Skip to main content
Log in

Genetically Targeted Cancer Therapy

Tumor Destruction by PKR Activation

  • Targeted Therapeutics
  • Published:
American Journal of Pharmacogenomics

Abstract

The is a double-stranded RNA-activated protein kinase (PKR) has been largely investigated for its key role in viral host defense. Although best characterized by its function in mediating the antiviral and antiproliferative effects of interferon (IFN), PKR is also implicated in transcriptional regulation, cell differentiation, signal transduction, and tumor suppression. However, recent findings identifying PKR as an important effector of apoptosis have led to an increased interest in PKR modulation as an antitumor strategy. PKR can either be up-regulated through direct induction by the transcription factor E2F-1, or it can be activated through direct protein-protein interactions with the melanoma differentiation-associated gene-7 (MDA7, IL-24). Additionally, the intracellular formation of double-stranded RNA by transfection with antisense RNA complementary to tumor-specific RNA sequences can induce PKR activation and apoptosis selective to these tumor cells.

The growing application of viral vector-based gene therapies and oncolytic, replicating viruses that must elude viral defense in order to be effective, has also drawn attention to PKR. Oncolytic viruses, like the attenuated herpes simplex virus R3616, the vesicular stomatitis virus, or reovirus, specifically replicate in tumor cells only because the viral host defense in the permissive cells is suppressed.

In this article we review the role of PKR as an effector of apoptosis and a target for tumor treatment strategies and discuss the potential of PKR-modifying agents to treat patients with cancer. Targeted gene therapy against cancer can be approached by activation of PKR with the down-regulation of protein synthesis and induction of apoptosis, or by suppression of PKR with the propagation of oncolytic virus. Since the PKR pathway can be modified by many routes, antitumor therapies combining oncolytic virus, gene therapies, and chemotherapy with PKR modifiers are likely to emerge in the near future as therapeutic options in the treatment of patients with cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Stewart II WE, De Clercq E, Billiau A, et al. Increased susceptibility of cells treated with interferon to the toxicity of polyriboinosinic-polyribocytidylic acid. Proc Natl Acad Sci U S A 1972; 69: 1851–4

    PubMed  CAS  Google Scholar 

  2. Stewart II WE, De Clercq E, De Somer P. Specificity of interferon-induced enhancement of toxicity for double-stranded ribonucleic acids. J Gen Virol 1973; 18: 237–46

    PubMed  Google Scholar 

  3. Clemens MJ, Safer B, Merrick WC, et al. Inhibition of protein synthesis in rabbit reticulocyte lysates by double-stranded RNA and oxidized glutathione: indirect mode of action on polypeptide chain initiation. Proc Natl Acad Sci U S A 1975; 72: 1286–90

    PubMed  CAS  Google Scholar 

  4. Meurs E, Chong K, Galabru J, et al. Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon. Cell 1990; 62: 379–90

    PubMed  CAS  Google Scholar 

  5. Green SR, Mathews MB. Two RNA-binding motifs in the double-stranded RNA-activated protein kinase, DAI. Genes Dev 1992; 6: 2478–90

    PubMed  CAS  Google Scholar 

  6. St Johnston D, Brown NH, Gall JG, et al. A conserved double-stranded RNA-binding domain. Proc Natl Acad Sci U S A 1992; 89: 10979–83

    Google Scholar 

  7. Patel RC, Sen GC. PACT, a protein activator of the interferon-induced protein kinase, PKR. EMBO J 1998; 17: 4379–90

    PubMed  CAS  Google Scholar 

  8. Ito T, Yang M, May WS. RAX, a cellular activator for double-stranded RNA-dependent protein kinase during stress signaling. J Biol Chem 1999; 274: 15427–32

    PubMed  CAS  Google Scholar 

  9. Aktas H, Fluckiger R, Acosta JA, et al. Depletion of intracellular Ca2+ stores, phosphorylation of eIF2alpha, and sustained inhibition of translation initiation mediate the anticancer effects of clotrimazole. Proc Natl Acad Sci USA 1998; 95: 8280–5

    PubMed  CAS  Google Scholar 

  10. Carpick BW, Graziano V, Schneider D, et al. Characterization of the solution complex between the interferon-induced, double-stranded RNA-activated protein kinase and HIV-I trans-activating region RNA. J Biol Chem 1997; 272: 9510–6

