Skip to main content

Solubility enhancers for oral drug delivery

Can chemical structure manipulation be avoided?

Abstract

With recent progress in high throughput screening of potential therapeutic agents, the number of poorly water-soluble drug candidates has risen sharply and formulating for poorly water-soluble compounds for oral delivery now presents one of the most frequent and greatest challenges to scientists in the pharmaceutical industry. Many new drugs and potential therapeutic compounds under investigation possess high lipophilicity, poor water solubility, and low oral bioavailability. Furthermore, development of improved oral dosage forms for currently marketed drugs can also enhance their therapeutic value.

Oral delivery systems designed for poorly water-soluble drugs include micelles with surfactants, microemulsions, self-emulsifying/microemulsifying drug delivery systems (SEDDS/SMEDDS), solid dispersions, microspheres and cyclodextrin inclusion complexes. These delivery systems have been shown to enhance oral bioavailability and therapeutic effects of poorly water-soluble drugs mainly by improving the poor solubility.

As a consequence of extensive research, various oral delivery systems for poorly water-soluble agents are being developed in clinical phases worldwide. New formulation technologies and multidisciplinary expertise may lead to development of advanced and effective oral drug delivery systems applicable to a wide range of poorly water-soluble drugs in the near future.

This is a preview of subscription content, access via your institution.

Table I
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Notes

  1. 1.

    The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. 1

    Aungst BJ. Novel formulation strategies for improving oral bioavailability of drugs with poor membrane permeation or presystemic metabolism. J Pharm Sci 1993; 82: 979–87

    CAS  Article  PubMed  Google Scholar 

  2. 2

    Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001; 46: 3–26

    CAS  Article  PubMed  Google Scholar 

  3. 3

    Mosharraf M, Nystrom C. The effect of dry mixing on the apparent solubility of hydrophobic, sparingly soluble drugs. Eur J Pharm Sci 1999; 9: 145–56

    CAS  Article  PubMed  Google Scholar 

  4. 4

    Pace S, Pace G, Parikh I, et al. Novel injectable formulations of insoluble drugs. J Pharm Technol 1999; 23: 116–26

    CAS  Google Scholar 

  5. 5

    Pillay V, Fassihi R. Unconventional dissolution methodologies. J Pharm Sci 1999; 88: 843–51

    CAS  Article  PubMed  Google Scholar 

  6. 6

    Ansel HC, Popovich NG, Allen LV. Pharmaceutical solid dosage forms and drug delivery system. 6th ed. London: Williams & Wilkins Publishers, 1995

    Google Scholar 

  7. 7

    Ni N, Sanghvi T, Yalkowsky SH. Stabilization and preformulation of anticancer drug-SarCNU. Int J Pharm 2002; 249: 257–64

    CAS  Article  PubMed  Google Scholar 

  8. 8

    Kim JJ, Park K. Glucose-binding property of pegylated concanavalin A. Pharm Res 2001; 18: 794–9

    CAS  Article  PubMed  Google Scholar 

  9. 9

    Ogiso T, Tanino T, Kawaratani D, et al. Enhancement of the oral bioavailability of phenytoin by N-acetylation and absorptive characteristics. Biol Pharm Bull 1998; 21: 1084–9

    CAS  Article  PubMed  Google Scholar 

  10. 10

    Morimoto H, Ohashi N, Shimadzu H, et al. Potent and selective ET-A antagonists: 2. Discovery and evaluation of potent and water soluble N-(6-(2-(aryloxy)ethoxy)-4-pyrimidinyl)sulfonamide derivatives. J Med Chem 2001; 44: 3369–77

    CAS  Article  PubMed  Google Scholar 

  11. 11

    Mori N, Kodama T, Sakai A, et al. AS-924, a novel, orally active, bifunctional prodrug of ceftizoxime: physicochemical properties, oral absorption in animals, and antibacterial activity [published erratum appears in Int J Antimicrob Agents 2002; 19: 439–42]. Int J Antimicrob Agents 2001; 18: 451–61

    CAS  Article  PubMed  Google Scholar 

  12. 12

    Han H, de Vrueh RL, Rhie JK, et al. 5′-Amino acid esters of antiviral nucleosides, acyclovir, and AZT are absorbed by the intestinal PEPT1 peptide transporter. Pharm Res 1998; 15: 1154–9

    CAS  Article  PubMed  Google Scholar 

  13. 13

    Burcham DL, Maurin MB, Hausner EA, et al. Improved oral bioavailability of the hypocholesterolemic DMP 565 in dogs following oral dosing in oil and glycol solutions. Biopharm Drug Dispos 1997; 18: 737–42

    CAS  Article  PubMed  Google Scholar 

  14. 14

    Aungst BJ, Nguygen N, Rogers NJ, et al. Improved oral bioavailability of an HIV protease inhibitor using Gelucire 44/14 and Labrasol vehicles. Bull Tech Gattefosse 1994; 87: 49–54

    CAS  Google Scholar 

  15. 15

    Shah NH, Carvajal MT, Patel CI, et al. Self-emulsifying drug delivery systems (SEDDS) with polyglycolyzed glycerides for improving in vitro dissolution and oral absorption of lipophilic drugs. Int J Pharm 1994; 106: 15–23

    CAS  Article  Google Scholar 

  16. 16

    Craig DQM, Lievens HSR, Pitt KG, et al. An investigation into the physico-chemical properties of self-emulsifying systems using low frequency dielectric spectroscopy, surface tension measurements and particle size analysis. Int J Pharm 1993; 96: 147–55

    CAS  Article  Google Scholar 

  17. 17

    Kim CK, Cho YJ, Gao ZG. Preparation and evaluation of biphenyl dimethyl dicarboxylate microemulsions for oral delivery. J Control Release 2001; 70: 149–55

    CAS  Article  PubMed  Google Scholar 

  18. 18

    Myers RA, Stella VJ. Systemic bioavailability of penclomedine (NSC-338720) from oil-in-water emulsions administered intraduodenally to rats. Int J Pharm 1992; 78: 217–26

    CAS  Article  Google Scholar 

  19. 19

    Kararli TT, Needham TE, Griffin M, et al. Oral delivery of a renin inhibitor compound using emulsion formulations. Pharm Res 1992; 9: 888–93

