Toxicological Reviews

, Volume 22, Issue 3, pp 137–142 | Cite as

Abrin Poisoning

  • Kirsten J. Dickers
  • Sally M. Bradberry
  • Paul Rice
  • Gareth D. Griffiths
  • J. Allister Vale
Review Article


Abrin is a toxic protein obtained from the seeds of Abrus precatorius (jequirity bean), which is similar in structure and properties to ricin. Abrin is highly toxic, with an estimated human fatal dose of 0.1–1 µg/kg, and has caused death after accidental and intentional poisoning. Abrin can be extracted from jequirity beans using a relatively simple and cheap procedure. This satisfies one criterion of a potential chemical warfare agent, although the lack of large scale production of jequirity seeds means that quantity is unavailable for ready mass production of abrin for weapons. This contrasts with the huge cultivation of Ricinus seeds for castor oil production. At the cellular level, abrin inhibits protein synthesis, thereby causing cell death. Many of the features observed in abrin poisoning can be explained by abrin-induced endothelial cell damage, which causes an increase in capillary permeability with consequent fluid and protein leakage and tissue oedema (the so-called vascular leak syndrome). Most reported cases of human poisoning involve the ingestion of jequirity beans, which predominantly cause gastrointestinal toxicity. Management is symptomatic and supportive. Experimental studies have shown that vaccination with abrin toxoid may offer some protection against a subsequent abrin challenge, although such an approach is unlikely to be of benefit in a civilian population that in all probability would be unprotected.


Inhibit Protein Synthesis Trachoma Human Poisoning Bowel Irrigation Minimum Lethal Dose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.


