Skip to main content

Liposome-based depot injection technologies

How versatile are they?

Abstract

Liposomes have proven to be versatile carriers for the delivery of drugs. These carriers are biocompatible, since they are generally made from lipids commonly found in biologic systems and are biodegradable by the usual metabolic pathways. A sustained drug delivery system is useful when the efficacy of drugs is limited by the inability to maintain therapeutic concentrations. Furthermore, a depot delivery system can offer important advantages in the clinic, such as significantly reducing dose frequency and providing efficacy without toxicity. Because of their small size (<5μ.m), conventional liposomes (unilamellar and multilamellar) are limited in their ability to provide depot delivery of drugs when administered subcutaneously or intramuscularly. The small size of these liposomes results in relatively fast clearance from the injection site and a short duration of delivery, typically 1–4 days. Multivesicular liposomes (MVLs) are distinct from conventional liposomes in composition, structure, and size and are the only class of commercial liposomes that have demonstrated depot delivery of both small molecule and protein/peptide drugs. These MVLs are characterized by the presence of a continuous bilayer membrane, with numerous internal aqueous compartments that are contiguous and separated by bilayer septums. As a result of their larger size (median diameter typically 10–30μ.m), these MVLs are not rapidly cleared by tissue macrophages and can act as a drug depot providing slow release of drugs delivered through different routes of administration. Moreover, the biocompatibility and biodegradability of the MVL lipid matrix allows for the sustained delivery of drugs to sensitive areas. The unique architecture of MVLs provides high drug loading of water-soluble drugs, reasonable stability during storage, and control over the drug-release rate. Furthermore, the lipid composition of MVLs can be altered to deliver therapeutics over periods ranging from a few days to a month, in order to meet specific therapeutic needs. The capability of altering the rate of drug release from MVLs by varying the lipid composition provides a great deal of versatility for controlled delivery of a wide variety of therapeutics. This article reviews depot delivery with conventional liposomes, demonstrates through several examples the sustained depot delivery of small and macromolecular drugs using MVLs, and summarizes some novel delivery systems that combine liposomes with polymeric matrices and have the potential to expand the platform of liposomal depot delivery.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Table I
Fig. 4
Table II
Fig. 5
Fig. 6
Fig. 7
Table III
Fig. 8

References

  1. 1

    Bangham AD, editor. Liposome letters. San Diego: Academic Press, 1983

    Google Scholar 

  2. 2

    Lasic DD. Novel applications of liposomes. Trends Biotechnol 1998; 16(7): 307–21

    PubMed  Article  CAS  Google Scholar 

  3. 3

    Gregoriadis G. Liposomes in drug and vaccine delivery. Drug Deliv Syst Sci 2003; 2(4): 91–7

    Google Scholar 

  4. 4

    Lasic DD. Liposomes as a drug delivery system. In: Lasic DD, editor. Liposomes: from physics to applications. Amsterdam: Elsevier, 1993: 265–471

    Google Scholar 

  5. 5

    Ye Q, Asherman J, Stevenson M, et al. DepoFoam® technology: a vehicle for controlled delivery of protein and peptide drugs. J Control Release 2000; 64(1-3): 155–66

    PubMed  Article  CAS  Google Scholar 

  6. 6

    Lasic DD. Lipsomes: synthetic lipid microspheres serve as multipurpose vehicles for delivery of drugs, genetic material and cosmetics. Am Sci 1992: 80: 20–31

    Google Scholar 

  7. 7

    Langsten MV, Ramprasad MP, Kararli TT, et al. Modulation of the sustained delivery of myelopoietin (Leridistim) encapsulated in multivesicular liposomes (DepoFoam®). J Control Release 2003; 89(1): 87–99

    Article  Google Scholar 

  8. 8

    Ellena JF, Le M, Cafiso DS, et al. Distribution of phospholipids and triglycerides in multivesicular lipid particles. Drug Deliv 1999; 6: 97–106

