Skip to main content
Log in

Uncovering the Genetics of Systemic Lupus Erythematosus

Implications for Therapy

  • Genomics in Human Disease
  • Published:
American Journal of Pharmacogenomics

Abstract

Although it is well known that genetic factors contribute significantly to the expression of systemic lupus erythematosus (SLE) it was only recently realized, through genome-wide searches, that the number of involved genes is rather large. The published information hints at two facts: first, the number of genomic loci identified in various diverse cohorts is large and not necessarily overlapping; and second, certain loci may be preferentially linked with specific clinical manifestations. The latter may ultimately lead to a better understanding of the nature of the clinical entity that we know as SLE, and identification of groups of patients prone to respond better to treatment or to develop significant adverse effects. Advances attained regarding the nature of the biochemical and molecular defects that underwrite the aberrant function of immune cells parallel the progress made on the genetic origin of the disease. The genetic links need to be connected with aberrant function of their products to validate their significance. It is expected that correction of molecular aberrations either medicinally or by gene therapy will provide the needed specific treatment for patients with SLE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II

Similar content being viewed by others

References

  1. Tsokos GC, Boumpas DT. Systemic lupus erythematosus. In: Theofilopoulos A, Bona C, editors. Molecular pathology of autoimmunity. 2nd ed. New York: Taylor and Francis, 2002: 261–87

    Google Scholar 

  2. Kammer GM, Tsokos GC. Molecular aberrations in human lupus. Mol Med Today 2000; 6: 418–24

    Article  PubMed  Google Scholar 

  3. Mackay I, Rosen F. Advances in immunology: complement, second of two parts. N Engl J Med 2001; 344: 1140–4

    Article  Google Scholar 

  4. Lawrence RC, Helmick CG, Arnett FC, et al. Estimates of the prevalence of arthritis and selected musculoskeletal disorders in the United States. Arthritis Rheum 1998; 41: 778–99

    Article  PubMed  CAS  Google Scholar 

  5. Jonsson H, Nived O, Sturfelt G, et al. Estimating the incidence of systemic lupus erythematosus in a defined population using multiple sources of retrieval. Br J Rheumatol 1990; 29: 185–8

    Article  PubMed  CAS  Google Scholar 

  6. McCarty DJ, Manzi S, Medsger Jr TA, et al. Incidence of systemic lupus erythematosus: race and gender differences. Arthritis Rheum 1995; 38: 1260–70

    Article  PubMed  CAS  Google Scholar 

  7. Lahita RG. The role of sex hormones in systemic lupus erythematosus. Curr Opin Rheumatol 1999; 11: 352–6

    Article  PubMed  CAS  Google Scholar 

  8. Hochberg MC. The incidence of systemic lupus erythematosus in Baltimore, Maryland, 1970–1977. Arthritis Rheum 1985; 28: 80–6

    Article  PubMed  CAS  Google Scholar 

  9. Ward MM, Studenski S. Clinical manifestations of systemic lupus erythematosus: identification of racial and socioeconomic influences. Arch Intern Med 1990; 150: 849–53

    Article  PubMed  CAS  Google Scholar 

  10. Uramoto KM, Michet Jr CJ, Thumboo J, et al. Trends in the incidence and mortality of systemic lupus erythematosus. Arthritis Rheum 1999; 42: 46–50

    Article  PubMed  CAS  Google Scholar 

  11. Cervera R, Khamashta MA, Font J, et al. Systemic lupus erythematosus: clinical and immunologic patterns of disease expression in a cohort of 1,000 patients. The European Working Party on Systemic Lupus Erythematosus. Medicine (Baltimore) 1993; 72: 113–24

    CAS  Google Scholar 

  12. Liossis SN, Tsokos GC. Pathogenesis of rheumatic diseases: systemic lupus erythematosus. In: Tsokos GC, editor. Principles of molecular rheumatology. Totowa (NJ): Humana Press, 2000: 311–23

    Chapter  Google Scholar 

  13. Arnett FC, Reveille JD, Wilson RW, et al. Systemic lupus erythematosus: current state of the genetic hypothesis. Semin Arthritis Rheum 1984; 14: 24–35

