  CAS  Article  Google Scholar 

  97. 97.

    Cornett CR, Ehmann WD, Wekstein DR, et al. Trace elements in Alzheimer’s disease pituitary glands. Biol Trace Elem Res 1998; 62(1–2): 107–14

    PubMed  CAS  Article  Google Scholar 

  98. 98.

    Cornett CR, Markesbery WR, Ehmann WD. Imbalances of trace elements related to oxidative damage in Alzheimer’s disease brain. Neurotoxicology 1998; 19(3): 339–45

    PubMed  CAS  Google Scholar 

  99. 99.

    Fung YK, Meade AG, Rack EP, et al. Brain mercury in neurodegenerative disorders. J Toxicol Clin Toxicol 1997; 35(1): 49–54

    PubMed  CAS  Article  Google Scholar 

  100. 100.

    Saxe SR, Wekstein MW, Kryscio RJ, et al. Alzheimer’s disease, dental amalgam and mercury. J Am Dent Assoc 1999; 130(2): 191–9

    PubMed  CAS  Google Scholar 

  101. 101.

    Gorell JM, Johnson CC, Rybicki BA, et al. Occupational exposures to metals as risk factors for Parkinson’s disease. Neurology 1997; 48(3): 650–8

    PubMed  CAS  Article  Google Scholar 

  102. 102.

    Gorell JM, Rybicki BA, Cole JC, et al. Occupational metal exposures and the risk of Parkinson’s disease. Neuroepidemiology 1999; 18(6): 303–8

    PubMed  CAS  Article  Google Scholar 

  103. 103.

    Seidler A, Hellenbrand W, Robra BP, et al. Possible environmental, occupational, and other etiologic factors for Parkinson’s disease: a case-control study in Germany. Neurology 1996; 46(5): 1275–84

    PubMed  CAS  Article  Google Scholar 

  104. 104.

    Hanf V, Forstmann A, Costea JE, et al. Mercury in urine and ejaculate in husbands of barren couples. Toxicol Lett 1996; 88(1–3): 227–31

    PubMed  CAS  Article  Google Scholar 

  105. 105.

    Yang JM, Chen QY, Jiang XZ. Effects of metallic mercury on the perimenstrual symptoms and menstrual outcomes of exposed workers. Am J Ind Med 2002; 42(5): 403–9

    PubMed  CAS  Article  Google Scholar 

  106. 106.

    Ask K, Akesson A, Berglund M, et al. Inorganic mercury and methylmercury in placentas of Swedish women. Environ Health Perspect 2002; 110(5): 523–6

    PubMed  CAS  Article  Google Scholar 

  107. 107.

    Vahter M, Akesson A, Lind B, et al. Longitudinal study of methylmercury and inorganic mercury in blood and urine of pregnant and lactating women, as well as in umbilical cord blood. Environ Res 2000; 84(2): 186–94

    PubMed  CAS  Article  Google Scholar 

  108. 108.

    Fredriksson A, Dencker L, Archer T, et al. Prenatal coexposure to metallic mercury vapour and methylmercury produce interactive behavioural changes in adult rats. Neurotoxicol Teratol 1996; 18(2): 129–34

    PubMed  CAS  Article  Google Scholar 

  109. 109.

    Newland MC, Warfvinge K, Berlin M. Behavioral consequences of in utero exposure to mercury vapor: alterations in lever-press durations and learning in squirrel monkeys. Toxicol Appl Pharmacol 1996; 139(2): 374–86

    PubMed  CAS  Article  Google Scholar 

  110. 110.

    Berglund A, Molin M. Mercury vapor release from dental amalgam in patients with symptoms allegedly caused by amalgam fillings. Eur J Oral Sci 1996; 104(1): 56–63

    PubMed  CAS  Article  Google Scholar 

  111. 111.

    Zimmer H, Ludwig H, Bader M, et al. Determination of mercury in blood, urine and saliva for the biological monitoring of an exposure from amalgam fillings in a group with self-reported adverse health effects. Int J Hyg Environ Health 2002; 205(3): 205–11

    PubMed  CAS  Article  Google Scholar 

  112. 112.

    Marcusson JA. Psychological and somatic subjective symptoms as a result of dermatological patch testing with metallic mercury and phenyl mercuric acetate. Toxicol Lett 1996; 84(2): 113–22

    PubMed  CAS  Article  Google Scholar 

  113. 113.

    Stromberg R, Langworth S, Soderman E. Mercury inductions in persons with subjective symptoms alleged to dental amalgam fillings. Eur J Oral Sci 1999; 107(3): 208–14

    PubMed  CAS  Article  Google Scholar 

  114. 114.

    Aposhian HV, Morgan DL, Queen HL, et al. Vitamin C, glutathione, or lipoic acid did not decrease brain or kidney mercury in rats exposed to mercury vapor. J Toxicol Clin Toxicol 2003; 41(4): 339–47

    PubMed  CAS  Article  Google Scholar 

Download references

Acknowledgements

This review summarises the findings of a recent Life Sciences Research Office (LSRO) report (Brownawell AM, editor. Review and analysis of the potential adverse health effects of dental amalgam. Bethesda (MD): Life Sciences Research Office, 2004). The original project was funded in whole or in part with federal funds from the National Institute of Dental and Craniofacial Research, National Institutes of Health, under contract no. N01-DE-12635. The publication of this review has been funded solely by LSRO. The authors declare that they have no competing financial interests.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Amy M. Brownawell.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brownawell, A.M., Berent, S., Brent, R.L. et al. The Potential Adverse Health Effects of Dental Amalgam. Toxicol Rev 24, 1–10 (2005). https://doi.org/10.2165/00139709-200524010-00001

Download citation

Keywords

  • Mercury
  • Occupational Exposure
  • Adverse Health Effect
  • Inorganic Mercury
  • Mercury Exposure