    CAS  Article  PubMed  Google Scholar 

  20. 20

    Gao ZG, Choi HG, Shin HJ, et al. Physicochemical characterization and evaluation of a microemulsion system for oral delivery of cyclosporin A. Int J Pharm 1998; 161: 75–86

    CAS  Article  Google Scholar 

  21. 21

    Schwendener RA, Schott H. Lipophilic 1-beta-D-arabinofuranosyl cytosine derivatives in liposomal formulations for oral and parenteral antileukemic therapy in the murine L1210 leukemia model. J Cancer Res Clin Oncol 1996; 122: 723–6

    CAS  Article  PubMed  Google Scholar 

  22. 22

    Rogers TL, Johnston KP, Williams III RO. Solution-based particle formation of pharmaceutical powders by supercritical or compressed fluid CO2 and cryogenic spray-freezing technologies. Drug Dev Ind Pharm 2001; 27: 1003–15

    CAS  Article  PubMed  Google Scholar 

  23. 23

    Zerrouk N, Toscani S, Gines-Dorado J-M, et al. Interactions between carbamazepine and polyethylene glycol (PEG) 6000: characterization of the physical, solid dispersed and mixtures. Eur J Pharm Sci 2001; 12: 395–404

    Article  Google Scholar 

  24. 24

    Pagliara A, Reist M, Geinoz S, et al. Evaluation and prediction of drug permeation. J Pharm Pharmacol 1999; 51: 1339–57

    CAS  Article  PubMed  Google Scholar 

  25. 25

    Kobayashi M, Sada N, Sugawara M, et al. Development of a new system for prediction of drug absorption that takes into account drug dissolution and pH change in the gastro-intestinal tract. Int J Pharm 2001; 221: 87–94

    CAS  Article  PubMed  Google Scholar 

  26. 26

    Attwood D, Florence AT, editors. Pharmaceutical aspects of solubilization. In: Surfactant systems. London: Chapman and Hall, 1983: 298–9

    Google Scholar 

  27. 27

    Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm 2000; 50: 47–60

    CAS  Article  PubMed  Google Scholar 

  28. 28

    Hargrove JT, Maxson WS, Wentz AC. Absorption of oral progesterone is influenced by vehicle and particle size. Am J Obstet Gynecol 1989; 161: 948–51

    CAS  PubMed  Google Scholar 

  29. 29

    Chaumeil JC. Micronization: a method of improving the bioavailability of poorly soluble drugs. Methods Find Exp Clin Pharmacol 1998; 20: 211–5

    CAS  PubMed  Google Scholar 

  30. 30

    Farinha A, Bica A, Tavares P. Improved bioavailability of a micronized megestrol acetate tablet formulation in humans. Drug Dev Ind Pharm 2000; 26: 567–70

    CAS  Article  PubMed  Google Scholar 

  31. 31

    Kondo N, Iwao T, Kikuchi M, et al. Pharmacokinetics of a micronized, poorly water-soluble drug, HO-221, in experimental animals. Biol Pharm Bull 1993; 16: 796–800

    CAS  Article  PubMed  Google Scholar 

  32. 32

    Reinoso RF, Farran R, Moragon T, et al. Pharmacokinetics of E-6087, a new antiinflammatory agent, in rats and dogs. Biopharm Drug Dispos 2001; 22: 231–42

    CAS  Article  PubMed  Google Scholar 

  33. 33

    Kubo H, Osawa T, Takashima K, et al. Enhancement of oral bioavailability and pharmacological effect of l-(3,4-dimethoxyphenyl)-2,3-bis(methoxycarbonyl)-4-hydroxy-6,7,8-trimethoxynaphthalene (TA-7552), a new hypocholester-olemic agent, by micronization in co-ground mixture with D-mannitol. Biol Pharm Bull 1996; 19: 741–7

    CAS  Article  PubMed  Google Scholar 

  34. 34

    Shakhtshneider TP, Vasiltchenko MA, Politov AA, et al. The mechanochemical preparation of solid disperse systems of ibuprofen-polyethylene glycol. Int J Pharm 1996; 130: 25–32

    CAS  Article  Google Scholar 

  35. 35

    Sugimoto M, Okagaki T, Narisawa S, et al. Improvement of dissolution characteristics and bioavailability of poorly water-soluble drugs by novel cogrinding method using water soluble-polymer. Int J Pharm 1998; 160: 11–9

    CAS  Article  Google Scholar 

  36. 36

    Chiou WL, Riegelman S. Pharmaceutical applications of solid dispersion system. J Pharm Sci 1971; 60: 1281–302

    CAS  Article  PubMed  Google Scholar 

  37. 37

    Taylor LS, Zografi G. Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersion. Pharm Res 1997; 14: 1691–8

    CAS  Article  PubMed  Google Scholar 

  38. 38

    Murali Mohan Babu GV, Prasad ChD, Ramana Murthy KV. Evaluation of modified gum karaya as carrier for the dissolution enhancement of poorly water-soluble drug nimodipine. Int J Pharm 2002; 234: 1–17

    CAS  Article  PubMed  Google Scholar 

  39. 39

    Kondo N, Iwao T, Hirai K, et al. Improved oral absorption of enteric coprecipitates of a poorly soluble drug. J Pharm Sci 1994; 83: 566–70

    CAS  Article  PubMed  Google Scholar 

  40. 40

    Shin SC, Cho CW. Physicochemical characterizations of piroxicam-poloxamer solid dispersion. Pharm Dev Technol 1997; 2: 403–7

    CAS  Article  PubMed  Google Scholar 

  41. 41

    Okimoto K, Miyake M, Ibiki R, et al. Dissolution mechanism and rate of solid dispersion particles of nilvadipine with hydroxypropylmethylcellulose. Int J Pharm 1997; 159: 85–93

    CAS  Article  Google Scholar 

  42. 42

    Nagarsenker MS, Garad SD. Physical characterization and optimization of dissolution parameters of prochlorperazine maleate coevaporates. Int J Pharm 1998; 160: 251–5

    CAS  Article  Google Scholar 

  43. 43

    Kislalioglu MS, Khan MA, Blount C, et al. Physical characterization and dissolution properties of ibuprofen: Eudragit coprecipitates. J Pharm Sci 1991; 80: 799–804