    Article  CAS  Google Scholar 

  9. 9

    Oussoren C, Zuidema J, Crommelin DJ, et al. Lymphatic uptake and biodistribution of liposomes after subcutaneous injection: II. Influence of liposomal size, lipid composition and lipid dose. Biochim Biophys Acta 1997; 1328(2): 261–72

    PubMed  Article  CAS  Google Scholar 

  10. 10

    Oussoren C, Storm G. Liposomes to target the lymphatics by subcutaneous administration. Adv Drug Deliv Rev 2001; 50(1-2): 143–56

    PubMed  Article  CAS  Google Scholar 

  11. 11

    Rodrigueza WV, Phillips MC, Williams KJ. Structural and metabolic consequences of liposome-lipoprotein interactions. Adv Drug Deliv Rev 1998; 32(1-2): 31–43

    PubMed  Article  CAS  Google Scholar 

  12. 12

    Schreier H, Levy M, Mihalko P. Sustained release of liposome-encapsulated gentamicin and fate of phospholipid following intramuscular injection in mice. J Control Release 1987; 5(2): 187–92

    Article  CAS  Google Scholar 

  13. 13

    Blok MC, Van der Neut-Kok EC, Van Deenen LL, et al. The effect of chain length and lipid phase transitions on the selective permeability properties of liposomes. Biochim Biophys Acta 1975; 406(2): 187–96

    PubMed  Article  CAS  Google Scholar 

  14. 14

    Blok MC, Van Deenen LL, De Gier J. The effect of cholesterol incorporation on the temperature dependence of water permeation through liposomal membranes prepared from phosphatidylcholines. Biochim Biophys Acta 1977; 464(3): 509–18

    PubMed  Article  CAS  Google Scholar 

  15. 15

    Spangler RS. Insulin administration via liposomes. Diabetes Care 1990; 13(9): 911–22

    PubMed  Article  CAS  Google Scholar 

  16. 16

    Anderson PM, Hanson DC, Hasz DE, et al. Cytokines in liposomes: preliminary studies with IL-1, IL-2, IL-6, GM-CSF and interferon-gamma. Cytokine 1994; 6(1): 92–101

    PubMed  Article  CAS  Google Scholar 

  17. 17

    Eppstein DA, Van der Pas MA. Gloff CA, Soike KF. Liposomal interferon-beta: sustained release treatment of simian varicella virus infection in monkeys. J Infect Dis 1989; 159(4): 616–20

    PubMed  Article  CAS  Google Scholar 

  18. 18

    Van Slooten ML, Boerman O, Romoren K, et al. Liposomes as sustained release system for human interferon-gamma: biopharmaceutical aspects. Biochim Biophys Acta 2001; 1530(2-3): 134–45

    PubMed  Article  Google Scholar 

  19. 19

    Titulaer HA, Eling WM, Crommelin DJ, et al. The parenteral controlled release of liposome encapsulated chloroquine in mice. J Pharm Pharmacol 1990; 42(8): 529–32

    PubMed  Article  CAS  Google Scholar 

  20. 20

    Kadir F, Eling WMC, Crommelin DJA, et al. Influence of injection volume on the release kinetics of liposomal chloroquine administered subcutaneously or intramuscularly to mice. J Control Release 1991; 17: 277–84

    Article  CAS  Google Scholar 

  21. 21

    Green S, Fortier A, Dijkstra J, et al. Liposomal vaccines. In: Atassi MZ, Bixler GS, editors. Immunobiology of proteins and peptides VIII. New York: Plenum Press, 1995: 83–92

    Chapter  Google Scholar 

  22. 22

    Alving CR. Liposomal vaccines: clinical status and immunological presentation for humoral and cellular immunity. Ann N Y Acad Sci 1995; 754: 143–52

    PubMed  Article  CAS  Google Scholar 

  23. 23

    Erridge C, Stewart J, Bennett-Guerrero E, et al. The biological activity of a liposomal complete core lipopolysaccharide vaccine. J Endotoxin Res 2002; 8(1): 39–46