  1. 1.
    Locock RA. Abrus precatorious: precatory bean. Can Pharm J 1992; 125: 502–14Google Scholar
  2. 2.
    University of Warwick. Molecular structure of abrin [online]. Available from URL: [Accessed 2003 Sep 1]
  3. 3.
    Sandvig K, Olsnes S, Pihl A. Kinetics of binding of the toxic lectins abrin and ricin to surface receptors of human cells. J Biol Chem 1976; 251: 3977–84PubMedGoogle Scholar
  4. 4.
    Niyogi SK, Rieders F. Toxicity studies with fractions from Abrus precatorius seed kernels. Toxicon 1969; 7: 211–6PubMedCrossRefGoogle Scholar
  5. 5.
    Olsnes S. Toxic and nontoxic lectins from Abrus precatorius. Methods Enzymol 1978; 50: 323–30PubMedCrossRefGoogle Scholar
  6. 6.
    Olsnes S. Abrin and ricin: structure and mechanism of action of two toxic lectins. Bull Inst Pasteur 1976; 74: 85–99Google Scholar
  7. 7.
    Lin J-Y, Lee T-C, Hu S-T, et al. Isolation of four isotoxic proteins and one agglutinin from jequiriti bean (Abrus precatorius). Toxicon 1981; 19: 41–51PubMedCrossRefGoogle Scholar
  8. 8.
    Olsnes S, Refsnes K, Pihl A. Mechanism of action of the toxic lectins abrin and ricin. Nature 1974; 249: 627–31PubMedCrossRefGoogle Scholar
  9. 9.
    Hughes JN, Lindsay CD, Griffiths GD. Morphology of ricin and abrin exposed endothelial cells is consistent with apoptotic cell death. Hum Exp Toxicol 1996; 15: 443–51PubMedCrossRefGoogle Scholar
  10. 10.
    Griffiths GD, Leek MD, Gee DJ. The toxic plant proteins ricin and abrin induce apoptotic changes in mammalian lymphoid tissues and intestine. J Pathol 1987; 151: 221–9PubMedCrossRefGoogle Scholar
  11. 11.
    Griffiths GD, Lindsay CD, Upshall DG. Examination of the toxicity of several protein toxins of plant origin using bovine pulmonary endothelial cells. Toxicology 1994; 90: 11–27PubMedCrossRefGoogle Scholar
  12. 12.
    Baluna R, Rizo J, Gordon BE, et al. Evidence for a structural motif in toxins and interleukin-2 that may be responsible for binding to endothelial cells and initiating vascular leak syndrome. Proc Natl Acad Sci U S A 1999; 96: 3957–62PubMedCrossRefGoogle Scholar
  13. 13.
    Deshpande VR, Dubey PN, Joshi Rao MK. Toxicity of Abrus precatorius. Indian J Med Sci 1961; 15: 195–7PubMedGoogle Scholar
  14. 14.
    Frohne D, Schmoldt A, Pfänder HJ. Die Paternostererbse: keineswegs harmlos. Dtsch Apoth Ztg 1984; 124: 2109–13Google Scholar
  15. 15.
    Toxicity of jequirity beans. JAMA 1955; 157: 779Google Scholar
  16. 16.
    Lin J-Y, Kao C-L, Tung T-C. Study on the effect of tryptic digestion on the toxicity of abrin. J Formos Med Assoc 1970; 69: 61–3Google Scholar
  17. 17.
    Fodstad Ø, Olsnes S, Pihl A. Toxicity, distribution and elimination of the cancerostatic lectins abrin and ricin after parenteral injection into mice. Br J Cancer 1976; 34: 418–25PubMedCrossRefGoogle Scholar
  18. 18.
    Lin J-Y, Ju S-T, Shaw Y-S, et al. Distribution of I131-labeled abrin in vivo. Toxicon 1970; 8: 197–201PubMedCrossRefGoogle Scholar
  19. 19.
    Houston LL. Protection of mice from ricin poisoning by treatment with antibodies directed against ricin. J Toxicol Clin Toxicol 1982; 19: 385–9PubMedCrossRefGoogle Scholar
  20. 20.
    Davis JH. Abrus precatorius (rosary pea). The most common lethal plant poison. J Florida Med Assoc 1978; 65: 188–91Google Scholar
  21. 21.
    Kinamore PA, Jaeger RW, de Castro FJ. Abrus and ricinus ingestion: management of three cases. J Toxicol Clin Toxicol 1980; 17: 401–5CrossRefGoogle Scholar
  22. 22.
    Swanson-Biearman B, Dean BS, Krenzelok EP. Failure of whole bowel irrigation to decontaminate the GI tract following massive jequirity bean ingestion [abstract]. Vet Hum Toxicol 1992; 34: 352Google Scholar
  23. 23.
    Hart M. Hazards to health: jequirity-bean poisoning. N Engl J Med 1963; 268: 885–6CrossRefGoogle Scholar
  24. 24.
    Fernando C. Poisoning due to Abrus precatorius (jequirity bean). Anaesthesia 2001; 56: 1178–80PubMedCrossRefGoogle Scholar
  25. 25.
    Kobert R. Lehrbuch der Intoxikationen. 2nd ed. Stuttgart: Ferdinand Enke, 1906Google Scholar
  26. 26.
    Guggisberg M. A propos d’une curieuse intoxication par des grains de chapelet (Abrus precatorius). Rev Med Suisse Romande 1968; 88: 206–8PubMedGoogle Scholar
  27. 27.
    Byam W, Archibald RG, editors. The practice of medicine in the tropics. London: Henry Frowde and Hodder & Stoughton, 1921Google Scholar
  28. 28.
    Gill DM. Bacterial toxins: a table of lethal amounts. Microbiol Rev 1982; 46: 86–94PubMedGoogle Scholar
  29. 29.
    Fodstad Ø, Johannessen JV, Schjerven L, et al. Toxicity of abrin and ricin in mice and dogs. J Toxicol Environ Health 1979; 5: 1073–84PubMedCrossRefGoogle Scholar
  30. 30.
    el-Shabrawy OA, el-Gengaihi S, Ali Ibrahim N. Toxicity and teratogenicity of abrin. Egyptian J Vet Sci 1987; 24: 135–42Google Scholar
  31. 31.
    Routh BC, Lahiri SC. Some actions of the seeds of Abrus precatorius. Bull Calcutta School Trop Med 1971; 19: 46–7Google Scholar
  32. 32.
    Lin J-Y, Chen C-C, Lin L-T, et al. Studies on the toxic action of abrin. J Formosan Med Assoc 1969; 68: 322–4Google Scholar
  33. 33.
    Niyogi SK. Elevation of enzyme levels in serum due to Abrus precatorius (jequirity bean) poisoning. Toxicon 1977; 15: 577–80PubMedCrossRefGoogle Scholar
  34. 34.
    Griffiths GD, Rice P, Allenby AC, et al. Inhalation toxicology and histopathology of ricin and abrin toxins. Inhal Toxicol 1995; 7: 269–88CrossRefGoogle Scholar
  35. 35.
    Grant WM, Schuman JS. Toxicology of the eye: effects on the eyes and visual system from chemicals, drugs, metals and minerals, plants, toxins and venoms; also, systemic side effects from eye medications. 4th ed. Springfield (IL): Charles C. Thomas, 1993Google Scholar
  36. 36.
    Godal A, Olsnes S, Pihl A. Radioimmunoassays of abrin and ricin in blood. J Toxicol Environ Health 1981; 8: 409–17PubMedCrossRefGoogle Scholar
  37. 37.
    Griffiths GD, Lindsay CD, Allenby AC, et al. Protection against inhalation toxicity of ricin and abrin by immunisation. Hum Exp Toxicol 1995; 14: 155–64PubMedCrossRefGoogle Scholar
  38. 38.
    Clark CE, Keplinger JL, Riddle MR, et al. Time dependency of ascorbate compound administration to alter the mean survival time of abrin intoxication [abstract]. Fed Proc 1981; 40: 865Google Scholar
  39. 39.
    Poli MA, Rivera VR, Pitt ML, et al. Aerosolized specific antibody protects mice from lung injury associated with aerosolized ricin exposure. Toxicon 1996; 34: 1037–44PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2003

Authors and Affiliations

  • Kirsten J. Dickers
    • 1
  • Sally M. Bradberry
    • 1
    • 2
  • Paul Rice
    • 3
  • Gareth D. Griffiths
    • 3
  • J. Allister Vale
    • 1
    • 2
  1. 1.National Poisons Information Service (Birmingham Centre)City HospitalBirminghamUK
  2. 2.West Midlands Poisons UnitCity HospitalBirminghamUK
  3. 3.Dstl Porton DownSalisburyUK

Personalised recommendations