    CAS  Article  PubMed  Google Scholar 

  44. 44

    Asker AF, Whitworth CW. Dissolution of acetylsalicylic acid from acetylsalicylic acid-polyethylene glycol 6000 coprecipitates. Pharmazie 1975; 30: 530–1

    CAS  PubMed  Google Scholar 

  45. 45

    Haleblian J, McCrone W. Pharmaceutical applications of polymorphism. J Pharm Sci 1969; 58: 911–29

    CAS  Article  PubMed  Google Scholar 

  46. 46

    Brittain HG, Bogdanowich SJ, Bugay DE, et al. Physical characterization of pharmaceutical solids. Pharm Res 1991; 8: 963–73

    CAS  Article  PubMed  Google Scholar 

  47. 47

    Borka L. Review on crystal polymorphism of substances in the European pharmacopoeia. Pharm Acta Helv 1991; 66: 16–22

    CAS  PubMed  Google Scholar 

  48. 48

    Matsuda Y, Kawaguchi S, Kobayashi H, et al. Physicochemical characterization of spray-dried phenylbutazone polymorphs. J Pharm Sci 1984; 73: 173–9

    CAS  Article  PubMed  Google Scholar 

  49. 49

    Rajendra KK, David JWG. Pharmaceutical hydrates. Thermochimica Acta 1995; 248: 61–79

    Article  Google Scholar 

  50. 50

    Hirayama F, Usami M, Kimura K, et al. Crystallization and polymorphic transition behavior of chloramphenicol palmitate in 2-hydroxypropyl-β-cyclodextrin matrix. Eur J Pharm Sci 1997; 5: 23–30

    CAS  Article  Google Scholar 

  51. 51

    Hiramatsu Y, Suzuki H, Kuchiki A, et al. X-ray structural studies of lomeridine dihydrochloride polymorphs. J Pharm Sci 1996; 85: 761–6

    CAS  Article  PubMed  Google Scholar 

  52. 52

    Giordano F, Rossi A, Moyano JR, et al. Polymorphism of rac-5,6-diisobutyryloxy-2-methylamino-l,2,3,4-tetrahydro-naphthalene hydrochloride (CHF 1035): I. thermal, spectroscopic, and x-ray diffraction properties. J Pharm Sci 2001; 90: 1154–63

    CAS  Article  PubMed  Google Scholar 

  53. 53

    Sasaki T, Takagi M, Yaguti T, et al. A new anthelmintic cyclodesipeptide, PF1022A. J Antibiot (Tokyo) 1992; 45: 692–7

    CAS  Article  Google Scholar 

  54. 54

    Terada M, Ishih A, Tungtrongchitr A, et al. Effects of PF1200A on developing larvae of Angiostrongylus costaricensis in mice, with special reference to route, dose and formulation. Japan J Parasitol 1993; 42: 199–210

    Google Scholar 

  55. 55

    Terada M, Kachi S, Ishih A, et al. Influence of formulation on efficacy of PF1022A in rats infected with adult Angiostrongylus costaricensis. Japan J Parasitol 1995; 44: 336–9

    Google Scholar 

  56. 56

    Kachi S, Terada M, Hashimoto H. Influence of dose and formulation of PF1022A intraperitoneally given on Angiostrongylus costaricensis in mice. Jpn J Pharmacol 1997; 73S: 185

    Google Scholar 

  57. 57

    Qiu Y, Fort JJ, Trivedi J, et al. Effect of physicochemical and formulation variables on the in vivo absorption of ABT-761. Drug Dev Ind Pharm 2002; 28: 287–95

    CAS  Article  PubMed  Google Scholar 

  58. 58

    Swenson ES, Curatolo WJ. (C) Means to enhance penetration. (2) Intestinal permeability enhancement for proteins, peptides and other polar drugs: mechanisms and potential toxicity. Adv Drug Deliv Rev 1992; 8: 39–92

    CAS  Article  Google Scholar 

  59. 59

    Redondo PA, Alvarez AI, Garcia JL, et al. Influence of surfactants on oral bioavailability of albendazole based on the formation of the sulphoxide metabolites in rats. Biopharm Drug Dispos 1998; 19: 65–70

    CAS  Article  PubMed  Google Scholar 

  60. 60

    Sakai K, Kutsuna TM, Nishino T, et al. Contribution of calcium ion sequestration by polyoxyethylated nonionic surfactants to the enhanced colonic absorption of p-aminobenzoic acid. J Pharm Sci 1986; 75: 387–90

    CAS  Article  PubMed  Google Scholar 

  61. 61

    Swenson ES, Milisen WB, Curatolo W. Intestinal permeability enhancement: structure-activity and structure-toxicity relationships for nonylphenoxy-poly-oxyethylene surfactant permeability enhancers. Pharm Res 1994; 11: 1501–4

    CAS  Article  PubMed  Google Scholar 

  62. 62

    Swenson ES, Milisen WB, Curatolo W. Intestinal permeability enhancement: efficacy, acute local toxicity, and reversibility. Pharm Res 1994; 11: 1132–42

    CAS  Article  PubMed  Google Scholar 

  63. 63

    Balandraud-Pieri N, Queneau PE, Caroli-Bosc FX, et al. Effects of tauroursodeoxycholate solutions on cyclosporin A bioavailability in rats. Drug Metab Dispos 1997; 25: 912–6

    CAS  PubMed  Google Scholar 

  64. 64

    Schubiger G, Gruter J, Shearer MJ. Plasma vitamin Kl and PIVKA-II after oral administration of mixed-micellar or cremophor EL-solubilized preparations of vitamin Kl to normal breast-fed newborns. J Pediatr Gastroenterol Nutr 1997; 24: 280–4

    CAS  Article  PubMed  Google Scholar 

  65. 65

    Yamashita S, Furubayashi T, Kataoka M, et al. Optimized conditions for prediction of intestinal drug permeability using Caco-2 cells. Eur J Pharm Sci 2000; 10: 195–204

    CAS  Article  PubMed  Google Scholar 

  66. 66

    Saha P, Kou JH. Effect of solubilizing excipients on permeation of poorly water-soluble compounds across Caco-2 cell monolayers. Eur J Pharm Biopharm 2000; 50: 403–11