    PubMed  CAS  Google Scholar 

  24. 24

    Joseph A, Louria-Hayon I, Plis-Finarov A, et al. Liposomal immunostimulatory DNA sequence (ISS-ODN): an efficient parenteral and mucosal adjuvant for influenza and hepatitis B vaccines. Vaccine 2002 Sep 10; 20(27-28): 3342–54

    PubMed  Article  CAS  Google Scholar 

  25. 25

    Babai I, Barenholz Y, Zakay-Rones Z, et al. A novel liposomal influenza vaccine (INFLUSOME-VAC) containing hemagglutinin-neuraminidase and IL-2 or GM-CSF induces protective anti-neuraminidase antibodies cross-reacting with a wide spectrum of influenza A viral strains. Vaccine 2001 Nov 12; 20(3-4): 505–15

    PubMed  Article  CAS  Google Scholar 

  26. 26

    Ben-Yehuda A, Joseph A, Zeira E, et al. Immunogenicity and safety of a novel liposomal influenza subunit vaccine (INFLUSOME-VAC) in young adults. J Med Virol 2003 Apr; 69(4): 560–7

    PubMed  Article  Google Scholar 

  27. 27

    Ben-Yehuda A, Joseph A, Barenholz Y, et al. Immunogenicity and safety of a novel IL-2-supplemented liposomal influenza vaccine (INFLUSOME-VAC) in nursing-home residents. Vaccine 2003 Jul 4; 21(23): 3169–78

    PubMed  Article  CAS  Google Scholar 

  28. 28

    Palmer M, Parker J, Modi S, et al. Phase I study of the BLP25 (MUC1 peptide) liposomal vaccine for active specific immunotherapy in stage IIIB/IV non-small-cell lung cancer. Clin Lung Cancer 2001 Aug; 3(1): 49–57

    PubMed  Article  CAS  Google Scholar 

  29. 29

    Neidhart J, Allen KO, Barlow DL, et al. Immunization of colorectal cancer patients with recombinant baculovirus-derived KSA (Ep-CAM) formulated with monophosphoryl lipid A in liposomal emulsion, with and without granulocyte-macrophage colony-stimulating factor. Vaccine 2004 Jan 26; 22(5-6): 773–80

    PubMed  Article  CAS  Google Scholar 

  30. 30

    Barenholz Y, Crommelin, DJ. Liposomes as pharmaceutical dosage forms. In: Swarbrick J, Boylan JC, editors. Encyclopedia of pharmaceutical technology. New York: Marcel Dexker, 1994: 1–39

    Google Scholar 

  31. 31

    Pepper C, Patel M, Hartounian H. cGMP manufacturing scale-up of a multivesicular lipid based drug delivery system. Pharmaceutical Engineering 1999 Mar-Apr; 8–18

    Google Scholar 

  32. 32

    Kim S, Turker MS, Chi EY, et al. Preparation of multivesicular liposomes. Biochim Biophys Acta 1983; 728(3): 339–48

    PubMed  Article  CAS  Google Scholar 

  33. 33

    Murry DJ, Blaney SM. Clinical pharmacology of encapsulated sustained-release cytarabine. Ann Pharmacother 2000; 34(10): 1173–8

    PubMed  Article  CAS  Google Scholar 

  34. 34

    Jaeckle KA, Phuphanich S, Bent MJ, et al. Intrathecal treatment of neoplastic meningitis due to breast cancer with a slow-release formulation of cytarabine. Br J Cancer 2001; 84(2): 157–63

    PubMed  Article  CAS  Google Scholar 

  35. 35

    Jaeckle KA, Batchelor T, O’Day SJ, et al. An open label trial of sustained-release cytarabine (DepoCyt®) for the intrathecal treatment of solid tumor neoplastic meningitis. J Neurooncol 2002; 57(3): 231–9

    PubMed  Article  Google Scholar 

  36. 36

    Howell SB. Clinical applications of a novel sustained-release injectable drug delivery system: DepoFoam® Technology. Cancer J 2001; 7: 219–27

