Skip to main content
Log in

Bayesian Decomposition Analysis of Bacterial Phylogenomic Profiles

  • Original Research Article
  • Published:
American Journal of Pharmacogenomics

Abstract

Background

The past two decades have seen the appearance of new infectious diseases and the reemergence of old diseases previously thought to be under control. At the same time, the effectiveness of the existing antibacterials is rapidly decreasing due to the spread of multidrug-resistant pathogens.

Aim

The aim of this study was to the identify candidate molecular targets (e.g. enzymes) within essential metabolic pathways specific to a significant subset of bacterial pathogens as the first step in the rational design of new antibacterial drugs.

Methods

We constructed a dataset of phylogenomic profiles (vectors that encode the similarity, measured by BLAST scores, of a gene across many species) for a series of 31 pathogenic bacteria of interest with 1073 genes taken from the reference organisms Escherichia coli and Mycobacterium tuberculosis. We applied Bayesian Decomposition, a matrix decomposition algorithm, to identify functional metabolic units comprising overlapping sets of genes in this dataset.

Results

Although no information on phylogeny was provided to the system, Bayesian Decomposition retrieved the known bacteria phylogenic relationships on the basis of the proteins necessary for survival. In addition, a set of genes required by all bacteria was identified, as well as components and enzymes specific to subsets of bacteria.

Conclusion

The use of phylogenomic profiles and Bayesian Decomposition provide important insights for the design of new antibacterial therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4

Similar content being viewed by others

Notes

  1. 1Supplementary material can be found at http://bioinformatics.fccc.edu/suppl/phylo|URL}.

  2. BC stands for BioCyc and is used for ontology identification.

References

  1. Weigel LM, Clewell DB, Gill SR, et al. Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science 2003; 302: 1569–71

    Article  PubMed  CAS  Google Scholar 

  2. Tiruviluamala P, Reichman LB. Tuberculosis. Annu Rev Public Health 2002; 23: 403–26

    Article  PubMed  Google Scholar 

  3. Cassell GH, Mekalanos J. Development of antimicrobial agents in the era of new and reemerging infectious diseases and increasing antibiotic resistance. JAMA 2001; 285: 601–5

    Article  PubMed  CAS  Google Scholar 

  4. Projan SJ. New (and not so new) antibacterial targets: from where and when will the novel drugs come? Curr Opin Pharmacol 2002; 2: 513–22

    Article  PubMed  CAS  Google Scholar 

  5. Barbachyn MR, Brickner SJ, Gadwood RC, et al. Design, synthesis, and evaluation of novel oxazolidinone antibacterial agents active against multidrug-resistant bacteria. Adv Exp Med Biol 1998; 456: 219–38

    Article  PubMed  CAS  Google Scholar 

  6. Clements JM, Beckett RP, Brown A, et al. Antibiotic activity and characterization of BB-3497, a novel peptide deformylase inhibitor. Antimicrob Agents Chemother 2001; 45: 563–70

    Article  PubMed  CAS  Google Scholar 

  7. Auckland C, Teare L, Cooke F, et al. Linezolid-resistant enterococci: report of the first isolates in the United Kingdom. J Antimicrob Chemother 2002; 50: 743–6

    Article  PubMed  CAS  Google Scholar 

  8. Margolis P, Hackbarth C, Lopez S, et al. Resistance of Streptococcus pneumoniae to deformylase inhibitors is due to mutations in defB. Antimicrob Agents Chemother 2001; 45: 2432–5

    Article  PubMed  CAS  Google Scholar 

  9. Ochs MF. Bayesian decomposition. In: Parmigiani G, Garrett ES, Irizarry RA, et al., editors. The analysis of gene expression data: methods and software. New York: Springer Verlag, 2003

    Google Scholar 

  10. Abergel C, Coutard B, Byrne D, et al. Structural genomics of highly conserved microbial genes of unknown function in search of new antibacterial targets. J Struct Funct Genomics 2003; 4: 141–57

    Article  PubMed  CAS  Google Scholar 

  11. Rosamond J, Allsop A. Harnessing the power of the genome in the search for new antibiotics. Science 2000; 287: 1973–6

    Article  PubMed  CAS  Google Scholar 

  12. Ochman H, Lawrence JG, Groisman EA. Lateral gene transfert and the nature of bacterial innovation. Nature 2000; 405: 299–304

    Article  PubMed  CAS  Google Scholar 

  13. Pellegrini M, Marcotte EM, Thompson MJ, et al. Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci U S A 1999; 96: 4285–8

    Article  PubMed  CAS  Google Scholar 

  14. Date S, Marcotte E. Discovery of uncharacterized cellular systems by genome-wide analysis of functional linkages. Nat Biotechnol 2003; 21(9): 1055–62

    Article  PubMed  CAS  Google Scholar 

  15. Enault F, Suhre K, Poirot O, et al. Phydbac (phylogenomic display of bacterial genes): an interactive resource for the annotation of bacterial genomes. Nucleic Acids Res 2003; 31: 3720–2

    Article  PubMed  CAS  Google Scholar 

  16. Enault F, Suhre K, Abergel C, et al. Annotation of bacterial genomes using improved phylogenomic profiles. Bioinformatics 2003; 19Suppl. 1: 1105–7

    Google Scholar 

  17. Ochs MF, Stoyanova RS, Arias-Mendoza F, et al. A new method for spectral decomposition using a bilinear bayesian approach. J Magn Reson 1999; 137: 161–76

    Article  PubMed  CAS  Google Scholar 

  18. Moloshok TD, Klevecz R, Grant JD, et al. Application of Bayesian Decomposition for analysing microarray data. Bioinformatics 2002; 4: 566–75

    Article  Google Scholar 

  19. Bidaut G, Moloshok T, Grant J, et al. Application of Bayesian Decomposition to gene expression analysis of deletion mutant data. In: Johnson K, Lin SE, editors. Methods of microarray data analysis II. Boston (MA): Kluwer Academic, 2002

    Google Scholar 

  20. Moloshok TD, Datta D, Kossenkov AV, et al. Bayesian decomposition classification of the project normal data set. In: Johnson K, Lin S, editors. Methods of microarray data analysis III. Boston (MA): Kluwer Academic, 2003

    Google Scholar 

  21. Metropolis N, Rosenbluth A, Teller A, et al. Equation of state calculations by fast computing machines. J Chem Phys 1953; 21: 1087–91

    Article  CAS  Google Scholar 

  22. Besag J, Green P, Hingdon D, et al. Bayesian computation and stochastic systems. Stat Sci 1995; 10: 3–66

    Article  Google Scholar 

  23. Kirkpatrick S, Gelatt CD, Vecci M. Optimisation by simulated annealing. Science 1983; 220: 671–80

    Article  PubMed  CAS  Google Scholar 

  24. Karp PD, Riley M, Saier M, et al. The EcoCyc database. Nucleid Acid Res 2002; 30(1): 56–8

    Article  CAS  Google Scholar 

  25. Serres MH, Riley M. MultiFun, a multifunctional classification scheme for Escher-ichia coli K-12 gene products. Microb Comp Genomics 2000; 5(4): 205–22

    PubMed  CAS  Google Scholar 

  26. Altschul SF, Gish W, Miller W, et al. Basic local alignment search tool. J Mol Biol 1990; 215: 403–10

    PubMed  CAS  Google Scholar 

  27. Bidaut G, Ochs MF. ClutrFree: cluster tree visualization and interpretation. Bioinformatics 2004 Nov 1; 20(16): 2869–71

    Article  PubMed  CAS  Google Scholar 

  28. Ashburner M, Ball C, Blake J, et al. Gene ontology: tool for the unification of biology: the gene ontology consortium. Nat Genet 2000; 25: 25–9

    Article  PubMed  CAS  Google Scholar 

  29. Ochs MF, Moloshok TD, Bidaut G, et al. Bayesian decomposition: analysing microarray data within a biological context. Ann N Y Acad Sci 2004; 1020: 212–26

    Article  PubMed  Google Scholar 

  30. Cheng Y, Church GM. Biclustering of expression data. Proc Int Conf Intell Syst Mol Biol 2000; 8: 93–103

    PubMed  CAS  Google Scholar 

  31. Tanay A, Sharan R, Shamir R. Discovering statistically significant biclusters in gene expression data. Bioinformatics 2002; 18Suppl. 1: S136–44

    Article  PubMed  Google Scholar 

  32. Kluger Y, Basri R, Chang JT, et al. Spectral biclustering of microarray data: coclustering genes and conditions. Genome Res 2003; 13(4): 703–16

    Article  PubMed  CAS  Google Scholar 

  33. Vitreschak AG, Rodionov DA, Mironov AA, et al. Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation. Nucleic Acids Res 2002; 30(14): 3141–51

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank the National Institutes of Health, National Cancer Institute (for grant CCCG CA06927 to Dr R. Young), the Pennsylvania Department of Health (grant to Dr Ochs), the Pew Foundation for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael F. Ochs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bidaut, G., Suhre, K., Claverie, JM. et al. Bayesian Decomposition Analysis of Bacterial Phylogenomic Profiles. Am J Pharmacogenomics 5, 63–70 (2005). https://doi.org/10.2165/00129785-200505010-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129785-200505010-00006

Keywords

Navigation