    PubMed  CAS  Google Scholar 

  11. Chong KL, Feng L, Schappert K, et al. Human p68 kinase exhibits growth suppression in yeast and homology to the translational regulator GCN2. EMBO J 1992; 11: 1553–62

    PubMed  CAS  Google Scholar 

  12. Dever TE, Chen JJ, Barber GN, et al. Mammalian eukaryotic initiation factor 2 alpha kinases functionally substitute for GCN2 protein kinase in the GCN4 translational control mechanism of yeast. Proc Natl Acad Sci USA 1993; 90: 4616–20

    PubMed  CAS  Google Scholar 

  13. Gusella GL, Musso T, Rottschafer SE, et al. Potential requirement of a functional double-stranded RNA-dependent protein kinase (PKR) for the tumoricidal activation of macrophages by lipopolysaccharide or IFN-alpha beta, but not IFN-gamma. J Immunol 1995; 154: 345–54

    PubMed  CAS  Google Scholar 

  14. Hovanessian AG, Galabru J. The double-stranded RNA-dependent protein kinase is also activated by heparin. Eur J Biochem 1987; 167: 467–73

    PubMed  CAS  Google Scholar 

  15. Patel CV, Handy I, Goldsmith T, et al. PACT, a stress-modulated cellular activator of interferon-induced double-stranded RNA-activated protein kinase, PKR. J Biol Chem 2000; 275: 37993–8

    PubMed  CAS  Google Scholar 

  16. Prostko CR, Dholakia JN, Brostrom MA, et al. Activation of the double-stranded RNA-regulated protein kinase by depletion of endoplasmic reticular calcium stores. J Biol Chem 1995; 270: 6211–5

    PubMed  CAS  Google Scholar 

  17. Yeung MC, Liu J, Lau AS. An essential role for the interferon-inducible, double-stranded RNA-activated protein kinase PKR in the tumor necrosis factor-induced apoptosis in U937 cells. Proc Natl Acad Sci U S A 1996; 93: 12451–5

    PubMed  CAS  Google Scholar 

  18. Galabru J, Hovanessian A. Autophosphorylation of the protein kinase dependent on double-stranded RNA. J Biol Chem 1987; 262: 15538–44

    PubMed  CAS  Google Scholar 

  19. Thomis DC, Samuel CE. Mechanism of interferon action: characterization of the intermolecular autophosphorylation of PKR, the interferon-inducible, RNA-dependent protein kinase. J Virol 1995; 69: 5195–8

    PubMed  CAS  Google Scholar 

  20. Manche L, Green SR, Schmedt C, et al. Interactions between double-stranded RNA regulators and the protein kinase DAI. Mol Cell Biol 1992; 12: 5238–48

    PubMed  CAS  Google Scholar 

  21. Levin D, London IM. Regulation of protein synthesis: activation by double-stranded RNA of a protein kinase that phosphorylates eukaryotic initiation factor 2. Proc Natl Acad Sci U S A 1978; 75: 1121–5

    PubMed  CAS  Google Scholar 

  22. Rice AP, Kerr IM. Interferon-mediated, double-stranded RNA-dependent protein kinase is inhibited in extracts from vaccinia virus-infected cells. J Virol 1984; 50: 229–36

    PubMed  CAS  Google Scholar 

  23. Pain VM. Initiation of protein synthesis in eukaryotic cells. Eur J Biochem 1996; 236: 747–71

    PubMed  CAS  Google Scholar 

  24. Samuel CE. The eIF-2 alpha protein kinases, regulators of translation in eukaryotes from yeasts to humans. J Biol Chem 1993; 268: 7603–6

    PubMed  CAS  Google Scholar 

  25. Yang YL, Reis LF, Pavlovic J, et al. Deficient signaling in mice devoid of double-stranded RNA-dependent protein kinase. EMBO J 1995; 14: 6095–106

    PubMed  CAS  Google Scholar 

  26. Cuddihy AR, Wong AH, Tarn NW, et al. The double-stranded RNA activated protein kinase PKR physically associates with the tumor suppressor p53 protein and phosphorylates human p53 on serine 392 in vitro. Oncogene 1999; 18: 2690–702