    PubMed  CAS  Google Scholar 

  37. 37

    Kim S, Chatelut E, Kim JC, et al. Extended CSF cytarabine exposure following intrathecal administration of DTC 101. J Clin Oncol 1993; 11(11): 2186–93

    PubMed  CAS  Google Scholar 

  38. 38

    Kohn F, Malkmus SA, Brownson EA, et al. Fate of the predominant phospholipid component of DepoFoam® drug delivery matrix in rats. Drug Deliv 1998; 5: 1–9

    Article  Google Scholar 

  39. 39

    Chatelut E, Kim T, Kim S. A slow-release methotrexate formulation for intrathecal chemotherapy. Cancer Chemother Pharmacol 1993; 32(3): 179–82

    PubMed  Article  CAS  Google Scholar 

  40. 40

    Roy R, Kim S. Multivesicular liposomes containing bleomycin for subcutaneous administration. Cancer Chemother Pharmacol 1991; 28(2): 105–8

    PubMed  Article  CAS  Google Scholar 

  41. 41

    Kim S. Liposomes as carriers of cancer chemotherapy: current status and future prospects. Drugs 1993; 46(4): 618–38

    PubMed  Article  CAS  Google Scholar 

  42. 42

    Assil KK, Weinreb RN. Multivesicular liposomes: sustained release of the antimetabolite cytarabine in the eye. Arch Ophthalmol 1987; 105(3): 400–3

    PubMed  Article  CAS  Google Scholar 

  43. 43

    Gariano RF, Assil KK, Wiley CA, et al. Retinal toxicity of the antimetabolite 5-fluorouridine 5′-monophosphate administered intravitreally using multivesicular liposomes. Retina 1994; 14(1): 75–80

    PubMed  Article  CAS  Google Scholar 

  44. 44

    Assil KK, Hartzer M, Weinreb RN, et al. Liposome suppression of proliferative vitreoretinopathy: rabbit model using antimetabolite encapsulated liposomes. Invest Ophthalmol Vis Sci 1991; 32(11): 2891–7

    PubMed  CAS  Google Scholar 

  45. 45

    Yaksh TL, Provencher JC, Rathbun ML, et al. Pharmacokinetics and efficacy of epidurally delivered sustained-release encapsulated morphine in dogs. Anesthe-siology 1999; 90(5): 1402–12

    Article  CAS  Google Scholar 

  46. 46

    Yaksh TL, Provencher JC, Rathbun ML, et al. Safety assessment of encapsulated morphine delivered epidurally in a sustained-release multivesicular liposome preparation in dogs. Drug Deliv 2000; 7(1): 27–36

    PubMed  Article  CAS  Google Scholar 

  47. 47

    Kim T, Kim J, Kim S. Extended-release formulation of morphine for subcutaneous administration. Cancer Chemother Pharmacol 1993; 33(3): 187–90

    PubMed  Article  CAS  Google Scholar 

  48. 48

    Kim T, Murdande S, Gruber A, et al. Sustained-release morphine for epidural analgesia in rats. Anesthesiology 1996; 85(2): 331–8

    PubMed  Article  CAS  Google Scholar 

  49. 49

    Allgren RL. A comparison of sustained-release encapsulated morphine vs unencapsulated morphine by the epidural route for postoperative analgesia [abstract]. J Pain 2001; 2(2): 44

    Google Scholar 

  50. 50

    Hartwick C, Greene P, Kovan J. Preoperative sustained-release epidural morphine improves discharge ambulatory tolerance following total arthroplasty. Reg Anesth Pain Med Suppl 2001; 26(2): 33

    Google Scholar 

  51. 51

    Roehrborn AA, Hansbrough JF, Gualdoni B, et al. Lipid-based slow-release formulation of amikacin sulfate reduces foreign body-associated infections in mice. Antimicrob Agents Chemother 1995; 39(8): 1752–5

    PubMed  Article  CAS  Google Scholar 

  52. 52

    Huh J, Chen JC, Furman GM, et al. Local treatment of prosthetic vascular graft infection with multivesicular liposome-encapsulated amikacin. J Surg Res 1998; 74(1): 54–8

