Skip to main content
Log in

Genetic Predisposition to Neuroleptic Malignant Syndrome

Implications for Antipsychotic Therapy

  • Practical Pharmacogenomics
  • Published:
American Journal of Pharmacogenomics

Abstract

The pathogenetic mechanism of neuroleptic malignant syndrome (NMS), a potentially lethal adverse effect of antipsychotics, is not well understood. In addition to acquired risk factors, clinical observations suggest a number of genetic factors predisposing patients to NMS. Recent findings in pharmacogenetics indicate that the genetic polymorphisms for drug-metabolizing enzymes, drug transporters, and possibly drug-targeting molecules, are associated with the interindividual differences in drug responses concerning both efficacy and adverse reactions.

Genetic association studies have sought to identify polymorphisms influencing susceptibility to NMS, especially with respect to the dopamine D2 receptor, serotonin receptor, and cytochrome P450 2D6. While a few candidate polymorphisms were associated with NMS, a large controlled study is needed to attain statistical power. On the other hand, NMS might include heterogeneous conditions with common characteristic symptoms but different causative mechanisms.

Further analysis of individuals with identified genetic mutations or polymorphisms should advance our understanding of mechanisms underlying NMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I

Similar content being viewed by others

References

  1. Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 1989; 279: 1200–5

    Article  Google Scholar 

  2. Masellis M, Basile VS, Özdemir V, et al. Pharmacogenetics of antipsychotic treatment: lessons learned from clozapine. Biol Psychiatry 2000; 47: 252–66

    Article  PubMed  CAS  Google Scholar 

  3. Veenstra-VanderWeele J, Anderson GM, Cook Jr EH. Pharmacogenetics and the serotonin system: initial studies and future directions. Eur J Pharmacol 2000; 410: 165–81

    Article  PubMed  CAS  Google Scholar 

  4. Ingelman-Sundberg M. Pharmacogenetics: an opportunity for a safer and more efficient pharmacotherapy. J Intern Med 2001; 250: 186–200

    Article  PubMed  CAS  Google Scholar 

  5. Pacifici GM, Pelkonen O, editors. Interindividual variability in drug metabolism in humans. London: Taylor & Francis, 2001

    Google Scholar 

  6. Caroff SN, Mann SC. Neuroleptic malignant syndrome. Med Clin North Am 1993; 77: 185–202

    PubMed  CAS  Google Scholar 

  7. Ayd FJ. Fatal hyperpyrexia during chlorpromazine therapy. J Clin Exp Psychopath 1956; 17: 189

    PubMed  Google Scholar 

  8. Delay J, Pichot P, Lempiere T, et al. Un neuroleptique majeur non phenothiazinique et non reserpinique, l’haloperidol, dans le traitement des psychoses. Ann Med Psychol 1960; 18: 145–452

    Google Scholar 

  9. Delay J, Deniker P, editors. Drug-induced extrapyramidal syndrome. In: Vinken PJ, Bruyn GW, editors. Handbook of clinical neurology: diseases of the basal ganglia. Amsterdam: North-Holland Publishing Company, 1968: 248–66

  10. Shalev A, Hermesh H, Munitz H. Mortality from neuroleptic malignant syndrome. J Clin Psychiatry 1989; 50: 18–25

    PubMed  CAS  Google Scholar 

  11. Adityanjee, Aderibigbe YA, Mathews T. Epidemiology of neuroleptic malignant syndrome. Clin Neuropharmacol 1999; 22: 151–8

    PubMed  CAS  Google Scholar 

  12. Adityanjee, Aderibigbe YA, Mathews T. Proposed research diagnostic criteria for neuroleptic malignant syndrome. Int J Neuropsychopharmacol 1999; 2: 129–44

    Article  Google Scholar 

  13. Tanaka K, Akechi T, Yamazaki M, et al. Neuroleptic malignant syndrome during haloperidol treatment in a cancer patient: a case report. Support Care Cancer 1998; 6: 536–8

    Article  PubMed  CAS  Google Scholar 

  14. Russell CS, Lang C, McCambridge M, et al. Neuroleptic malignant syndrome in pregnancy. Obstet Gynecol 2001; 98: 906–8

    Article  PubMed  CAS  Google Scholar 

  15. Onose M, Kawanishi C, Onishi H, et al. Neuroleptic malignant syndrome following bone marrow transplantation. Bone Marrow Transplant 2002; 29: 803–4

    Article  PubMed  CAS  Google Scholar 

  16. Hasan S, Buckley P. Novel antipsychotics and the neuroleptic malignant syndrome: a review and critique. Am J Psychiatry 1998; 155: 1113–6

    PubMed  CAS  Google Scholar 

  17. Caroff SN, Mann SC, Campbell EC. Atypical antipsychotics and neuroleptic malignant syndrome. Psychiatr Ann 2000; 30: 314–21