    CAS  Article  PubMed  Google Scholar 

  67. 67

    Bloedow DC, Hayton WL. Effects of lipids on bioavailability of sulfisoxazole acetyl, dicumarol, and griseofulvin in rats. J Pharm Sci 1976; 65: 328–34

    CAS  Article  PubMed  Google Scholar 

  68. 68

    Chandy T, Sharma CP. Chitosan-as a biomaterial. Biomater Artif Cells Artif Organs 1990; 18: 1–24

    CAS  PubMed  Google Scholar 

  69. 69

    Baldrick P. Pharmaceutical Excipient development: the need for preclinical guidance. Regul Toxicol Pharmacol 2000; 32: 210–8

    CAS  Article  PubMed  Google Scholar 

  70. 70

    Lehr CM, Bouwstra JA, Schacht EH, et al. In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers. Int J Pharm 1992; 78: 43–8

    CAS  Article  Google Scholar 

  71. 71

    Lee BJ, Choe JS, Kim CK. Preparation and characterization of melatonin-loaded stearyl alcohol microspheres. J Microencapsul 1998; 15: 775–87

    CAS  Article  PubMed  Google Scholar 

  72. 72

    Bodmeier R, Chen HG, Paeratakul O. A novel approach to the oral delivery of micro- or nanoparticles. Pharm Res 1989; 6: 413–7

    CAS  Article  PubMed  Google Scholar 

  73. 73

    Yamamoto A, Uchiyama T, Nishikawa R, et al. Effectiveness and toxicity screening of various absorption enhancers in the rat small intestine: effects of absorption enhancers on the intestinal absorption of phenol red and the release of protein and phospholipids from the intestinal membrane. J Pharm Pharmacol 1996; 48: 1285–9

    CAS  Article  PubMed  Google Scholar 

  74. 74

    Uchiyama T, Yamamoto A, Hatano H, et al. Effectiveness and toxicity screening of various absorption enhancers in the large intestine: intestinal absorption of phenol red and protein and phospholipid release from the intestinal membrane. Biol Pharm Bull 1996; 19: 1618–21

    CAS  Article  PubMed  Google Scholar 

  75. 75

    Yamamoto A, Okagawa T, Kotani A, et al. Effects of different absorption enhancers on the permeation of ebiratide, an ACTH analogue, across intestinal membranes. J Pharm Pharmacol 1997; 49: 1057–61

    CAS  Article  PubMed  Google Scholar 

  76. 76

    Sasaki I, Tozaki H, Matsumoto K, et al. Development of an oral formulation of azetirelin, a new thyrotropin-releasing hormone (TRH) analogue, using n-lauryl-beta-D-maltopyranoside as an absorption enhancer. Biol Pharm Bull 1999; 22: 611–5

    CAS  Article  PubMed  Google Scholar 

  77. 77

    Ahlin P, Kristl J, Kristl A, et al. Investigation of polymeric nanoparticles as carriers of enalaprilat for oral administration. Int J Pharm 2002; 239: 113–20

    CAS  Article  PubMed  Google Scholar 

  78. 78

    Challacombe SJ, Rahman D, O’Hagan DT. Salivary, gut, vaginal and nasal antibody responses after oral immunization with biodegradable microparticles. Vaccine 1997; 15: 169–75

    CAS  Article  PubMed  Google Scholar 

  79. 79

    Kreuter J. Nanoparticles as adjuvants for vaccines. In: Powell MF, Newman MJ, editors. Vaccine design: the subunit and adjuvant approach. New York: Plenum Press, 1995: 463–72

    Google Scholar 

  80. 80

    Mathiowitz E, Jacob JS, Jong YS, et al. Biologically erodable microspheres as potential oral drug delivery systems. Nature 1997; 386: 410–4

    CAS  Article  PubMed  Google Scholar 

  81. 81

    Cleland J. Design and production of single-immunization vaccines using polylactide polyglycolide microsphere systems. In: Powell MF, Newman MJ, editors. Vaccine design: the subunit and adjuvant approach. New York: Plenum Press, 1995: 439–72

    Google Scholar 

  82. 82

    Santiago N, Milstein S, Rivera T, et al. Oral immunization of rats with proteinoid microspheres encapsulating influenza virus antigens. Pharm Res 1993; 10: 1243–7

    CAS  Article  PubMed  Google Scholar 

  83. 83

    Bowersock TL. Uptake of alginate microspheres by Peyer’s patches. Proceedings of International Symposium on Controlled Release of Bioactive Materials; 1994 June 27–30; Nice. Minneapolis (MN): Controlled Release Society, Inc., 1994

    Google Scholar 

  84. 84

    De Jaeghere F, Allemann E, Cerny R, et al. pH-Dependent dissolving nano- and microparticles for improved peroral delivery of a highly lipophilic compound in dogs. AAPS Pharm Sci 2001; 3(1): E8

    Article  Google Scholar 

  85. 85

    Damgé C, Michel C, Aprahamian M, et al. Nanocapsules as carrier for oral peptide delivery. J Control Release 1990; 13: 233–9

    Article  Google Scholar 

  86. 86

    Jung T, Kamm W, Breitenbach A, et al. Biodegradable nanoparticles for oral delivery of peptides: is there a role for polymers to affect mucosal uptake? Eur J Pharm Biopharm 2000; 50: 147–60

    CAS  Article  PubMed  Google Scholar 

  87. 87

    Wendel S, Celik M. An overview of spray-drying applications. Pharm Technol 1997; 21: 124–56

    Google Scholar 

  88. 88

    Kim CK, Yoon YS. Development of digoxin dry elixir as a novel dosage form using a spray-drying technique. J Microencapsul 1995; 12: 547–56

    CAS  Article  PubMed  Google Scholar 

  89. 89

    Kim CK, Yoon YS, Kong JY. Preparation and evaluation of flurbiprofen dry elixir as a novel dosage form using a spray-drying technique. Int J Pharm 1995; 120: 21–31

    CAS  Article  Google Scholar 

  90. 90

    Takeuchi H, Sasaki H, Niwa T, et al. Redispersible dry emulsion system as novel oral dosage form of oily drugs: in vivo studies in beagle dogs. Chem Pharm Bull (Tokyo) 1991; 39: 3362–4