    PubMed  CAS  Google Scholar 

  27. Kumar A, Yang YL, Flati V, et al. Deficient cytokine signaling in mouse embryo fibroblasts with a targeted deletion in the PKR gene: role of IRF-1 and NF-kappaB. EMBO J 1997; 16: 406–16

    PubMed  CAS  Google Scholar 

  28. Patel RC, Vestal DJ, Xu Z, et al. DRBP76, a double-stranded RNA-binding nuclear protein, is phosphorylated by the interferon-induced protein kinase, PKR. J Biol Chem 1999; 274: 20432–7

    PubMed  CAS  Google Scholar 

  29. Wong AH, Durbin JE, Li S, et al. Enhanced antiviral and antiproliferative properties of a STAT1 mutant unable to interact with the protein kinase PKR. J Biol Chem 2001; 276: 13727–37

    PubMed  CAS  Google Scholar 

  30. Williams BR. PKR; a sentinel kinase for cellular stress. Oncogene 1999; 18: 6112–20

    PubMed  CAS  Google Scholar 

  31. Sen GC. Viruses and interferons. Annu Rev Microbiol 2001; 55: 255–81

    PubMed  CAS  Google Scholar 

  32. Gale Jr M, Blakely CM, Hopkins DA, et al. Regulation of interferon-induced protein kinase PKR: modulation of P58IPK inhibitory function by a novel protein, P52rIPK. Mol Cell Biol 1998; 18: 859–71

    PubMed  CAS  Google Scholar 

  33. Bischoff JR, Samuel CE. Mechanism of interferon action. Activation of the human P1/eIF-2 alpha protein kinase by individual reovirus s-class mRNAs: s1 mRNA is a potent activator relative to s4 mRNA. Virology 1989; 172: 106–15

    PubMed  CAS  Google Scholar 

  34. Desai SY, Patel RC, Sen GC, et al. Activation of interferon-inducible 2′-5′ oligoadenylate synthetase by adenoviral VAI RNA. J Biol Chem 1995; 270: 3454–61

    PubMed  CAS  Google Scholar 

  35. Mathews MB, Shenk T. Adenovirus virus-associated RNA and translation control. J Virol 1991; 65: 5657–62

    PubMed  CAS  Google Scholar 

  36. Maitra RK, McMillan NA, Desai S, et al. HIV-1 TAR RNA has an intrinsic ability to activate interferon-inducible enzymes. Virology 1994; 204: 823–7

    PubMed  CAS  Google Scholar 

  37. Silverman RH, Sengupta DN. Translational regulation by HIV leader RNA, TAT, and interferon-inducible enzymes. J Exp Pathol 1990; 5: 69–77

    PubMed  CAS  Google Scholar 

  38. Gunnery S, Rice AP, Robertson HD, et al. Tat-responsive region RNA of human immunodeficiency virus 1 can prevent activation of the double-stranded-RNA-activated protein kinase. Proc Natl Acad Sci U S A 1990; 87: 8687–91

    PubMed  CAS  Google Scholar 

  39. Edery I, Petryshyn R, Sonenberg N. Activation of double-stranded RNA-dependent kinase (dsl) by the TAR region of HIV-1 mRNA: a novel translational control mechanism. Cell 1989; 56: 303–12

    PubMed  CAS  Google Scholar 

  40. Lee TG, Tomita J, Hovanessian AG, et al. Purification and partial characterization of a cellular inhibitor of the interferon-induced protein kinase of Mr 68,000 from influenza virus-infected cells. Proc Natl Acad Sci U S A 1990; 87: 6208–12

    PubMed  CAS  Google Scholar 

  41. Lee TG, Katze MG. Cellular inhibitors of the interferon-induced, dsRNA-activated protein kinase. Prog Mol Subcell Biol 1994; 14: 48–65

    PubMed  CAS  Google Scholar 

  42. Barber GN, Thompson S, Lee TG, et al. The 58-kilodalton inhibitor of the interferon-induced double-stranded RNA-activated protein kinase is a tetratricopeptide repeat protein with oncogenic properties. Proc Natl Acad Sci U S A 1994; 91: 4278–82

    PubMed  CAS  Google Scholar 

  43. Benkirane M, Neuveut C, Chun RF, et al. Oncogenic potential of TAR RNA binding protein TRBP and its regulatory interaction with RNA-dependent protein kinase PKR. EMBO J 1997; 16: 611–24

    PubMed  CAS  Google Scholar 

  44. Ray MK, Datta B, Chakraborty A, et al. The eukaryotic initiation factor 2-associated 67-kDa polypeptide (p67) plays a critical role in regulation of protein synthesis initiation in animal cells. Proc Natl Acad Sci U S A 1992; 89: 539–43

    PubMed  CAS  Google Scholar 

  45. Mundschau LJ, Faller DV. Endogenous inhibitors of the dsRNA-dependent eIF-2 alpha protein kinase PKR in normal and ras-transformed cells. Biochimie 1994; 76: 792–800

    PubMed  CAS  Google Scholar 

  46. Farassati F, Yang AD, Lee PW. Oncogenes in ras signalling pathway dictate host-cell permissiveness to herpes simplex virus 1. Nat Cell Biol 2001; 3: 745–50

    PubMed  CAS  Google Scholar 

  47. Cuddihy AR, Li S, Tarn NW, et al. Double-stranded-RNA-activated protein kinase PKR enhances transcriptional activation by tumor suppressor p53. Mol Cell Biol 1999; 19: 2475–84

    PubMed  CAS  Google Scholar 

  48. Wong AH, Tam NW, Yang YL, et al. Physical association between STAT1 and the interferon-inducible protein kinase PKR and implications for interferon and double-stranded RNA signaling pathways. EMBO J 1997; 16: 1291–304

    PubMed  CAS  Google Scholar 

  49. Langland JO, Kao PN, Jacobs BL. Nuclear factor-90 of activated T-cells: a double-stranded RNA-binding protein and substrate for the double-stranded RNA-dependent protein kinase, PKR. Biochemistry 1999; 38: 6361–8

    PubMed  CAS  Google Scholar 

  50. Petryshyn R, Chen JJ, London IM. Growth-related expression of a double-stranded RNA-dependent protein kinase in 3T3 cells. J Biol Chem 1984; 259: 14736–42

    PubMed  CAS  Google Scholar 

  51. Meurs EF, Galabru J, Barber GN, et al. Tumor suppressor function of the interferon-induced double-stranded RNA-activated protein kinase. Proc Natl Acad Sci U S A 1993; 90: 232–6

    PubMed  CAS  Google Scholar 

  52. Koromilas AE, Roy S, Barber GN, et al. Malignant transformation by a mutant of the IFN-inducibledsRNA-dependent protein kinase. Science 1992; 257:1685–9

    PubMed  CAS  Google Scholar 

  53. Zamanian-Daryoush M, Der SD, Williams BR. Cell cycle regulation of the double stranded RNA activated protein kinase, PKR. Oncogene 1999; 18: 315–26

    PubMed  CAS  Google Scholar 

  54. Lee SB, Esteban M. The interferon-induced double-stranded RNA-activated protein kinase induces apoptosis. Virology 1994; 199: 491–6

    PubMed  CAS  Google Scholar 

  55. Der SD, Yang YL, Weissmann C, et al. A double-stranded RNA-activated protein kinase-dependent pathway mediating stress-induced apoptosis. Proc Natl Acad Sci U S A 1997; 94: 3279–83

    PubMed  CAS  Google Scholar 

  56. Srivastava SP, Kumar KU, Kaufman RJ. Phosphorylation of eukaryotic translation initiation factor 2 mediates apoptosis in response to activation of the double-stranded RNA-dependent protein kinase. J Biol Chem 1998; 273: 2416–23

    PubMed  CAS  Google Scholar 

  57. Ito T, Jagus R, May WS. Interleukin 3 stimulates protein synthesis by regulating double-stranded RNA-dependent protein kinase. Proc Natl Acad Sci U S A 1994; 91: 7455–9

    PubMed  CAS  Google Scholar 

  58. Gil J, Alcami J, Esteban M. Induction of apoptosis by double-stranded-RNA-dependent protein kinase (PKR) involves the alpha subunit of eukaryotic translation initiation factor 2 and NF-kappaB. Mol Cell Biol 1999; 19: 4653–63