    Google Scholar 

  18. Addonizio G, Susman VL, Roth SD. Neuroleptic malignant syndrome: review and analysis of 115 cases. Biol Psychiatry 1987; 22: 1004–20

    Article  PubMed  CAS  Google Scholar 

  19. Kontaxakis VP, Christodoulou GN, Markidis MP, et al. Treatment of a mild form of neuroleptic malignant syndrome with oral diazepam. Acta Psychiatr Scand 1988; 78: 396–8

    Article  PubMed  CAS  Google Scholar 

  20. Miyaoka H, Shishikura K, Otsubo T, et al. Diazepam-responsive neuroleptic malignant syndrome: a diagnostic subtype [letter]. Am J Psychiatry 1997; 154: 882

    PubMed  CAS  Google Scholar 

  21. Yamawaki S, Yanagawa K. Possible central effect of dantrolene sodium in neuroleptic malignant syndrome. J Clin Psychopharmacol 1986; 6: 378–9

    Article  PubMed  CAS  Google Scholar 

  22. Caroff SN, Mann SC, Keck PE, et al. Residual catatonic state following neuroleptic malignant syndrome. J Clin Psychoparmacol 2000; 20: 257–9

    Article  CAS  Google Scholar 

  23. Nemecek D, Rastogi-Cruz D, Csernansky JG. Atropinism may precipitate neuroleptic malignant syndrome during treatment of clozapine. Am J Psychiatry 1993; 150: 1561

    PubMed  CAS  Google Scholar 

  24. Young C. A case of neuroleptic malignant syndrome and serotonin disturbance. J Clin Psychopharmacol 1997; 17: 65–6

    Article  PubMed  CAS  Google Scholar 

  25. Nishijima K, Ishiguro T. Neuroleptic malignant syndrome: a study of CSF mono-amine metabolism. Biol Psychiatry 1990; 27: 280–8

    Article  Google Scholar 

  26. Iwabuchi K, Amano N, Yokoi S, et al. Two autopsied cases of neuroleptic malignant syndrome with the irreversible brain damage and myogenic muscular atrophy. Shinkei Kenkyu no Shinpo 1989; 33: 674–84

    Google Scholar 

  27. Lee S, Merriam A, Kim TS, et al. Cerebellar degeneration in neuroleptic malignant syndrome: neurologic findings and review of the literature concerning heat-related nervous system injury. J Neurol Neurosurg Psychiatry 1989; 52: 387–91

    Article  PubMed  CAS  Google Scholar 

  28. Wappler F. Malignant hyperthermia. Eur J Anaesthesiol 2001; 18: 632–52

    PubMed  CAS  Google Scholar 

  29. McCarthy TV, Quane KA, Lynch PJ. Ryanodine receptor mutations in malignant hyperthermia and central core disease. Hum Mutat 2000; 15: 410–7

    Article  PubMed  CAS  Google Scholar 

  30. Adnet PJ, Krivosic-Horber RM, Adamantidis MM, et al. The association between the neuroleptic malignant syndrome and malignant hyperthermia. Acta Anaesthesiol Scand 1989; 33: 676–80

    Article  PubMed  CAS  Google Scholar 

  31. Portel L, Hilbert G, Gruson D, et al. Malignant hyperthermia and neuroleptic malignant syndrome in a patient during treatment for acute asthma. Acta Anaesthesiol Scand 1999; 43: 107–10

    Article  PubMed  CAS  Google Scholar 

  32. Heyland D, Sauve M. Neuroleptic malignant syndrome. CMAJ 1991; 145: 817–9

    PubMed  CAS  Google Scholar 

  33. Ames D, Wirshing WC. Ecstasy, the serotonin syndrome, and neuroleptic malignant syndrome: a possible link [letter]. JAMA 1993; 269: 869

    Article  PubMed  CAS  Google Scholar 

  34. Daras M, Kakkouras L, Tuchman AJ, et al. Rhabdomyulysis and hyperthermia after cocaine abuse: a variant of the neuroleptic malignant syndrome? Acta Neurol Scand 1995; 92: 161–5

    Article  PubMed  CAS  Google Scholar 

  35. Gurrera R. Sympathoadrenal hyperactivity and the etiology of neuroleptic malignant syndrome. Am J Psychiatry 1999; 156: 169–80

    PubMed  CAS  Google Scholar 

  36. Itoh H, Ohtsuka N, Ogita K, et al. Malignant neuroleptic syndrome: its present status in Japan and clinical problems. Folia Psychiatr Neurol Jpn 1977; 31: 565–76

    Google Scholar 

  37. Shalev A, Munitz H. The neuroleptic malignant syndrome: agent and host interaction. Acta Psychiatr Scand 1986; 73: 337–47

    Article  PubMed  CAS  Google Scholar 

  38. Keck Jr PE, Pope Jr HG, Cohen BM, et al. Risk factors for neuroleptic malignant syndrome: a case-control study. Arch Gen Psychiatry 1989; 46: 914–8

    Article  PubMed  Google Scholar 

  39. Sachdev P, Mason C, Hadzi-Pavlovic D. Case-control study of neuroleptic malignant syndrome. Am J Psychiatry 1997; 154: 1156–8

    PubMed  CAS  Google Scholar 

  40. Berardi D, Amore M, Keck Jr PE, et al. Clinical and pharmacologic risk factors for neuroleptic malignant syndrome: a case-control study. Biol Psychiatry 1998; 44: 748–54

    Article  PubMed  CAS  Google Scholar 

  41. Caroff SN, Mann SC, McCarthy M, et al. Acute infectious encephalitis complicated by neuroleptic malignant syndrome. J Clin Psychopharmacol 1998; 18: 349–51

    Article  PubMed  CAS  Google Scholar 

  42. Deuschl G, Oepen G, Hermle L. Neuroleptic malignant syndrome: observations on altered consciousness. Pharmacopsychiatry 1987; 20: 168–70

    Article  PubMed  CAS  Google Scholar 

  43. Otani K, Horiuchi M, Kondo T, et al. Is the predisposition to neuroleptic malignant syndrome genetically transmitted? Br J Psychiatry 1991; 158: 850–3

    Article  PubMed  CAS  Google Scholar 

  44. Manor I, Hermesh H, Munitz H, et al. Neuroleptic malignant syndrome with gangliosidosis type II. Biol Psychiatry 1997; 41: 1222–4

    Article  PubMed  CAS  Google Scholar 

  45. Caroff SN, Mann SC. Neuroleptic malignant syndrome. Psychopharmacol Bull 1988; 24: 25–9

    PubMed  CAS  Google Scholar 

  46. Wells AJ, Sommi RW, Crismon L. Neuroleptic malignant syndrome: case report and literature review. Drug Intell Clin Pharm 1988; 22: 475–80

    PubMed  CAS  Google Scholar 

  47. Lazarus AL, Moore KE, Spinner NB. Recurrent neuroleptic malignant syndrome associated with inv dup (15) and mental retardation. Clin Genet 1991; 39: 65–7

    Article  PubMed  CAS  Google Scholar 

  48. Mahendran R, Winslow M, Lim D. Recurrent neuroleptic malignant syndrome. Aust N Z J Psychiatry 2000; 34: 699–700

    Article  PubMed  CAS  Google Scholar 

  49. Ram A, Cao Q, Keck PE, et al. Structural change in dopamine D2 receptor gene in a patient with neuroleptic malignant syndrome. Am J Med Genet 1995; 60: 228–30

    Article  PubMed  CAS  Google Scholar 

  50. Suzuki A, Kondo T, Otani K, et al. Association of the TaqI A polymorphism of the dopamine D(2) receptor gene with predisposition to neuroleptic malignant syndrome. Am J Psychiatry 2001; 158: 1714–6

    Article  PubMed  CAS  Google Scholar 

  51. Thompson J, Thomas N, Singleton A, et al. D2 dopamine receptor gene (DRD2) TaqIA polymorphism: reduced dopamine D2 receptor binding in the human striatum associated with the A1 allele. Pharmacogenetics 1997; 7: 479–84

    Article  PubMed  CAS  Google Scholar 

  52. Noble EP. The D2 dopamine receptor gene: a review of association studies in alcoholism and phenotypes. Alcohol 1998; 16: 33–45

    Article  PubMed  CAS  Google Scholar 

  53. Suzuki A, Mihara K, Kondo T, et al. The relationship between dopamine D2 receptor polymorphism at the Taq1 A locus and therapeutic response to nemonapride, a selective dopamine antagonist, in schizophrenic patients. Pharmacogenetics 2000; 10: 335–41

    Article  PubMed  CAS  Google Scholar 

  54. Schäfer M, Rujescu D, Giegling I, et al. Association of short-term response to haloperidol treatment with a polymorphism in the dopamine D2 receptor gene. Am J Psychiatry 2001; 158: 802–4

    Article  PubMed  Google Scholar 

  55. Mihara K, Suzuki A, Kondo T, et al. Relationship between Taq1A dopamine D2 receptor (DRD2) polymorphism and prolactin response to bromperidol. Am J Med Genet 2001; 105: 271–4

    Article  PubMed  CAS  Google Scholar 

  56. Mihara K, Kondo T, Suzuki A, et al. Prolactin response to nemonapride, a selective antagonist for D2 like dopamine receptors, in schizophrenic patients in relation to Taq1 A polymorphism of DRD2 gene. Psychopharmacology (Berl) 2000; 149: 246–50

    Article  CAS  Google Scholar 

  57. Kishida I, Kawanishi C, Furuno T, et al. Lack of association in Japanese patients between neuroleptic malignant syndrome and the TaqI A polymorphism of the dopamine D2 receptor gene. Psychiatric Genet 2003; 13: 55–7

    Article  Google Scholar 

  58. Arinami T, Gao M, Hamaguchi H, et al. A functional polymorphism in the promoter region of the dopamine D2 receptor gene is associated with schizophrenia. Hum Mol Genet 1997; 6: 577–82

    Article  PubMed  CAS  Google Scholar 

  59. Insel TR, Roy BF, Cohen RM, et al. Possible development of the serotonin syndrome in man. Am J Psychiatry 1982; 139: 954–5

    PubMed  CAS  Google Scholar 

  60. Sternbach H. The serotonin syndrome. Am J Psychiatry 1991; 148: 705–13

    PubMed  CAS  Google Scholar 

  61. Kawanishi C, Hanihara T, Shimoda Y, et al. Lack of association between neuroleptic malignant syndrome and polymorphisms in the 5-HT1A and 5-HT2A receptor genes. Am J Psychiatry 1998; 155: 1275–7

    PubMed  CAS  Google Scholar 

  62. Bertilsson L, Dahl ML, Dalén P, et al. Molecular genetics of CYP2D6: clinical relevance with focus on psychotropic drugs. Br J Clin Pharmacol 2002; 53: 111–22

    Article  PubMed  CAS  Google Scholar 

  63. Mayer UA. Pharmacogenetics and adverse drug reactions. Lancet 2000; 356: 1667–71

    Article  Google Scholar 

  64. Bertilsson L, Dahl ML, Sjöqvist F, et al. Molecular basis for rational megaprescribing in ultrarapid hydroxylation of debrisoquine [letter]. Lancet 1993; 341: 63

    Article  PubMed  CAS  Google Scholar 

  65. Johansson I, Lundqvist E, Bertilsson L, et al. Inherited amplification of an active gene in the cytochrome P450 CYP2D locus as a cause of ultrarapid metabolism of debrisoquine. Proc Natl Acad Sci U S A 1993; 90: 11825–9

    Article  PubMed  CAS  Google Scholar 

  66. Dahl M-L, Johansson I, Bertilsson L,et al. Ultrarapid hydroxylation of debrisoquine in a Swedish population: analysis of the molecular genetic basis. J Pharmacol Exp Ther 1995; 274: 516–20

    PubMed  CAS  Google Scholar 

  67. Bertilsson L, Dahl ML. Polymorphic drug oxidation, relevance to the treatment of psychiatric disorders. CNS Drugs 1996; 5: 200–23

    Article  CAS  Google Scholar 

  68. Roh H-K, Dahl ML, Johansson I, et al. Debrisoquine and S-mephenytoin hydroxylation phenotypes and genotypes in a Korean population. Pharmacogenetics 1996; 6: 441–7

    Article  PubMed  CAS  Google Scholar 

  69. Nishida Y, Fukuda T, Yamamoto I, et al. CYP2D6 genotypes in a Japanese population: low frequencies of CYP2D6 gene duplication but high frequency of CYP2D6*10. Pharmacogenetics 2000; 10: 567–70

    Article  PubMed  CAS  Google Scholar 

  70. Kawanishi C, Shimoda Y, Fujimaki J, et al. Mutation involving cytochrome P450IID6 in two Japanese patients with neuroleptic malignant syndrome. J Neurol Sci 1998; 160: 102–4

    Article  PubMed  CAS  Google Scholar 

  71. Andreassen OA, MacEwan T, Gulbrandsen AK,et al. Non-functional CYP2D6 alleles and risk for neuroleptic-induced movement disorders in schizophrenic patients. Psychopharmacol 1997; 131: 174–9

    Article  CAS  Google Scholar 

  72. Ohmori O, Suzuki T, Kojima H, et al. Tardive dyskinesia and debrisoquine 4-hydroxylase genotype in Japanese schizophrenics. Schizophr Res 1998; 32: 107–13

    Article  PubMed  CAS  Google Scholar 

  73. Kapitany T, Meszaros K, Lenzinger E, et al. Genetic polymorphisms for drug metabolism and tardive dyskinesia in schizophrenia. Schizophr Res 1998; 32: 101–6

    Article  PubMed  CAS  Google Scholar 

  74. Kawanishi C, Furuno T, Onishi H, et al. Lack of association in Japanese patients between neuroleptic malignant syndrome and a debrisoquine 4-hydroxylase genotype with low enzyme activity. Psychiatr Genet 2000; 10: 145–7

    Article  PubMed  CAS  Google Scholar 

  75. Iwahashi K, Yoshihara E, