Skip to main content
Log in

Genome-Wide Linkage Disequilibrium and Haplotype Maps

  • Databases and Genome Maps
  • Published:
American Journal of Pharmacogenomics

Abstract

There is currently a broad effort to produce genome-wide high-density linkage disequilibrium (LD) maps with single nucleotide polymorphisms. The hope is that the resulting maps can be exploited to find genes that affect the onset and severity of at least some common human diseases. These maps may also be useful for identifying genes that affect drug response or the likelihood of drug toxicities.

The goal of this review is to provide a broad overview of some of the key concerns motivating the design of a major international project called the International Haplotype Map Project. The process of map production requires the identification of very large numbers of polymorphic sites, implementation of facile, highly accurate and inexpensive genotyping production pipelines, and provision for public access to the genotype data. Great progress has been made recently in genotyping methods and these advances are allowing very large-scale data collection. A major goal of these efforts is to enable the selection of subsets of markers that capture useful genetic information in short genomic intervals, while optimally reducing the number of markers that must be genotyped. Standard measures of LD provide a starting point but may not fully capture the complexity of the information inherent in the data. Extremely dense genotype data in several broadly representative populations (European, Chinese, Japanese, and Yoruba) should yield important insights into the genetic structure of most genes. Further study is required to determine how broadly applicable the data will be to other population groups. Significant challenges lie ahead in determining the best methods for the selection of markers in disease/phenotype studies, large-scale genotyping, and analysis of the resulting genetic data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1

Similar content being viewed by others

References

  1. Lander ES, Schork NJ. Genetic dissection of complex traits. Science 1994; 265(5181): 2037–48

    Article  PubMed  CAS  Google Scholar 

  2. Zwick ME, Cutler DJ, Chakravarti A. Patterns of genetic variation in Mendelian and complex traits. Annu Rev Genomics Hum Genet 2000; 1: 387–407

    Article  PubMed  CAS  Google Scholar 

  3. Jorde LB, Watkins WS, Bamshad MJ. Population genomics: a bridge from evolutionary history to genetic medicine. Hum Mol Genet 2001; 10(20): 2199–207

    Article  PubMed  CAS  Google Scholar 

  4. Pritchard JK. Are rare variants responsible for susceptibility to complex diseases? Am J Hum Genet 2001; 69(1): 124–37

    Article  PubMed  CAS  Google Scholar 

  5. Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science 1996; 273(5281): 1516–7

    Article  PubMed  CAS  Google Scholar 

  6. Risch N. Implications of multilocus inheritance for gene-disease association studies. Theor Popul Biol 2001; 60(3): 215–20

    Article  PubMed  CAS  Google Scholar 

  7. Romualdi C, Balding D, Nasidze IS, et al. Patterns of human diversity, within and among continents, inferred from biallelic DNA polymorphisms. Genome Res 2002; 12(4): 602–12

    Article  PubMed  CAS  Google Scholar 

  8. Reich DE, Lander ES. On the allelic spectrum of human disease. Trends Genet 2001; 17(9): 502–10

    Article  PubMed  CAS  Google Scholar 

  9. Nordborg M, Tavare S. Linkage disequilibrium: what history has to tell us. Trends Genet 2002; 18(2): 83–90

    Article  PubMed  CAS  Google Scholar 

  10. Ardlie KG, Kruglyak L, Seielstad M. Patterns of linkage disequilibrium in the human genome. Nat Rev Genet 2002; 3(4): 299–309

    Article  PubMed  CAS  Google Scholar 

  11. Hartl DL, Clark AG. Principles of population genetics. 3rd ed. Sunderland (MA): Sinauer Associates, 1997

    Google Scholar 

  12. Balding DJ, Bishop M, Cannings C, editors. Handbook of statistical genetics. 1st ed. Chichester: John Wiley & Sons Inc, 2001

    Google Scholar 

  13. Weiss KM, Clark AG. Linkage disequilibrium and the mapping of complex human traits. Trends Genet 2002; 18(1): 19–24

    Article  PubMed  CAS  Google Scholar 

  14. Abecasis GR, Noguchi E, Heinzmann A, et al. Extent and distribution of linkage disequilibrium in three genomic regions. Am J Hum Genet 2001; 68(1): 191–7

    Article  PubMed  CAS  Google Scholar 

  15. Ardlie K, Liu-Cordero SN, Eberle MA, et al. Lower-than-expected linkage disequilibrium between tightly linked markers in humans suggests a role for gene conversion. Am J Hum Genet 2001; 69(3): 582–9