    PubMed  Article  CAS  Google Scholar 

  53. 53

    Assil KK, Frucht-Perry J, Ziegler E, et al. Tobramycin liposomes: single subcon-junctival therapy of pseudomonal keratitis. Invest Ophthalmol Vis Sci 1991; 32(13): 3216–20

    PubMed  CAS  Google Scholar 

  54. 54

    Grayson LS, Hansbrough JF, Zapata-Sirvent R, et al. Soft tissue infection prophylaxis with gentamicin encapsulated in multivesicular liposomes: results from a prospective, randomized trial. Crit Care Med 1995; 23(1): 84–91

    PubMed  Article  CAS  Google Scholar 

  55. 55

    Kim S, Scheerer S, Geyer MA, et al. Direct cerebrospinal fluid delivery of an antiretroviral agent using multivesicular liposomes. J Infect Dis 1990; 162(3): 750–2

    PubMed  Article  CAS  Google Scholar 

  56. 56

    Shakiba S, Assil KK, Listhaus AD, et al. Evaluation of retinal toxicity and liposome encapsulation of the anti-CMV drug 2′-nor-cyclic GMP. Invest Ophthalmol Vis Sci 1993; 34(10): 2903–10

    PubMed  CAS  Google Scholar 

  57. 57

    Kuppermann BD, Assil KK, Vuong C, et al. Liposome-encapsulated (S)-l-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine for long-acting therapy of viral retinitis. J Infect Dis 1996; 173(1): 18–23

    PubMed  Article  CAS  Google Scholar 

  58. 58

    Besen G, Flores-Aguilar M, Assil KK, et al. Long-term therapy for herpes retinitis in an animal model with high-concentrated liposome-encapsulated HPMPC. Arch Ophthalmol 1995; 113(5): 661–8

    PubMed  Article  CAS  Google Scholar 

  59. 59

    Katre NV, Asherman J, Schaefer H, et al. A multivesicular lipid-based, sustained-release system for the delivery of therapeutic proteins. Eighth International Pharmaceutical Technology Symposium; 1996 Sep 9–11; Ankara, 20–21

  60. 60

    Katre NV, Asherman J, Schaefer H, et al. Multivesicular liposome (DepoFoam®) technology for the sustained delivery of insulin-like growth factor-I (IGF-I). J Pharm Sci 1998; 87(11): 1341–6

    PubMed  Article  CAS  Google Scholar 

  61. 61

    Ramprasad MP, Amini A, Kararli T, et al. The sustained granulopoietic effect of progenipoietin encapsulated in multivesicular liposomes. Int J Pharm 2003 Aug 11, 103

    Google Scholar 

  62. 62

    Bonetti A, Kim S. Pharmacokinetics of an extended-release human interferon alpha-2b formulation. Cancer Chemother Pharmacol 1993; 33(3): 258–61

    PubMed  Article  CAS  Google Scholar 

  63. 63

    Ramprasad MP, Anantharamaiah GM, Garber DW, et al. Sustained-delivery of an apolipoproteinE-peptidomimetic using multivesicular liposomes lowers serum cholesterol levels. J Control Release 2002; 79: 207–18

    PubMed  Article  CAS  Google Scholar 

  64. 64

    Ye Q, Katre N, Sankaram M. Modulation of drug loading in multivesicular liposomes. US Patent 6,106,858. 2000

    Google Scholar 

  65. 65

    Katre NV. Lipid-based multivesicular carriers for sustained delivery of therapeutic proteins and peptides. Biopharm Int 2001 Mar; 14(3 Suppl.): 8

    Google Scholar 

  66. 66

    Quattrin T, Thrailkill K, Baker L, et al. Dual hormonal replacement with insulin and recombinant human insulin-like growth factor I in IDDM: effects on glycemie control, IGF-I levels, and safety profile. Diabetes Care 1997; 20(3): 374–80