    PubMed  CAS  Google Scholar 

  59. Balachandran S, Kim CN, Yeh WC, et al. Activation of the dsRNA-dependent protein kinase, PKR, induces apoptosis through FADD-mediated death signaling. EMBO J 1998; 17: 6888–902

    PubMed  CAS  Google Scholar 

  60. Donze O, Dostie J, Sonenberg N. Regulatable expression of the interferon-induced double-stranded RNA dependent protein kinase PKR induces apoptosis and fas receptor expression. Virology 1999; 256: 322–9

    PubMed  CAS  Google Scholar 

  61. Kirchhoff S, Koromilas AE, Schaper F, et al. IRF-1 induced cell growth inhibition and interferon induction requires the activity of the protein kinase PKR. Oncogene 1995; 11: 439–45

    PubMed  CAS  Google Scholar 

  62. Brun A, Rivas C, Esteban M, et al. African swine fever viras gene A179L, a viral homologue of bcl-2, protects cells from programmed cell death. Virology 1996; 225: 227–30

    PubMed  CAS  Google Scholar 

  63. Jagus R, Joshi B, Barber GN. PKR, apoptosis and cancer. Int J Biochem Cell Biol 1999; 31: 123–38

    PubMed  CAS  Google Scholar 

  64. Petryshyn R, Chen JJ, London IM. Detection of activated double-stranded RNA-dependent protein kinase in 3T3-F442A cells. Proc Natl Acad Sci U S A 1988; 85: 1427–31

    PubMed  CAS  Google Scholar 

  65. Barber GN, Tomita J, Garfinkel MS, et al. Detection of protein kinase homologues and viral RNA-binding domains utilizing polyclonal antiseram prepared against a baculovirus-expressed ds RNA-activated 68,000-Da protein kinase. Virology 1992; 191: 670–9

    PubMed  CAS  Google Scholar 

  66. Barber GN, Jagus R, Meurs EF, et al. Molecular mechanisms responsible for malignant transformation by regulatory and catalytic domain variants of the interferon-induced enzyme RNA-dependent protein kinase. J Biol Chem 1995; 270: 17423–8

    PubMed  CAS  Google Scholar 

  67. Beretta L, Gabbay M, Berger R, et al. Expression of the protein kinase PKR in modulated by IRF-1 and is reduced in 5q-associated leukemias. Oncogene 1996; 12: 1593–6

    PubMed  CAS  Google Scholar 

  68. Nguyen H, Lin R, Hiscott J. Activation of multiple growth regulatory genes following inducible expression of IRF-1 or IRF/RelA fusion proteins. Oncogene 1997; 15: 1425–35

    PubMed  CAS  Google Scholar 

  69. Davis S, Watson JC. In vitro activation of the interferon-induced, double-stranded RNA-dependent protein kinase PKR by RNA from the 3′ untranslated regions of human alpha-tropomyosin. Proc Natl Acad Sci U S A 1996; 93: 508–13

    PubMed  CAS  Google Scholar 

  70. Sidhu GS, Singh AK, Raghunath PN, et al. Brefeldin A inhibits the antiviral action of interferon against encephalomyocarditis virus. Virus Res 1996; 40: 123–33

    PubMed  CAS  Google Scholar 

  71. Baltzis D, Li S, Koromilas AE. Functional characterization of pkr gene products expressed in cells from mice with a targeted deletion of the N terminus or C terminus domain of PKR. J Biol Chem 2002; 277: 38364–72

    PubMed  CAS  Google Scholar 

  72. Haines III GK, Panos RJ, Bak PM, et al. Interferon-responsive protein kinase (p68) and proliferating cell nuclear antigen are inversely distributed in head and neck squamous cell carcinoma. Tumour Biol 1998; 19: 52–9

    PubMed  Google Scholar 

  73. Haines GK, Ghadge G, Thimmappaya B, et al. Expression of the protein kinase p-68 recognized by the monoclonal antibody TJ4C4 in human lung neoplasms. Virchows Arch B Cell Pathol Incl Mol Pathol 1992; 62: 151–8