    CAS  Article  Google Scholar 

  91. 91

    Kim CK, Shin HJ, Yang SG, et al. Once-a-day oral dosing regimen of cyclosporin A: combined therapy of cyclosporin A premicroemulsion concentrates and enteric coated solid-state premicroemulsion concentrates. Pharm Res 2001; 18: 454–9

    CAS  Article  PubMed  Google Scholar 

  92. 92

    Schmidt-Winkel P, Glinka CJ, Stucky GD. Microemulsion templates for mesoporous silica. Langmuir 2000; 16: 356–61

    CAS  Article  Google Scholar 

  93. 93

    Spatz JP, Mossmer S, Moller M. Mineralization of gold nanoparticles in a block copolymer microemulsion. Chem Eur J 1996; 2: 1552–5

    CAS  Article  Google Scholar 

  94. 94

    Kawakami K, Yoshikawa T, Moroto Y, et al. Microemulsion formulation for enhanced absorption of poorly soluble drugs: I. Prescription design. J Control Release 2002; 81: 65–74

    CAS  Article  PubMed  Google Scholar 

  95. 95

    Kawakami K, Yoshikawa T, Hayashi T, et al. Microemulsion formulation for enhanced absorption of poorly soluble drugs: II. In vivo study. J Control Release 2002; 81: 75–82

    CAS  Article  PubMed  Google Scholar 

  96. 96

    Kim CK, Ryuu SA, Park KM, et al. Preparation and physicochemical characterization of phase inverted water/oil microemulsion containing cyclosporine A. Int J Pharm 1997; 147: 131–4

    CAS  Article  Google Scholar 

  97. 97

    Tejani A. Neoral: the microemulsion formulation. Pediatr Transplant 1998; 2: 85–6

    CAS  PubMed  Google Scholar 

  98. 98

    Taylor NE, Mark AE, Vallat P, et al. Solvent dependent conformation and hydrogen bounding capacity of cyclosporine A: evidence from partition coefficient and molecular dynamics simulations. J Med Chem 1993; 36: 3753–64

    Google Scholar 

  99. 99

    Ismailos G, Reppas C, Dressman JB, et al. Unusual solubility behaviour of cyclosporin A in aqueous media. J Pharm Pharmacol 1991; 43: 287–9

    CAS  Article  PubMed  Google Scholar 

  100. 100

    Gonzalez-Llaven J, Palma-Aguirre JA, Garcia-Arreola R, et al. Comparative bioavailability evaluation of two cyclosporine oral formulations in healthy Mexican volunteers. Arch Med Res 1999; 30: 315–9

    CAS  Article  PubMed  Google Scholar 

  101. 101

    Carrigan PJ, Bates TR. Biopharmaceutics of drugs administered in lipid-containing dosage forms: I. GI absorption of griseofulvin from an oil-in-water emulsion in the rat. J Pharm Sci 1973; 62: 1476–9

    CAS  Article  PubMed  Google Scholar 

  102. 102

    Bardelmeijer HA, Ouwehand M, Malingre MM, et al. Entrapment by Cremophor EL decreases the absorption of paclitaxel from the gut. Cancer Chemother Pharmacol 2002; 49: 119–25

    CAS  Article  PubMed  Google Scholar 

  103. 103

    Constantinides PP. Lipid microemulsions for improving drug dissolution and oral absorption: physical and biopharmaceutical aspects. Pharm Res 1995; 12:1561–72

    CAS  Article  PubMed  Google Scholar 

  104. 104

    Pouton CW. Lipid formulations for oral administration of drugs: non-emulsifying, self-emulsifying and ’self-microemulsifying’ drug delivery systems. Eur J Pharm Sci 2000; 11Suppl. 2: 93–8

    Article  Google Scholar 

  105. 105

    Gershanik T, Benita S. Self-dispersing lipid formulations for improving oral absorption of lipophilic drugs. Eur J Pharm Biopharm 2000; 50: 179–88

    CAS  Article  PubMed  Google Scholar 

  106. 106

    Holt DW, Mueller EA, Kovarik JM, et al. The pharmacokinetics of Sandimmun Neoral: a new oral formulation of cyclosporine. Transplant Proc 1994; 26: 2935–9

    CAS  PubMed  Google Scholar 

  107. 107

    Roman R. So you want to use lipid-based formulations in development. Bull Tech Gattefosse 1992; 85: 51–8

    Google Scholar 

  108. 108

    Constantinides PP, Scalart JP. Formulation and physical characterization of water-in-oil microemulsions containing long- versus medium-chain glycerides. Int J Pharm 1997; 158: 57–68

    CAS  Article  Google Scholar 

  109. 109

    Kim HJ, Yoon KA, Hahn M, et al. Preparation and in vitro evaluation of self-microemulsifying drug delivery systems containing idebenone. Drug Dev Ind Pharm 2000; 26: 523–9

    CAS  Article  PubMed  Google Scholar 

  110. 110

    Kommuru TR, Gurley B, Khan MA, et al. Self-emulsifying drug delivery systems (SEDDS) of coenzyme Q10: formulation development and bioavailability assessment. Int J Pharm 2001; 212: 233–46

    CAS  Article  PubMed  Google Scholar 

  111. 111

    Hauss DJ, Fogal SE, Ficorilli JV, et al. Lipid-based delivery systems for improving the bioavailability and lymphatic transport of a poorly water-soluble LTB4 inhibitor. J Pharm Sci 1998; 87: 164–9

    CAS  Article  PubMed  Google Scholar 

  112. 112

    Shibata N, Ohno T, Shimokawa T, et al. Application of pressure-controlled colon delivery capsule to oral administration of glycyrrhizin in dogs. J Pharm Pharmacol 2001; 53: 441–7

    CAS  Article  PubMed  Google Scholar 

  113. 113

    Nerurkar MM, Burton PS, Borchardt RT. The use of surfactants to enhance the permeability of peptides through Caco-2 cell by inhibition of an apocally polarized efflux system. Pharm Res 1996; 13: 528–34