    PubMed  Article  CAS  Google Scholar 

  67. 67

    Willis RW. Method for utilizing neutral lipids to modify in-vivo release from multivesicular liposomes. US Patent 5,891,467. 1999

    Google Scholar 

  68. 68

    Kostanski JW, Dani BA, Reynolds GA, et al. Evaluation of orntide microspheres in a rat animal model and correlation to in vitro release profiles. AAPS Pharm- Sci Tech 2000 Oct 1; 1(4): E27

    CAS  Google Scholar 

  69. 69

    Tiyaboonchai W, Woiszwillo J, Sims RC, et al. Insulin containing polyethylenimine-dextran sulfate nanoparticles. Int J Pharm 2003 Apr 14; 255(1-2): 139–51

    PubMed  Article  CAS  Google Scholar 

  70. 70

    Weiner AL, Carpenter-Green SS, Soehngen EC, et al. Liposome-collagen gel matrix: a novel sustained drug delivery system. J Pharm Sci 1985; 74(9): 922–5

    PubMed  Article  CAS  Google Scholar 

  71. 71

    Stenekes RJ, Loebis AE, Fernandes CM, et al. Controlled release of liposomes from biodegradable dextran microspheres: a novel delivery concept. Pharm Res 2000; 17(6): 690–5

    PubMed  Article  CAS  Google Scholar 

  72. 72

    Stenekes RJ, Loebis AE, Fernandes CM, et al. Degradable dextran microspheres for the controlled release of liposomes. Int J Pharm 2001; 214(1-2): 17–20

    PubMed  Article  CAS  Google Scholar 

  73. 73

    Takagi I, Shimizu H, Yotsuyanagi T. Application of alginate gel as a vehicle for liposomes: I. Factors affecting the loading of drug-containing liposomes and drug release. Chem Pharm Bull (Tokyo) 1996; 44(10): 1941–7

    Article  CAS  Google Scholar 

  74. 74

    DiTizio V, Karlgard C, Lilge L, et al. Localized drug delivery using crosslinked gelatin gels containing liposomes: factors influencing liposome stability and drug release. J Biomed Mater Res 2000; 51(1): 96–106

    PubMed  Article  CAS  Google Scholar 

  75. 75

    Meyenburg S, Lilie H, Panzner S, et al. Fibrin encapsulated liposomes as protein delivery system: studies on the in vitro release behavior. J Control Release 2000; 69(1): 159–68

    PubMed  Article  CAS  Google Scholar 

  76. 76

    Machluf M, Apte RN, Regev O, et al. Enhancing the immunogenicity of liposomal hepatitis B surface antigen (HBsAg) by controlling its delivery from polymeric microspheres. J Pharm Sci 2000; 89(12): 1550–7

    PubMed  Article  CAS  Google Scholar 

  77. 77

    Frucht-Perry J, Assil KK, Ziegler E, et al. Fibrin-enmeshed tobramycin liposomes: single application topical therapy of Pseudomonas keratitis. Cornea 1992; 11(5): 393–7

    PubMed  Article  CAS  Google Scholar 

  78. 78

    Anderson J, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 1997; 28: 5–24

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgment

The author thanks the following people from her department: Dr Mysore Ramprasad, Melissa Langston, and John Asherman. The depo-leridistim and depo-progenipoietin projects were collaborations with Pharmacia Corporation, Skokie, IL, USA, and the depo-IGF-I project was a collaboration with Chiron Corporation, Emeryville, CA, USA.

The author has provided no information on sources of funding or conflicts of interest directly relevant to the content of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nandini V. Katre.

Additional information

At the time of preparation of this article Dr Katre was employed by SkyePharma Inc., San Diego, CA, USA; however, her current place of employment is Katre Consulting, Solana Beach, CA, USA.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Katre, N.V. Liposome-based depot injection technologies. Am J Drug Deliv 2, 213–227 (2004). https://doi.org/10.2165/00137696-200402040-00002

Download citation

Keywords

  • Drug Release
  • Cidofovir
  • Cytomegalovirus Retinitis
  • Sustained Delivery
  • Liposomal System