    PubMed  CAS  Google Scholar 

  74. Haines GK, Cajulis R, Hayden R, et al. Expression of the double-stranded RNA-dependent protein kinase (p68) in human breast tissues. Tumour Biol 1996; 17: 5–12

    PubMed  CAS  Google Scholar 

  75. Kim SH, Kaminker P, Campisi J. Telomeres, aging and cancer: in search of a happy ending. Oncogene 2002; 21: 503–11

    CAS  Google Scholar 

  76. Kim SH, Forman AP, Mathews MB, et al. Human breast cancer cells contain elevated levels and activity of the protein kinase, PKR. Oncogene 2000; 19: 3086–94

    PubMed  CAS  Google Scholar 

  77. Delhem N, Sabile A, Gajardo R, et al. Activation of the interferon-inducible protein kinase PKR by hepatocellular carcinoma derived-hepatitis C virus core protein. Oncogene 2001; 20: 5836–45

    PubMed  CAS  Google Scholar 

  78. Hiasa Y, Kamegaya Y, Nuriya H, et al. Protein kinase R is increased and is functional in hepatitis C virus-related hepatocellular carcinoma. Am J Gastroenterol 2003; 98: 2528–34

    PubMed  CAS  Google Scholar 

  79. Terada T, Maeta H, Endo K, et al. Protein expression of double-stranded RNA-activated protein kinase in thyroid carcinomas: correlations with histologic types, pathologic parameters, and Ki-67 labeling. Hum Pathol 2000; 31: 817–21

    PubMed  CAS  Google Scholar 

  80. Shimada A, Shiota G, Miyata H, et al. Aberrant expression of double-stranded RNA-dependent protein kinase in hepatocytes of chronic hepatitis and differentiated hepatocellular carcinoma. Cancer Res 1998; 58: 4434–8

    PubMed  CAS  Google Scholar 

  81. Singh C, Haines GK, Talamonti MS, et al. Expression of p68 in human colon cancer. Tumour Biol 1995; 16: 281–9

    PubMed  CAS  Google Scholar 

  82. Sieber OM, Tomlinson IP, Lamlum H. The adenomatous polyposis coli (APC) tumour suppressor: genetics, function and disease. Mol Med Today 2000; 6: 462–9

    PubMed  CAS  Google Scholar 

  83. Chu WM, Ballard R, Carpick BW, et al. Potential Alu function: regulation of the activity of double-stranded RNA-activated kinase PKR. Mol Cell Biol 1998; 18: 58–68

    PubMed  CAS  Google Scholar 

  84. Jiang HY, Wek SA, McGrath BC, et al. Phosphorylation of the alpha subunit of eukaryotic initiation factor 2 is required for activation of NF-kappaB in response to diverse cellular stresses. Mol Cell Biol 2003; 23: 5651–63

    PubMed  CAS  Google Scholar 

  85. Harding HP, Zhang Y, Ron D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 1999; 397: 271–4

    PubMed  CAS  Google Scholar 

  86. Pataer A, Vorburger SA, Barber GN, et al. Adenoviral transfer of the melanoma differentiation-associated gene 7 (mda7) induces apoptosis of lung cancer cells via up-regulation of the double-stranded RNA-dependent protein kinase (PKR). Cancer Res 2002; 62: 2239–43

    PubMed  CAS  Google Scholar 

  87. Donze O, Abbas-Terki T, Picard D. The Hsp90 chaperone complex is both a facilitator and a repressor of the dsRNA-dependent kinase PKR. EMBO J 2001; 20: 3771–80

    PubMed  CAS  Google Scholar 

  88. Pang Q, Christianson TA, Keeble W, et al. The anti-apoptotic function of Hsp70 in the interferon-inducible double-stranded RNA-dependent protein kinase-medi-ated death signaling pathway requires the Fanconi anemia protein, FANCC. J Biol Chem 2002; 277: 49638–43

    PubMed  CAS  Google Scholar 

  89. Thulasiraman V, Xu Z, Uma S, et al. Evidence that Hsc70 negatively modulates the activation of the heme-regulated eIF-2alpha kinase in rabbit reticulocyte lysate. Eur J Biochem 1998; 255: 552–62

    PubMed  CAS  Google Scholar 

  90. Uma S, Thulasiraman V, Matts RL. Dual role for Hsc70 in the biogenesis and regulation of the heme-regulated kinase of the alpha subunit of eukaryotic translation initiation factor 2. Mol Cell Biol 1999; 19: 5861–71

    PubMed  CAS  Google Scholar 

  91. Jaattela M, Wissing D, Kokholm K, et al. Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO J 1998; 17: 6124–34

    PubMed  CAS  Google Scholar 

  92. Simon MM, Reikerstorfer A, Schwarz A, et al. Heat shock protein 70 over-expression affects the response to ultraviolet light in murine fibroblasts. Evidence for increased cell viability and suppression of cytokine release. J Clin Invest 1995; 95: 926–33

    PubMed  CAS  Google Scholar 

  93. Mosser DD, Caron AW, Bourget L, et al. Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis. Mol Cell Biol 1997; 17: 5317–27

    PubMed  CAS  Google Scholar 

  94. Jiang H, Lin JJ, Su ZZ, et al. Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression. Oncogene 1995; 11: 2477–86

    PubMed  CAS  Google Scholar 

  95. Dumoutier L, Leemans C, Lejeune D, et al. Cutting edge: STAT activation by IL-19, IL-20 and mda-7 through IL-20 receptor complexes of two types. J Immunol 2001; 167: 3545–9

    PubMed  CAS  Google Scholar 

  96. Mhashilkar AM, Schrock RD, Hindi M, et al. Melanoma differentiation associated gene-7 (mda-7): a novel anti-tumor gene for cancer gene therapy. Mol Med 2001; 7: 271–82

    PubMed  CAS  Google Scholar 

  97. Mhashilkar A, Zou-Yang XH, Caudell E, et al. Mda-7 tumor suppressor is a novel apokine in the IL-10 family. Cancer Gene Ther 2001; 8Suppl. 2: 2–4

    Google Scholar 

  98. Su ZZ, Madireddi MT, Lin JJ, et al. The cancer growth suppressor gene mda-7 selectively induces apoptosis in human breast cancer cells and inhibits tumor growth in nude mice. Proc Natl Acad Sci U S A 1998; 95: 14400–5

    PubMed  CAS  Google Scholar 

  99. Saeki T, Mhashilkar A, Chada S, et al. Tumor-suppressive effects by adenovirusmediated mda-7 gene transfer in non-small cell lung cancer cell in vitro. Gene Ther 2000; 7: 2051–7

    PubMed  CAS  Google Scholar 

  100. Vorburger SA, Pataer A, Yoshida K, et al. Role for the double-stranded RNA activated protein kinase PKR in E2F-l-induced apoptosis. Oncogene 2002; 21: 6278–88

    PubMed  CAS  Google Scholar 

  101. Adams PD, Kaelin Jr WG. The cellular effects of E2F overexpression. Curr Top Microbiol Immunol 1996; 208: 79–93

    PubMed  CAS  Google Scholar 

  102. Field SJ, Tsai FY, Kuo F, et al. E2F-1 functions in mice to promote apoptosis and suppress proliferation. Cell 1996; 85: 549–61

    PubMed  CAS  Google Scholar 

  103. Hsieh JK, Fredersdorf S, Kouzarides T, et al. E2F1-induced apoptosis requires DNA binding but not transactivation and is inhibited by the retinoblastoma protein through direct interaction. Genes Dev 1997; 11: 1840–52

    PubMed  CAS  Google Scholar 

  104. Hunt KK, Deng J, Liu TJ, et al. Adenovirus-mediated overexpression of the transcription factor E2F-1 induces apoptosis in human breast and ovarian carcinoma cell lines and does not require p53. Cancer Res 1997; 57: 4722–6

    PubMed  CAS  Google Scholar 

  105. Kowalik TF, DeGregori J, Leone G, et al. E2F1-specific induction of apoptosis and p53 accumulation, which is blocked by Mdm2. Cell Growth Differ 1998; 9: 113–8

    PubMed  CAS  Google Scholar 

  106. Phillips AC, Bates S, Ryan KM, et al. Induction of DNA synthesis and apoptosis are separable functions of E2F-1. Genes Dev 1997; 11: 1853–63