    CAS  Article  PubMed  Google Scholar 

  114. 114

    Juhlin L, Evers H. EMLA: a new topical anesthetic. Adv Dermatol 1990; 5: 75–91

    CAS  PubMed  Google Scholar 

  115. 115

    Passerini N, Albertini B, Gonzalez-Rodriguez ML, et al. Preparation and characterisation of ibuprofen-poloxamer 188 granules obtained by melt granulation. Eur J Pharm Sci 2002; 15: 71–8

    CAS  Article  PubMed  Google Scholar 

  116. 116

    Castellan GW. Physical Chemistry. Menlo Park (CA): Addison Wesley, 1983: 324–36

    Google Scholar 

  117. 117

    Serajuddin AT. Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J Pharm Sci 1999; 88:1058–66

    CAS  Article  PubMed  Google Scholar 

  118. 118

    Shah N, Pytelewski R, Eisen H, et al. Influence of dispersion method on dissolution rate and bioavailability of digoxin from triturations and compressed tablets II. J Pharm Sci 1974; 63: 339–44

    CAS  Article  PubMed  Google Scholar 

  119. 119

    Danjo K, Nakata T, Otsuka A. Preparation and dissolution of ethenzamide solid dispersions using various sugars as dispersion carrier. Chem Pharm Bull 1997; 45: 1840–4

    CAS  Article  Google Scholar 

  120. 120

    Suzuki H, Sunada H. Influence of water-soluble polymers on the dissolution of nifedipine solid dispersions with combined carriers. Chem Pharm Bull (Tokyo) 1998; 46: 482–7

    CAS  Article  Google Scholar 

  121. 121

    Shin SC, Oh IJ, Lee YB, et al. Enhanced dissolution of furosemide by coprecipitating or cogrinding with crospovidones. Int J Pharm 1998; 175: 217–24

    Article  Google Scholar 

  122. 122

    Flego C, Lovrecich M, Rubessa F. Dissolurion rate of griseofulvin from solid dispersion with poly(vinylmethylether/maleic anhydride). Drug Dev Ind Pharm 1988; 14: 1185–202

    CAS  Article  Google Scholar 

  123. 123

    McGinity JW, Maincent P, Steinfink H. Crystallinity and dissolution rate of tolbutamide solid dispersions prepared by the melt method. J Pharm Sci 1984; 73: 1441–4

    CAS  Article  PubMed  Google Scholar 

  124. 124

    Otsuka M, Onoe M, Matsuda Y. Hygroscopic stability and dissolution properties of spray-dried solid dispersions of furosemide with Eudragit. J Pharm Sci 1993; 82: 32–8

    CAS  Article  PubMed  Google Scholar 

  125. 125

    Ubaldo C, Albo LM, Paolo G. Processing for preparing pharmaceutical compositions having an increased active substance dissolution rate and the composition obtained. EP 1991 0 468 392 Al

    Google Scholar 

  126. 126

    Dangprasirt P, Pongwai S. Development of diclofenac sodium controlled release solid dispersion powders and capsules by freeze drying technique using ethylcellulose and chitosan as carriers. Drug Dev Ind Pharm 1998; 24: 947–53

    CAS  Article  PubMed  Google Scholar 

  127. 127

    Owusu-Ababio G, Ebube NK, Reams R, et al. Comparative dissolution studies for mefenamic acid-polyethylene glycol solid dispersion systems and tablets. Pharm Dev Technol 1998; 3: 405–12

    CAS  Article  PubMed  Google Scholar 

  128. 128

    Habib MJ, Phan MT, Owusu-Ababio G. Dissolution profiles of flurbiprofen in phospholipids solid dispersions. Drug Dev Ind Pharm 1998; 24(11): 1077–82

    CAS  Article  PubMed  Google Scholar 

  129. 129

    Wolf B. Hydrophilic-lipophilic drug carrier systems of bead cellulose and isopropyl myristate. Drug Dev Ind Pharm 1998; 24: 1007–15

    CAS  Article  PubMed  Google Scholar 

  130. 130

    Palmieri GF, Wehrle P, Martelli S. Interactions between lonidamine and betahydroxypropyl-beta-cyclodextrin. Drug Dev Ind Pharm 1998; 24: 653–60

    CAS  Article  PubMed  Google Scholar 

  131. 131

    Te Wierik GH, Eissens AC, Lerk CF. Preparation, characterization, and pharmaceutical application of linear dextrins: III. Drug release from fatty suppository bases containing amylodextrin. Pharm Res 1994; 11: 108–10

    Article  Google Scholar 

  132. 132

    Ghosh LK, Ghosh NC, Chatterjee M, et al. Product development studies on the tablets formulation of ibuprofen to improve bioavailability. Drug Dev Ind Pharm 1998; 24: 473–7

    CAS  Article  PubMed  Google Scholar 

  133. 133

    Khanfar MS, Salem MS, Najib NM, et al. Dissolution behavior of sustained release formulations of indomethacin with Eudragit RS. Acta Pharm Hung 1997; 67: 235–9

    CAS  PubMed  Google Scholar 

  134. 134

    Kushida I, Ichikawa M, Asakawa N. Improvement of dissolution and oral absorption of ER-34122, a poorly water-soluble dual 5-lipoxygenase/cyclooxygenase inhibitor with anti-inflammatory activity by preparing solid dispersion. J Pharm Sci 2002; 91: 258–66

    CAS  Article  PubMed  Google Scholar 

  135. 135

    Khoo SM, Porter CJ, Charman WN. The formulation of halofantrine as either non-solubilizing PEG 6000 or solubilizing lipid based solid dispersions: physical stability and absolute bioavailability assessment. Int J Pharm 2000; 205: 65–78

    CAS  Article  PubMed  Google Scholar 

  136. 136

    Arias MJ, Gines JM, Moyano JR, et al. Improvement of the diuretic effect of triamterene via solid dispersion technique with PEG 4000. Eur J Drug Metab Pharmacokinet 1994; 19: 295–302

    CAS  Article  PubMed  Google Scholar 

  137. 137

    Krishnan TR, Abraham I. Comparative bioavailability of clofazimine coevaporate in the pig. Biopharm Drug Dispos 1994; 15: 329–39