    Article  PubMed  CAS  Google Scholar 

  16. Stumpf MP, McVean GA. Estimating recombination rates from population-genetic data. Nat Rev Genet 2003; 4(12): 959–68

    Article  PubMed  CAS  Google Scholar 

  17. Collins-Schramm HE, Phillips CM, Operario DJ, et al. Ethnic-difference markers for use in mapping by admixture linkage disequilibrium. Am J Hum Genet 2002; 70(3): 737–50

    Article  PubMed  CAS  Google Scholar 

  18. Rybicki BA, Iyengar SK, Harris T, et al. Prospects of admixture linkage disequilibrium mapping in the African-American genome. Cytometry 2002; 47(1): 63–5

    Article  PubMed  CAS  Google Scholar 

  19. Deng HW, Chen WM, Recker RR. Population admixture: detection by Hardy-Weinberg test and its quantitative effects on linkage-disequilibrium methods for localizing genes underlying complex traits. Genetics 2001; 157(2): 885–97

    PubMed  CAS  Google Scholar 

  20. Pfaff CL, Parra EJ, Bonilla C, et al. Population structure in admixed populations: effect of admixture dynamics on the pattern of linkage disequilibrium. Am J Hum Genet 2001; 68(1): 198–207

    Article  PubMed  CAS  Google Scholar 

  21. Wilson JF, Goldstein DB. Consistent long-range linkage disequilibrium generated by admixture in a Bantu-Semitic hybrid population. Am J Hum Genet 2000; 67(4): 926–35

    Article  PubMed  CAS  Google Scholar 

  22. Yang Q, Rabinowitz D, Isasi C, et al. Adjusting for confounding due to population admixture when estimating the effect of candidate genes on quantitative traits. Hum Hered 2000; 50(4): 227–33

    Article  PubMed  CAS  Google Scholar 

  23. Page GP, Amos CI. Comparison of linkage-disequilibrium methods for localization of genes influencing quantitative traits in humans. Am J Hum Genet 1999; 64(4): 1194–205

    Article  PubMed  CAS  Google Scholar 

  24. McKeigue PM. Mapping genes underlying ethnic differences in disease risk by linkage disequilibrium in recently admixed populations. Am J Hum Genet 1997; 60(1): 188–96

    PubMed  CAS  Google Scholar 

  25. Depaulis F, Brazier L, Veuille M. Selective sweep at the Drosophila melanogaster Suppressor of Hairless locus and its association with the In (2L)t inversion polymorphism. Genetics 1999; 152(3): 1017–24

    PubMed  CAS  Google Scholar 

  26. Colby C, Williams SM. The effect of adaptive mutagenesis on genetic variation at a linked, neutral locus. Genetics 1995; 140(3): 1129–36

    PubMed  CAS  Google Scholar 

  27. Robinson WP, Cambon-Thomsen A, Borot N, et al. Selection, hitchhiking and disequilibrium analysis at three linked loci with application to HLA data. Genetics 1991; 129(3): 931–48

    PubMed  CAS  Google Scholar 

  28. Sabeti PC, Reich DE, Higgins JM, et al. Detecting recent positive selection in the human genome from haplotype structure. Nature 2002; 419(6909): 832–7

    Article  PubMed  CAS  Google Scholar 

  29. Begovich AB, Moonsamy PV, Mack SJ, et al. Genetic variability and linkage disequilibrium within the HLA-DP region: analysis of 15 different populations. Tissue Antigens 2001; 57(5): 424–39

    Article  PubMed  CAS  Google Scholar 

  30. Charlesworth B, Nordborg M, Charlesworth D. The effects of local selection, balanced polymorphism and background selection on equilibrium patterns of genetic diversity in subdivided populations. Genet Res 1997; 70(2): 155–74

    Article  PubMed  CAS  Google Scholar 

  31. McVean GA. A genealogical interpretation of linkage disequilibrium. Genetics 2002; 162(2): 987–91

    PubMed  Google Scholar 

  32. Devlin B, Risch N. A comparison of linkage disequilibrium measures for fine-scale mapping. Genomics 1995; 29(2): 311–22

    Article  PubMed  CAS  Google Scholar 

  33. Reich DE, Cargill M, Bolk S, et al. Linkage disequilibrium in the human genome. Nature 2001; 411(6834): 199–204

    Article  PubMed  CAS  Google Scholar 

  34. Pritchard JK, Przeworski M. Linkage disequilibrium in humans: models and data. Am J Hum Genet 2001; 69(1): 1–14

    Article  PubMed  CAS  Google Scholar 

  35. Morton NE, Zhang W, Taillon-Miller P, et al. The optimal measure of allelic association. Proc Natl Acad Sci U S A 2001; 98(9): 5217–21