    PubMed  CAS  Google Scholar 

  107. Shan B, Farmer AA, Lee WH. The molecular basis of E2F-1 /DP-1-induced S-phase entry and apoptosis. Cell Growth Differ 1996; 7: 689–97

    PubMed  CAS  Google Scholar 

  108. Wang D, Russell JL, Johnson DG. E2F4 and E2F1 have similar proliferative properties but different apoptotic and oncogenic properties in vivo. Mol Cell Biol 2000; 20: 3417–24

    PubMed  CAS  Google Scholar 

  109. Tanaka H, Samuel CE. Mechanism of interferon action: structure of the mouse PKR gene encoding the interferon-inducible RNA-dependent protein kinase. Proc Natl Acad Sci U S A 1994; 91: 7995–9

    PubMed  CAS  Google Scholar 

  110. Tanaka H, Samuel CE. Mouse interferon-inducible RNA-dependent protein kinase Pkr gene: cloning and sequence of the 5′-flanking region and functional identification of the minimal inducible promoter. Gene 2000; 246: 373–82

    PubMed  CAS  Google Scholar 

  111. Leitner WW, Hwang LN, de Veer MJ, et al. Alphavirus-based DNA vaccine breaks immunological tolerance by activating innate antiviral pathways. Nat Med 2003; 9: 33–9

    PubMed  CAS  Google Scholar 

  112. Chen Z, Moyana T, Saxena A, et al. Efficient antitumor immunity derived from maturation of dendritic cells that had phagocytosed apoptotic/necrotic tumor cells. Int J Cancer 2001; 93: 539–48

    PubMed  CAS  Google Scholar 

  113. Shir A, Levitzki A. Inhibition of glioma growth by tumor-specific activation of double-stranded RNA-dependent protein kinase PKR. Nat Biotechnol 2002; 20: 895–900

    PubMed  CAS  Google Scholar 

  114. Markert JM, Medlock MD, Rabkin SD, et al. Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Ther 2000; 7: 867–74

    PubMed  CAS  Google Scholar 

  115. Rampling R, Cruickshank G, Papanastassiou V, et al. Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma. Gene Ther 2000; 7: 859–66

    PubMed  CAS  Google Scholar 

  116. Strong JE, Coffey MC, Tang D, et al. The molecular basis of viral oncolysis: usurpation of the Ras signaling pathway by reovirus. EMBO J 1998; 17: 3351–62

    PubMed  CAS  Google Scholar 

  117. Coffey MC, Strong JE, Forsyth PA, et al. Reovirus therapy of tumors with activated Ras pathway. Science 1998; 282: 1332–4

    PubMed  CAS  Google Scholar 

  118. Stojdl DF, Lichty B, Knowles S, et al. Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat Med 2000; 6: 821–5

    PubMed  CAS  Google Scholar 

  119. Stojdl DF, Abraham N, Knowles S, et al. The murine double-stranded RNA-dependent protein kinase PKR is required for resistance to vesicular stomatitis virus. J Virol 2000; 74: 9580–5

    PubMed  CAS  Google Scholar 

  120. Nekhai S, Bottaro DP, Woldehawariat G, et al. A cell-permeable peptide inhibits activation of PKR and enhances cell proliferation. Peptides 2000; 21: 1449–56

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This investigation was supported in part by grants from The University of Texas M. D. Anderson Cancer Center Support Core (CA 16672), from the National Institutes of Health, Department of Health & Human Services, the Department of Defense (grant DAMD17-97-1-7162 to Dr Hunt), the Swiss Cancer League (grant BIL SKL 1129-02-2001), the Swiss Foundation for Cancer Treatment (grant 148 for Dr Vorburger), the Shooting Down Cancer Fund from the M. D. Anderson Cancer Center (for Dr Hunt), and the Cheryl Burguieres Book Signing Account from the M. D. Anderson Cancer Center (for Dr Hunt). ## The authors have no conflicts of interest directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly K. Hunt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vorburger, S.A., Pataer, A., Swisher, S.G. et al. Genetically Targeted Cancer Therapy. Am J Pharmacogenomics 4, 189–198 (2004). https://doi.org/10.2165/00129785-200404030-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129785-200404030-00006

Keywords

Navigation