    Article  PubMed  CAS  Google Scholar 

  14. Lawrence JS, Martins CL, Drake GL. A family survey of lupus erythematosus: heritability. J Rheumatol 1987; 14: 913–21

    PubMed  CAS  Google Scholar 

  15. Deapen D, Escalante A, Weinrib L, et al. A revised estimate of twin concordance in systemic lupus erythematosus. Arthritis Rheum 1992; 35: 311–8

    Article  PubMed  CAS  Google Scholar 

  16. Cutolo M, Sulli A, Seriolo B, et al. Estrogens, the immune response and autoimmunity. Clin Exp Rheumatol 1995; 13: 217–26

    PubMed  CAS  Google Scholar 

  17. Sontheimer RD, Gilliam JN. Systemic lupus erythematosus and the skin. In: Lahita RG, editor. Systemic lupus erythematosus. New York: Churchill and Livingstone, 1992

    Google Scholar 

  18. Cooper GS, Dooley MA, Treadwell EL, et al. Hormonal, environmental, and infectious risk factors for developing systemic lupus erythematosus. Arthritis Rheum 1998; 41: 1714–24

    Article  PubMed  CAS  Google Scholar 

  19. Ghaussy NO, Sibbitt Jr WL, Qualls CR. Cigarette smoking, alcohol consumption, and the risk of systemic lupus erythematosus: a case-control study. J Rheumatol 2001; 28: 2449–53

    PubMed  CAS  Google Scholar 

  20. James JA, Kaufman KM, Farris AD, et al. An increased prevalence of Epstein-Barr virus infection in young patients suggests a possible etiology for systemic lupus erythematosus. J Clin Invest 1997; 100: 3019–26

    Article  PubMed  CAS  Google Scholar 

  21. Horwitz DA, Stohl W, Gray JD. T lymphocytes, natural killer cells, cytokines, and immune regulation. In: Wallace DJ, Hahn BH, editors. Dubois— lupus erythematosus. Baltimore (MD): Lippincott Williams and Wilkins, 1997: 155–94

    Google Scholar 

  22. Tsokos GC. Overview of cellular immune function in systemic lupus erythematosus. In: Lahita RG, editor. Systemic lupus erythematosus. New York: Academic Press, 1999: 17–54

    Google Scholar 

  23. Horwitz DA, Gray JD, Ohtsuka K, et al. The immunoregulatory effects of NK cells: the role of TGF- and implications for autoimmunity. Immunol Today 1997; 18: 538–42

    Article  PubMed  CAS  Google Scholar 

  24. Stohl W, Elliott JE, Hamilton AS, et al. Impaired recovery and cytolytic function of CD56+ T and non-T cells in systemic lupus erythematosus following in vitro polyclonal T cell stimulation: studies in unselected patients and monozygotic disease-discordant twins. Arthritis Rheum 1996; 39: 1840–51

    Article  PubMed  CAS  Google Scholar 

  25. Tsokos GC, Liossis S-NC. Immune cell signaling defects in lupus: activation, anergy and death. Immunol Today 1999; 20: 119–24

    Article  PubMed  CAS  Google Scholar 

  26. Takeuchi T, Pang M, Amano K, et al. Reduced protein tyrosine phosphatase (PTPase) activity of CD45 on peripheral blood lymphocytes in patients with systemic lupus erythematosus. Clin Exp Immunol 1997; 109: 20–6

    Article  PubMed  CAS  Google Scholar 

  27. Liossis S-NC, Ding XZ, Dennis GJ, et al. Altered pattern of TcR/CD3-mediated protein-tyrosyl phosphorylation in T cells from patients with systemic lupus erythematosus: deficient expression of the T cell receptor zeta chain. J Clin Invest 1998; 101: 1448–57

    Article  PubMed  CAS  Google Scholar 

  28. Brundula V, Rivas LJ, Blasini AM, et al. Diminished levels of T cell receptor chains in peripheral blood T lymphocytes from patients with systemic lupus erythematosus. Arthritis Rheum 1999; 42: 1908–16

    Article  PubMed  CAS  Google Scholar 

  29. Matache C, Stefanescu M, Onu A, et al. p56lck activity and expression in peripheral blood lymphocytes from patients with systemic lupus erythematosus. Autoimmunity 1999; 29: 111–20

    Article  PubMed  CAS  Google Scholar 

  30. Vassilopoulos D, Kovacs B, Tsokos GC. TCR/CD3 complex-mediated signal transduction pathway in T cells and T cell lines from patients with systemic lupus erythematosus. J Immunol 1995; 155: 2269–81

    PubMed  CAS  Google Scholar 

  31. Mandler R, Birch RE, Polmar S, et al. Abnormal adenosine-induced immunosuppression and cAMP metabolism in T lymphocytes of patients with systemic lupus erythematosus. Proc Natl Acad Sci U S A 1982; 79: 7542–6

    Article  PubMed  CAS  Google Scholar 

  32. Hasler P, Schultz LA, Kammer GM. Defective cAMP-dependent phosphorylation of intact T lymphocytes in active systemic lupus erythematosus. Proc Natl Acad Sci U S A 1990; 87: 1978–82

    Article  PubMed  CAS  Google Scholar 

  33. Kammer GM, Khan IU, Malemud CJ. Deficient type I protein kinase A isozyme activity in systemic lupus erythematosus T lymphocytes. J Clin Invest 1994; 94: 422–30

    Article  PubMed  CAS  Google Scholar 

  34. Mishra N, Khan IU, Tsokos GC, et al. Association of deficient type II protein kinase A activity with aberrant nuclear translocation of the RII-subunit in systemic lupus erythematosus T lymphocytes. J Immunol 2000; 165: 2830–40

    PubMed  CAS  Google Scholar 

  35. Tada Y, Nagasawa K, Yamauchi Y, et al. A defect in the protein kinase C system in T cells from patients with systemic lupus erythematosus. Clin Immunol Immunopathol 1991; 60: 220–31

    Article  PubMed  CAS  Google Scholar 

  36. Ng TT, Collins IE, Kanner SB, et al. Integrin signalling defects in T-lymphocytes in systemic lupus erythematosus. Lupus 1999; 8: 39–51

    Article  PubMed  CAS  Google Scholar 

  37. Deng C, Kaplan MJ, Yang J, et al. Decreased ras-mitogen-activated protein kinase signaling may cause DNA hypomethylation in T lymphocytes from lupus patients. Arthritis Rheum 2001; 44: 397–407

    Article  PubMed  CAS  Google Scholar 

  38. Wong HK, Kammer GM, Dennis G, et al. Abnormal NF-kB activity in T lymphocytes from patients with systemic lupus erythematosus is associated with decreased p65-RelA protein expression. J Immunol 1999; 163: 1682–9

    PubMed  CAS  Google Scholar 

  39. Solomou EE, Juang Y-T, Gourley MF, et al. Molecular basis of deficient IL-2 production in T cells from patients with systemic lupus erythematosus. J Immunol 2001; 166: 4216–22

    PubMed  CAS  Google Scholar 

  40. Grolleau A, Kaplan MJ, Hanash SM, et al. Impaired translational response and increased protein kinase PKR expression in T cells from lupus patients. J Clin Invest 2000; 106: 1561–8

    Article  PubMed  CAS  Google Scholar 

  41. Gergely Jr P, Grossman C, Niland B, et al. Mitochondrial hyperpolarization and ATP depletion in patients with systemic lupus erythematosus. Arthritis Rheum 2002; 46: 175–90

    Article  PubMed  CAS  Google Scholar 

  42. McDevitt HO, Bodmer WF. Histocompatibility antigens, immune responsiveness and susceptibility to disease. Am J Med 1972; 52: 1–8

    Article  PubMed  CAS  Google Scholar 

  43. Goldberg MA, Arnett FC, Shulman LE. Histocompatibility antigens in SLE. Arthritis Rheum 1976; 19: 129–32

    Article  PubMed  CAS  Google Scholar 

  44. Eroglu GE, Kohler PF. Familial systemic lupus erythematosus: the role of genetic and environmental factors. Ann Rheum Dis 2001; 61: 29–31

    Article  Google Scholar 

  45. Tsao BP. An update on genetic studies of systemic lupus erythematosus. Curr Rheumatol Rep 2002; 4: 359–67

    Article  PubMed  Google Scholar 

  46. Schur PH. Genetics of systemic lupus erythematosus. Lupus 1995; 4: 425–37

    Article  PubMed  CAS  Google Scholar 

  47. Galeazzi M, Sebastiani GD, Morozzi G, et al. HLA Class II DNA Typing in a Large series of European Patients with Systemic Lupus Erythematosus. Medicine (Baltimore) 2002; 81: 169–78

    Article  CAS  Google Scholar 

  48. Reveille JD, Moulds JM, Ahn C, et al. Systemic lupus erythematosus in three ethnic groups: I. the effects of HLA class II, C4, and CR1 alleles, socioeconomic factors, and ethnicity at disease onset. LUMINA Study Group. Lupus in minority populations, nature versus nurture. Arthritis Rheum 1998; 41: 1161–72

    Article  PubMed  CAS  Google Scholar 

  49. Schur PH, Marcus B, Awdeh Z, et al. The effect of ethnicity on major histocompatibility complex, complement allotypes and extended haplotypes in patients with systemic lupus erythematosus. Arthritis Rheum 1990; 33: 985–92

    Article  PubMed  CAS  Google Scholar 

  50. Bidwell J, Keen L, Gallagher G, et al. Cytokine gene polymorphism in human disease: on-line databases. Genes Immun 1999; 1: 3–19

    Article  PubMed  CAS  Google Scholar 

  51. Rudwaleit M, Tilky M, Khamashtra M, et al. Interethnic differences in the association of tumor necrosis factor promoter polymorphisms with systemic lupus erythematosus. J Rheumatol 1996; 23: 1723–8

    Google Scholar 

  52. Wilson AG, De Vries N, Pociot F, et al. An allelic polymorphism with the tumor necrosis factor alpha promoter region is strongly associated with HLA A1, B8, DR3 alleles. J Exp Med 1993; 177: 557–60

    Article  PubMed  CAS  Google Scholar 

  53. Morita C, Horiuchi T, Tsukamoto H, et al. Association of tumor necrosis factor receptor type II polymorphism 196R with systemic lupus erythematosus in the Japanese: molecular and functional analysis. Arthritis Rheum 2001; 44: 2819–27

    Article  PubMed  CAS  Google Scholar 

  54. Wilson AG, Symons JA, McDowell TL, et al. Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation. Proc Natl Acad Sci U S A 1997; 94: 3195–9

    Article  PubMed  CAS  Google Scholar 

  55. Klinman DM, Steinberg AD. Inquiry into human and murine lupus. Immunol Rev 1995; 144: 157–93

    Article  PubMed  CAS  Google Scholar 

  56. Jacob CO, Fronek Z, Lewis GD, et al. Heritable major histocompatibility complex class II-associated differences in production of tumor necrosis factor alpha: relevance to genetic predisposition to systemic lupus erythematosus. Proc Natl Acad Sci U S A 1990; 87: 1233–7

    Article  PubMed  CAS  Google Scholar 

  57. Pickering MC, Botto M, Taylor PR, et al. Systemic lupus erythematosus, complement deficiency, and apoptosis. Adv Immunol 2000; 76: 227–324

    Article  PubMed  CAS  Google Scholar 

  58. Browness P, Davies KA, Norsworthy PJ, et al. Hereditary C1q deficiency and systemic lupus erythematosus. QMJ 1994; 87: 455–64

    Google Scholar 

  59. Howard PF, Hochberg MC, Bias WB, et al. Relationship between C4 null genes, HLA-D region antigens and genetic susceptibility to systemic lupus erythematosus in Caucasian and black Americans. Am J Med 1986; 81: 187–93

    Article  PubMed  CAS  Google Scholar 

  60. Davies EL, Snowden N, Hillarby MC, et al. Mannose-binding protein gene polymorphism in systemic lupus erythematosus. Arthritis Rheum 1995; 38: 110–4

    Article  PubMed  CAS  Google Scholar 

  61. Sullivan KE, Wooten C, Goldman D, et al. Mannose-binding protein genetic polymorphisms in black patients with systemic lupus erythematosus. Arthritis Rheum 1996; 39: 2046–51

    Article  PubMed  CAS  Google Scholar 

  62. Davies EJ, Teh LS, Ordi-Ros J, et al. A dysfunctional allele of the mannose binding protein gene associates with systemic lupus erythematosus in a Spanish population. J Rheumatol 1997; 24: 485–8

    PubMed  CAS  Google Scholar 

  63. Salmon JE, Millard S, Schachter LA, et al. Fc gamma RIIA alleles are heritable risk for SLE nephritis in African Americans. J Clin Invest 1996; 97: 1348–54

    Article  PubMed  CAS  Google Scholar 

  64. Duits AJ, Bootsma H, Derksen R, et al. Skewed distribution of IgG Fc receptor IIa (CD32) polymorphism is associated with renal disease in systemic lupus erythematosus patients. Arthritis Rheum 1995; 39: 1832–6

    Article  Google Scholar 

  65. Zuniga R, Ng S, Peterson MG, et al. Low-binding alleles of Fcgamma receptor types IIA and IIIA are inherited independently and are associated with systemic lupus erythematosus in Hispanic patients. Arthritis Rheum 2001; 44: 361–7

    Article  PubMed  CAS  Google Scholar 

  66. Botto M, Theodoridis E, Thompson EM, et al. Fc gamma RIIa polymorphism in systemic lupus erythematosus (SLE): no association with disease. Clin Exp Immunol 1996; 104: 264–8

    Article  PubMed  CAS  Google Scholar 

  67. D’Alfonso S, Rampi M, Bocchio D, et al. Systemic lupus erythematosus candidate genes in the Italian population: evidence for a significant association with interleukin-10. Arthritis Rheum 2000; 43: 120–8

    Article  PubMed  Google Scholar 

  68. Salmon JE, Ng S, Yoo DH, et al. Altered distribution of Fcgamma receptor IIIA alleles in a cohort of Korean patients with lupus nephritis. Arthritis Rheum 1999; 42: 818–9

    Article  PubMed  CAS  Google Scholar 

  69. Song YW, Han CW, Kang SW, et al. Abnormal distribution of Fc gamma receptor type IIa polymorphisms in Korean patients with systemic lupus erythematosus. Arthritis Rheum 1998; 41: 421–6

    Article  PubMed  CAS  Google Scholar 

  70. Manger K, Repp R, Spriewald BM, et al. Fcg receptor IIa polymorphism in Caucasian patients with systemic lupus erythematosus: association with clinical symptoms. Arthritis Rheum 1998; 41: 1181–9

    Article  PubMed  CAS  Google Scholar 

  71. Dijstelbloem HM, Biji M, Fijnheer R, et al. Fc gamma receptor polymorphisms in systemic lupus erythematosus: association with disease and in vivo clearance of immune complexes. Arthritis Rheum 2000; 43: 2793–800

    Article  PubMed  CAS  Google Scholar 

  72. Haseley LA, Wisnieski JJ, Denburg MR, et al. Antibodies to Clq in systemic lupus erythematosus: characteristics and relation to Fc gamma RIIA alleles. Kidney Int 1997; 52: 1375–80

    Article  PubMed  CAS  Google Scholar 

  73. Norsworthy P, Theodoridis E, Botto M, et al. Overrepresentation of the Fcgamma receptor type IIA R131/R131 genotype in caucasian systemic lupus erythematosus patients with autoantibodies to Clq and glomerulonephritis. Arthritis Rheum 1999; 42: 1828–32

    Article  PubMed  CAS  Google Scholar 

  74. Koene HR, Kleijer M, Swaak AJ, et al. The Fc gammaRIIIA-158F allele is a risk factor for systemic lupus erythematosus. Arthritis Rheum 1998; 41: 1813–8

    Article  PubMed  CAS  Google Scholar 

  75. Wu J, Edberg JC, Redecha PB, et al. A novel polymorphism of FcyRIIIa (CD 16) alters receptor function and predisposes to autoimmune disease. J Clin Invest 1997; 100: 1059–70

    Article  PubMed  CAS  Google Scholar 

  76. Edberg JC, Langfeld CD, Wu J, et al. Genetic linkage and association of Fcã receptor IIIA (CD16A) on chromosome 1q23 with human systemic lupus erythematosus. Arthritis Rheum 2002; 46: 2132–40

    Article  PubMed  CAS  Google Scholar 

  77. Kyogoku C, Dijstelbloem HM, Tsuchiya N, et al. Fc gamma receptor gene polymorphisms in Japanese patients with systemic lupus erythematosus: contribution of FCGR2B to genetic susceptibility. Arthritis Rheum 2002; 46: 1242–54

    Article  PubMed  CAS  Google Scholar 

  78. Moser KL, Neas BR, Salmon JE, et al. Genome scan of human systemic lupus erythematosus: evidence for linkage on chromosome Iq in African-American pedigrees. Proc Natl Acad Sci U S A 1998; 95: 14869–74

    Article  PubMed  CAS  Google Scholar 

  79. Eskdale J, Gallagher G, Verweij CL, et al. Interleukin 10 secretion in relation to human IL-10 locus haplotypes. Proc Natl Acad Sci U S A 1998; 95: 9465–70

    Article  PubMed  CAS  Google Scholar 

  80. Mehrian R, Quismorio FP, Strassmann G, et al. Synergistic effect between IL-10 and bcl-2 genotypes in determining susceptibility to systemic lupus erythematosus. Arthritis Rheum 1998; 41: 596–602

    Article  PubMed  CAS  Google Scholar 

  81. Mok CC, Lanchbury JS, Chan DW, et al. Interleukin-10 promoter polymorphisms in Southern Chinese patients with systemic lupus erythematosus. Arthritis Rheum 1998; 41: 1090–5

    Article  PubMed  CAS  Google Scholar 

  82. Lazarus M, Hajeer AH, Turner D, et al. Genetic variation in the interleukin 10 gene promoter and systemic lupus erythematosus. J Rheumatol 1997; 24: 2314–7

    PubMed  CAS  Google Scholar 

  83. Huang CM, Wu MC, Wu JY, et al. Asssociation of vitamin D receptor gene BsmI polymorphisms in Chinese patients with systemic lupus erythematosus. Lupus 2002; 11: 31–4

    Article  PubMed  CAS  Google Scholar 

  84. Ozaki Y, Nomura S, Nagahama M, et al. Vitamin-D receptor genotype and renal disorder in Japanes patients with systemic lupus erythematosus. Nephron 2000; 85: 86–91

    Article  PubMed  CAS  Google Scholar 

  85. Tassiulas IO, Aksentijevich I, Salmon JE, et al. Angiotensin I converting enzyme gene polymorphisms in systemic lupus erythematosus: decreased prevalence of DD genotype in African American patients. Clin Nephrol 1998; 50: 8–13

    PubMed  CAS  Google Scholar 

  86. Sato H, Akai Y, Iwano M, et al. Association of an insertion polymorphism of angiotensin-converting enzyme gene with the activity of systemic lupus erythematosus. Lupus 1998; 7: 530–4

    Article  PubMed  CAS  Google Scholar 

  87. Akai Y, Sato H, Iwano M, et al. Association of an insertion polymorphism of angiotensin-converting enzyme gene with the activity of lupus nephritis. Clin Nephrology 1999; 51: 141–6

    CAS  Google Scholar 

  88. Pullmann Jr R, Lukac J, Skerenova M, et al. Association between systemic lupus erythematosus and insertion/deletion polymorphism of the angiotensin converting enzyme (ACE) gene. Clin Exp Rheumatol 1999; 17: 593–6

    PubMed  Google Scholar 

  89. Molad Y, Gal E, Magal N, et al. Renal outcome and vascular morbidity in systemic lupus erythematosus (SLE): lack of association with the angiotensin-converting enzyme gene polymorphism. Semin Arthritis Rheum 2000; 30: 132–7

    Article  PubMed  CAS  Google Scholar 

  90. Kaufman KM, Kelly J, Gray-McGuire C, et al. Linkage analysis of angiotensin-converting enzyme (ACE) insertion/deletion polymorphism and systemic lupus erythematosus. Mol Cell Enocrinol 2001; 177: 81–5

    Article  CAS  Google Scholar 

  91. Matsushita M, Tsuchiya N, Shiota M, et al. Lack of a strong association of CTLA-4 exon 1 polymorphism with the susceptibility to rheumatoid arthritis and systemic lupus erythematosus in Japanese: an association study using a novel variation screening method. Tissue Antigens 1999; 54: 578–84

    Article  PubMed  CAS  Google Scholar 

  92. Tsao BP. The genetics of human lupus. In: Wallace DJ, Hahn BH, editors. Dubois’ lupus erythematosus. Philadelphia (PA): Lippincott Williams and Wilkins, 2002: 97–120

    Google Scholar 

  93. Kammer GM, Perl A, Richardson BC, et al. Abnormal T cell signal transduction in systemic lupus erythematosus. Arthritis Rheum 2002; 46: 1139–54

    Article  PubMed  CAS  Google Scholar 

  94. Prokunina L, Castillejo-Lopez C, Oberg F, et al. A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet 2002; 32: 666–9

    Article  PubMed  CAS  Google Scholar 

  95. Tsao BP, Cantor RM, Kalunian KC, et al. Evidence for linkage of a candidate chromosome 1 region to human systemic lupus erythematosus. J Clin Invest 1997; 99: 725–31

    Article  PubMed  CAS  Google Scholar 

  96. Lindqvist AK, Steinsson K, Johanneson B, et al. A susceptibility locus for human systemic lupus erythematosus (hSLE1) on chromosome 2q. J Autoimmun 2000; 14: 169–78

    Article  PubMed  CAS  Google Scholar 

  97. Gray-McCuire C, Moser KL, Gaffney PM, et al. Genome scan of human systemic lupus erythematosus by regression modeling: evidence of linkage and epistasis at 4pl6-15.2. Am J Hum Genet 2000; 67: 1460–9

    Article  Google Scholar 

  98. Gaffney PM, Kearns CM, Shark KB, et al. A genome-wide search for susceptibility genes in human systemic lupus erythematosus sib-pair families. Proc Natl Acad Sci U S A 1998: 95: 14875–9

    Article  PubMed  CAS  Google Scholar 

  99. Podolsky DK. Inflammatory bowel disease. N Engl J Med 2002; 347: 417–29

    Article  PubMed  CAS  Google Scholar 

  100. Tsao BP, Cantor RM, Grossman M, et al. PARP alleles within the linked chromosomal region are associated with systemic lupus erythematosus. J Clin Invest 1999; 103: 1135–40

    Article  PubMed  CAS  Google Scholar 

  101. Boorboor P, Drescher BE, Hartung K, et al. Poly(ADP-ribose) polymerase polymorphisms are not a genetic risk factor for systemic lupus erythematosus in German Caucasians [letter]. J Rheumatol 2000; 27: 2061

    PubMed  CAS  Google Scholar 

  102. Criswell LA, Moser KL, Gaffney PM, et al. PARP alleles and SLE: failure to confirm association with disease susceptibility. J Clin Invest 2000; 105: 1501–2

    PubMed  CAS  Google Scholar 

  103. Risch N. Searching for genes in complex diseases: lessons from systemic lupus erythematosus. J Clin Invest 2000; 105: 1503–6

    Article  PubMed  CAS  Google Scholar 

  104. Scofield RH, Bruner GR, Kelly JA, et al. Thrombocytopenia identifies a severe familial phenotype of systemic lupus erythematosus and reveals genetic linkages at 1q22 and 11p13. Blood 2003 Feb 1; 101(3): 992–7

    Article  PubMed  CAS  Google Scholar 

  105. Kelly J, Thompson K, Kilpatrick J, et al. Evidence for a susceptibility gene (SLEH1) on chromosome 11q14 for systemic lupus erythematosus (SLE) families with hemolytic anemia. Proc Natl Acad Sci U S A 2002; 99: 11766–71

    Article  PubMed  CAS  Google Scholar 

  106. Namjou B, Nath SK, Kilpatrick J, et al. Stratification of pedigrees multiplex for systemic lupus erythematosus and for self-reported rheumatoid arthritis detects a systemic lupus erythematosus susceptibility gene (SLER1) at 5p15.3. Arthritis Rheum 2002; 46: 2937–45

    Article  PubMed  CAS  Google Scholar 

  107. Tsao BP, Grossman JM, Riekmekasten G, et al. Familiarity and Co-occurence of clinical features of systemic lupus erythematosus. Arthritis Rheum 2002; 46: 2678–85

    Article  PubMed  Google Scholar 

  108. Namjou B, Nath S, Kilpatrick J, et al. Genome scan stratified by the presence of anti-double-stranded DNA (dsDNA) autoantibody in pedigrees multiplex for systemic lupus erythematosus (SLE) establishes linkages at 19p13.2 (SLED1) and 18q21.1 (SLED2). Genes Immun 2002; 3Suppl. 1: S35–4

    Article  PubMed  CAS  Google Scholar 

  109. Quintero-Del-Rio AI, Kelly JA, Kilpatrick J, et al. The genetics of systemic lupus erythematosus stratified by renal disease: linkage at 10q22.3 (SLEN1), 2q34-35 (SLEN2), and 11p15.6 (SLEN3). Genes Immun 2002; 3Suppl. 1: S57–62

    Article  PubMed  CAS  Google Scholar 

  110. Tsao BP, Cantor RM, Grossman JM, et al. Linkage and interaction of loci on 1q23 and 16q12 may contribute to susceptibility to systemic lupus erythematosus. Arthritis Rheum 2002; 46: 2928–36

    Article  PubMed  CAS  Google Scholar 

  111. Tsokos GC, Neprom GT. Gene therapy in the treatment of autoimmune diseases. J Clin Invest 2000; 106: 181–3

    Article  PubMed  CAS  Google Scholar 

  112. Tsokos GC, Kovacs F, Sfikakis PP, et al. Defective antigen presenting cell function in patients with systemic lupus erythematosus: Role of the B7/BB1(CD80) costimulatory molecule. Arthritis Rheum 1996; 39: 600–9

    Article  PubMed  CAS  Google Scholar 

  113. Via CS, Tsokos GC, Bermas B, et al. Multiple T cell-antigen presenting cell interactions in human systemic lupus erythematosus. Evidence for heterogeneous expression of multiple defects. J Immunol 1993; 151: 3914–22

    PubMed  CAS  Google Scholar 

  114. Iliopoulos AG, Tsokos GC. Immunopathogenesis and spectrum of infections in systemic lupus erythematosus. Semin Arthritis Rheum 1996; 25: 318–36

    Article  PubMed  CAS  Google Scholar 

  115. Herndon TM, Juang Y-T, Solomou E, et al. Electroporation-mediated gene transfer of p65 into T lymphocytes from systemic lupus erythematosus patients leads to increased levels of interleukin-2 promoter activity. Clin Immunol 2002; 103: 145–53

    Article  PubMed  CAS  Google Scholar 

  116. Tenbrock K, Juang Y-T, Gourley MF, et al. Antisense cyclic adenosine 5’-monophosphate response element modulator up-regulates IL-2 in T cells from patients with systemic lupus erythematosus. J Immunol 2002; 169: 4147–52

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The opinions expressed herein represent those of the authors and not those of the Department of Defense. Work in the Tsokos Laboratory was supported by Public Health Service grants RO1 AI42269 and RO1 AI49964. None of the authors has any conflict of interest directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George C. Tsokos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kyttaris, V.C., Tsokos, G.C. Uncovering the Genetics of Systemic Lupus Erythematosus. Am J Pharmacogenomics 3, 193–202 (2003). https://doi.org/10.2165/00129785-200303030-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129785-200303030-00005

Keywords

Navigation