    Article  PubMed  CAS  Google Scholar 

  36. Clayton D. Linkage disequilibrium [online]. 2 Sep 2003. Available from URL: http://www-gene.cimr.cam.ac.uk/clayton/talks/Bristol_2003/ld.pdf [Accessed 2004 May 25]

  37. Tapper WJ, Maniatis N, Morton NE, et al. A metric linkage disequilibrium map of a human chromosome. Ann Hum Genet 2003; 67 (Pt 6): 487–94

    Article  PubMed  CAS  Google Scholar 

  38. Daly MJ, Rioux JD, Schaffner SF, et al. High-resolution haplotype structure in the human genome. Nat Genet 2001; 29(2): 229–32

    Article  PubMed  CAS  Google Scholar 

  39. Jeffreys AJ, Kauppi L, Neumann R. Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nat Genet 2001; 29(2): 217–22

    Article  PubMed  CAS  Google Scholar 

  40. Phillips MS, Lawrence R, Sachidanandam R, et al. Chromosome-wide distribution of haplotype blocks and the role of recombination hot spots. Nat Genet 2003; 33(3): 382–7

    Article  PubMed  CAS  Google Scholar 

  41. Patil N, Berno AJ, Hinds DA, et al. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science 2001; 294(5547): 1719–23

    Article  PubMed  CAS  Google Scholar 

  42. Innan H, Padhukasahasram B, Nordborg M. The pattern of polymorphism on human chromosome 21. Genome Res 2003; 13(6A): 1158–68

    Article  PubMed  CAS  Google Scholar 

  43. Dawson E, Abecasis GR, Bumpstead S, et al. A first-generation linkage disequilibrium map of human chromosome 22. Nature 2002; 418(6897): 544–8

    Article  PubMed  CAS  Google Scholar 

  44. Gabriel SB, Schaffner SF, Nguyen H, et al. The structure of haplotype blocks in the human genome. Science 2002; 296(5576): 2225–9

    Article  PubMed  CAS  Google Scholar 

  45. Wall JD, Pritchard JK. Assessing the performance of the haplotype block model of linkage disequilibrium. Am J Hum Genet 2003; 73(3): 502–15

    Article  PubMed  CAS  Google Scholar 

  46. Ke X, Hunt S, Tapper W, et al. The impact of SNP density on fine-scale patterns of linkage disequilibrium. Hum Mol Genet 2004; 13(6): 577–88

    Article  PubMed  CAS  Google Scholar 

  47. Rosenberg NA, Pritchard JK, Weber JL, et al. Genetic structure of human populations. Science 2002; 298(5602): 2381–5

    Article  PubMed  CAS  Google Scholar 

  48. Barbujani G, Jacquez GM, Ligi L. Diversity of some gene frequencies in European and Asian populations: V. steep multilocus clines. Am J Hum Genet 1990; 47(5): 867–75

    PubMed  CAS  Google Scholar 

  49. Menozzi P, Piazza A, Cavalli-Sforza L. Synthetic maps of human gene frequencies in Europeans. Science 1978; 201(4358): 786–92

    Article  PubMed  CAS  Google Scholar 

  50. Gordon D, Heath SC, Ott J. True pedigree errors more frequent than apparent errors for single nucleotide polymorphisms. Hum Hered 1999; 49(2): 65–70

    Article  PubMed  CAS  Google Scholar 

  51. Foster MW, Sharp RR. Race, ethnicity, and genomics: social classifications as proxies of biological heterogeneity. Genome Res 2002; 12(6): 844–50

    Article  PubMed  CAS  Google Scholar 

  52. Sachidanandam R, Weissman D, Schmidt SC, et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 2001; 409(6822): 928–33

    Article  PubMed  CAS  Google Scholar 

  53. Altshuler D, Pollara VJ, Cowles CR, et al. An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature 2000; 407(6803): 513–6

    Article  PubMed  CAS  Google Scholar 

  54. Reich DE, Gabriel SB, Altshuler D. Quality and completeness of SNP databases. Nat Genet 2003; 33(4): 457–8

    Article  PubMed  CAS  Google Scholar 

  55. Nielsen R, Signorovitch J. Correcting for ascertainment biases when analyzing SNP data: applications to the estimation of linkage disequilibrium. Theor Popul Biol 2003; 63(3): 245–55

    Article  PubMed  Google Scholar 

  56. Garner C, Slatkin M. On selecting markers for association studies: patterns of linkage disequilibrium between two and three diallelic loci. Genet Epidemiol 2003; 24(1): 57–67

    Article  PubMed  Google Scholar 

  57. Zondervan KT, Cardon LR. The complex interplay among factors that influence allelic association. Nat Rev Genet 2004; 5(2): 89–100

    Article  PubMed  CAS  Google Scholar 

  58. Collins-Schramm HE, Chima B, Morii T, et al. Mexican American ancestry-informative markers: examination of population structure and marker characteristics in European Americans, Mexican Americans, Amerindians and Asians. Hum Genet 2004; 114(3): 263–71

    Article  PubMed  Google Scholar 

  59. Collins-Schramm HE, Chima B, Operario DJ, et al. Markers informative for ancestry demonstrate consistent megabase-length linkage disequilibrium in the African American population. Hum Genet 2003; 113(3): 211–9

    Article  PubMed  CAS  Google Scholar 

  60. Cheung J, Estivill X, Khaja R, et al. Genome-wide detection of segmental duplications and potential assembly errors in the human genome sequence. Genome Biol 2003; 4(4): R25. Epub 2003 Mar 17

    Article  PubMed  Google Scholar 

  61. Watanabe Y, Murray JC, Bjork BC, et al. Matroshka and ectopic polymorphisms: two new classes of DNA sequence variation identified at the Van der Woude syndrome locus on 1q32-q41. Hum Mutat 2001; 18(5): 422–34

    Article  PubMed  CAS  Google Scholar 

  62. Oliphant A, Barker DL, Stuelpnagel JR, et al. BeadArray technology: enabling an accurate, cost-effective approach to high-throughput genotyping. Biotechniques 2002; Suppl.: 56–8, 60–1

    Google Scholar 

  63. Hardenbol P, Baner J, Jain M, et al. Multiplexed genotyping with sequence-tagged molecular inversion probes. Nat Biotechnol 2003; 21(6): 673–8

    Article  PubMed  CAS  Google Scholar 

  64. Nilsson M, Krejci K, Koch J, et al. Padlock probes reveal single-nucleotide differences, parent of origin and in situ distribution of centromeric sequences in human chromosomes 13 and 21. Nat Genet 1997 Jul; 16(3): 252–5

    Article  PubMed  CAS  Google Scholar 

  65. Johnson GC, Esposito L, Barratt BJ, et al. Haplotype tagging for the identification of common disease genes. Nat Genet 2001; 29(2): 233–7

    Article  PubMed  CAS  Google Scholar 

  66. Zhang K, Deng M, Chen T, et al. A dynamic programming algorithm for haplotype block partitioning. Proc Natl Acad Sci U S A 2002; 99(11): 7335–9

    Article  PubMed  CAS  Google Scholar 

  67. Ke X, Cardon LR. Efficient selective screening of haplotype tag SNPs. Bioinformatics 2003; 19(2): 287–8

    Article  PubMed  CAS  Google Scholar 

  68. Sebastiani P, Lazarus R, Weiss ST, et al. Minimal haplotype tagging. Proc Natl Acad Sci U S A 2003; 100(17): 9900–5

    Article  PubMed  CAS  Google Scholar 

  69. Zhang K, Sun F, Waterman MS, et al. Haplotype block partition with limited resources and applications to human chromosome 21 haplotype data. Am J Hum Genet 2003; 73(1): 63–73

    Article  PubMed  CAS  Google Scholar 

  70. Stram DO, Haiman CA, Hirschhorn JN, et al. Choosing haplotype-tagging SNPS based on unphased genotype data using a preliminary sample of unrelated subjects with an example from the Multiethnic Cohort Study. Hum Hered 2003; 55(1): 27–36

    Article  PubMed  Google Scholar 

  71. Meng Z, Zaykin DV, Xu CF, et al. Selection of genetic markers for association analyses, using linkage disequilibrium and haplotypes. Am J Hum Genet 2003; 73(1): 115–30

    Article  PubMed  CAS  Google Scholar 

  72. Weir BS, Cockerham CC. Complete characterization of disequilibrium at two loci. In: Feldman ME, editor. Mathematical evolutionary theory. Princeton (NJ): Princeton University Press, 1989: 86–110

    Google Scholar 

  73. Weir BS. Genetic data analysis II. Sunderland (MA): Sinauer Associates, 1996: 91–140

Download references

Acknowledgements

This review was funded by the following grants: 5U54HG002755-02 and NIH RO1 HD39056 from the National Institutes of Health. ## The authors have no conflicts of interest that are directly relevant to the contents of this review.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belmont, J.W., Gibbs, R.A. Genome-Wide Linkage Disequilibrium and Haplotype Maps. Am J Pharmacogenomics 4, 253–262 (2004). https://doi.org/10.2165/00129785-200404040-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129785-200404040-00005

Keywords

Navigation