    CAS  Article  PubMed  Google Scholar 

  138. 138

    Kagayama A, Tanimoto S, Fujisaki J, et al. Oral absorption of FK506 in rats. Pharm Res 1993; 10: 1446–50

    CAS  Article  PubMed  Google Scholar 

  139. 139

    Chiba Y, Kohri N, Iseki K, et al. Improvement of dissolution and bioavailability for mebendazole, an agent for human echinococcosis, by preparing solid dispersion with polyethylene glycol. Chem Pharm Bull 1991; 39: 2158–60

    CAS  Article  PubMed  Google Scholar 

  140. 140

    Bredberg E, Nilsson D, Johansson K, et al. Intraduodenal infusion of a water-based levodopa dispersion for optimisation of the therapeutic effect in severe Parkinson’s disease. Eur J Clin Pharmacol 1993; 45: 117–22

    CAS  Article  PubMed  Google Scholar 

  141. 141

    Ahsan F, Rivas IP, Khan MA, et al. Targeting to macrophages: role of physico-chemical properties of particulate carriers: liposomes and microspheres: on the phagocytosis by macrophages. J Control Release 2002; 79(1–3): 29–40

    CAS  Article  PubMed  Google Scholar 

  142. 142

    Zhou S, Liao X, Li X, et al. Poly-D,L-lactide-co-poly(ethylene glycol) micro-spheres as potential vaccine delivery systems. J Control Release 2003 Jan 17; 86(2–3): 195–205

    CAS  Article  PubMed  Google Scholar 

  143. 143

    Lee EJ, Lee SW, Choi HG, et al. Bioavailability of cyclosporin A dispersed in sodium lauryl sulfate-dextrin based solid microspheres. Int J Pharm 2001; 218: 125–31

    CAS  Article  PubMed  Google Scholar 

  144. 144

    Pan Y, Li Y, Zhao H, et al. Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo. Int J Pharm 2002; 249: 139–47

    CAS  Article  PubMed  Google Scholar 

  145. 145

    El-Shabouri MH. Positively charged nanoparticles for improving the oral bioavailability of cyclosporin-A. Int J Pharm 2002; 249: 101–8

    CAS  Article  PubMed  Google Scholar 

  146. 146

    Bernkop-Schnurch A. Chitosan and its derivatives: potential excipients for peroral peptide delivery systems. Int J Pharm 2000; 194: 1–13

    CAS  Article  PubMed  Google Scholar 

  147. 147

    Tokumura T, Nanba M, Tsushima Y, et al. Enhancement of bioavailability of cinnarizine from its beta-cyclodextrin complex on oral administration with DL-phenylalanine as a competing agent. J Pharm Sci 1986; 75: 391–4

    CAS  Article  PubMed  Google Scholar 

  148. 148

    Woodcock BG, Acerbi D, Merz PG, et al. Supermolecular inclusion of piroxicam with beta-cyclodextrin: pharmacokinetic properties in man. Eur J Rheumatol Inflamm 1993; 12: 12–28

    CAS  PubMed  Google Scholar 

  149. 149

    Miyaji T, Inoue Y, Acarturk F, et al. Improvement of oral bioavailability of fenbufen by cyclodextrin complexations. Acta Pharm Nord 1992; 4: 17–22

    CAS  PubMed  Google Scholar 

  150. 150

    Dressman JB, Ridout G, Guy RH. Delivery system technology. In: Hansch C, Sammes PG, Taylor JB, editors. Comprehensive medicinal chemistry: biopharmaceutics. Vol. 5. Oxford: Pergamon Press, 1990: 632

    Google Scholar 

  151. 151

    Stella VJ, Rajewski RA. Cyclodextrins: their future in drug formulation and delivery. Pharm Res 1997; 14: 556–67

    CAS  Article  PubMed  Google Scholar 

  152. 152

    Veiga MD, Diaz PJ, Ahsan F. Interactions of griseofulvin with cyclodextrins in solid binary systems. J Pharm Sci 1998; 87: 891–900

    CAS  Article  PubMed  Google Scholar 

  153. 153

    Lutka A. Effect of cyclodextrin complexation on aqueous solubility and photostability of phenothiazine. Pharmazie 2000; 55: 120–3

    CAS  PubMed  Google Scholar 

  154. 154

    Miyake K, Arima H, Irie T, et al. Enhanced absorption of cyclosporin A by complexation with dimethyl-beta-cyclodextrin in bile duct-cannulated and non-cannulated rats. Biol Pharm Bull 1999; 22: 66–72

    CAS  Article  PubMed  Google Scholar 

  155. 155

    Siefert B, Pleyer U, Muller M, et al. Influence of cyclodextrins on the in vitro corneal permeability and in vivo ocular distribution of thalidomide. J Ocul Pharmacol Ther 1999; 15: 429–38

    CAS  Article  PubMed  Google Scholar 

  156. 156

    Choi HG, Lee BJ, Han JH, et al. Terfenadine-beta-cyclodextrin inclusion complex with antihistaminic activity enhancement. Drug Dev Ind Pharm 2001; 27: 857–62

    CAS  Article  PubMed  Google Scholar 

  157. 157

    Wong JW, Yuen KH. Improved oral bioavailability of artemisinin through inclusion complexation with beta- and gamma-cyclodextrins. Int J Pharm 2001; 227: 177–85

    CAS  Article  PubMed  Google Scholar 

  158. 158

    Willems L, van der Geest R, de Beule K. Itraconazole oral solution and intravenous formulations: a review of pharmacokinetics and pharmacodynamics. J Clin Pharm Ther 2001; 26: 159–69

    CAS  Article  PubMed  Google Scholar 

  159. 159

    Geczy J, Bruhwyler J, Scuvee-Moreau J, et al. The inclusion of fluoxetine into gamma-cyclodextrin increases its bioavailability: behavioral, electrophysiological and pharmacokinetic studies. Psychopharmacology 2000; 151: 328–34

    CAS  Article  PubMed  Google Scholar 

  160. 160

    Brewster ME, Anderson WR, Estes KS, et al. Development of aqueous parenteral formulations for carbamazepine through the use of modified cyclodextrins. J Pharm Sci 1991; 80: 380–3

    CAS  Article  PubMed  Google Scholar 

  161. 161

    Tinwalla AY, Hoesterey BL, Xiang TX, et al. Solubilization of thiazolobenzimidazole using a combination of pH adjustment and complexation with 2-hydroxypropyl-beta-cyclodextrin. Pharm Res 1993; 10: 1136–43

    CAS  Article  PubMed  Google Scholar 

  162. 162

    Jarvinen T, Jarvinen K, Schwarting N, et al. Beta-cyclodextrin derivatives, SBE4-beta-CD and HP-beta-CD, increase the oral bioavailability of cinnarizine in beagle dogs. J Pharm Sci 1995; 84: 295–9

    CAS  Article  PubMed  Google Scholar 

  163. 163

    Evrard B, Chiap P, DeTullio P, et al. Oral bioavailability in sheep of albendazole from a suspension and from a solution containing hydroxypropyl-betacyclodextrin. J Control Release 2002; 85: 45–50

    CAS  Article  PubMed  Google Scholar 

  164. 164

    Nagarsenker MS, Meshram RN, Ramprakash G. Solid dispersion of hydroxypropyl beta-cyclodextrin and ketorolac: enhancement of in-vitro dissolution rates, improvement in anti-inflammatory activity and reduction in ulcerogenicity in rats. J Pharm Pharmacol 2000; 52: 949–56

    CAS  Article  PubMed  Google Scholar 

  165. 165

    Miyake K, Arima H, Hirayama F, et al. Improvement of solubility and oral bioavailability of rutin by complexation with 2-hydroxypropyl-beta-cyclodextrin. Pharm Dev Technol 2000; 5: 399–407

    CAS  Article  PubMed  Google Scholar 

  166. 166

    Okada Y, Tachibana M, Koizumi K. Solubilization of lipid-soluble vitamins by complexation with glycosyl-b-cyclodextrin. Chem Pharm Bull 1990; 38: 2047–9

    CAS  Article  Google Scholar 

  167. 167

    Acarturk F, Imai T, Saito H, et al. Comparative study on inclusion complexation of maltosyl-beta-cyclodextrin, heptakis(2,6-di-O-methyl)-beta-cyclodextrin and beta-cyclodextrin with fucosterol in aqueous and solid state. J Pharm Pharmacol 1993; 45: 1028–32

    CAS  Article  PubMed  Google Scholar 

  168. 168

    Okada Y, Kubota Y, Koizumi K, et al. Some properties and the inclusion behavior of branched cyclodextrins. Chem Pharm Bull 1988; 36: 2176–85

    CAS  Article  PubMed  Google Scholar 

  169. 169

    Arima H, Yunomae K, Miyake K, et al. Comparative studies of the enhancing effects of cyclodextrins on the solubility and oral bioavailability of tacrolimus in rats. J Pharm Sci 2001; 90: 690–701

    CAS  Article  PubMed  Google Scholar 

  170. 170

    Arima H, Yunomae K, Hirayama F, et al. Contribution of P-glycoprotein to the enhancing effects of dimethyl-beta-cyclodextrin on oral bioavailability of tacrolimus. J Pharmacol Exp Ther 2001; 297: 547–55

    CAS  PubMed  Google Scholar 

  171. 171

    Nakai Y, Yamamoto K, Terada K, et al. The dispersed states of medicinal molecules in ground mixtures with a- or β-cyclodextrin. Chem Pharm Bull 1984; 32: 685–91

    CAS  Article  Google Scholar 

  172. 172

    Tokumura T, Ueda H, Tsushima Y, et al. Inclusion complexes of cinnarizine with beta-cyclodextrin in aqueous solution and in the solid state. Chem Pharm Bull 1984; 32: 4179–84

    CAS  Article  PubMed  Google Scholar 

  173. 173

    Montaldo PG, Pagnan G, Raffaghello L, et al. Anti GD2-immunoliposome mediated targeting of I125-MIBG to neuroblastoma and melanoma cells in vitro. J Liposome Res 1999; 9: 367–85

    CAS  Article  Google Scholar 

  174. 174

    Lee MK, Choi L, Kim MH, et al. Pharmacokinetis and organ distribution of cyclosporin A incorporated in liposome and mixed micelle. Int J Pharm 1999; 191: 87–93

    CAS  Article  PubMed  Google Scholar 

  175. 175

    Kim CK, Jeong EJ, Kim MH. Comparison of in vivo fate and immunogenicity of hepatitis B surface antigen incorporated in cationic neutral liposomes. J Microencapsul 2000; 17: 297–306

    Article  PubMed  Google Scholar 

  176. 176

    Pretzer E, Flasher D, Duzgunes N. Inhibition of human immunodeficiency virus type-1 replication in macrophages and H9 cells by free or liposome-encapsulated L-689,502, an inhibitor of the viral protease. Antiviral Res 1997; 34: 1–15

    CAS  Article  PubMed  Google Scholar 

  177. 177

    Anderson KE, Eliot LA, Stevenson BR, et al. Formulation and evaluation of a folic acid receptor-targeted oral vancomycin liposomal dosage form. Pharm Res 2001; 18: 316–22

    CAS  Article  PubMed  Google Scholar 

  178. 178

    Wen H, New RR, Muhmut M, et al. Pharmacology and efficacy of liposome-entrapped albendazole in experimental secondary alveolar echinococcosis and effect of co-administration with cimetidine. Parasitology 1996; 113: 111–21

    CAS  Article  PubMed  Google Scholar 

  179. 179

    Stozek T, Borysiewicz J. Bioavailability of griseofulvin in the form of liposomes. Pharmazie 1991; 46: 39–41

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a grant from the Research Institute of Pharmaceutical Sciences at College of Pharmacy, Seoul National University and the National Research Laboratory program (2000-N-NL-01-C-171) in the series of MOST-NRDP in the Ministry of Science and Technology, South Korea. The authors have no conflict of interest that are directly relevant to the content of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chong-Kook Kim.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, CK., Park, JS. Solubility enhancers for oral drug delivery. Am J Drug Deliv 2, 113–130 (2004). https://doi.org/10.2165/00137696-200402020-00004

Download citation

Keywords

  • Chitosan
  • Digoxin
  • Dissolution Rate
  • Inclusion Complex
  • Solid Dispersion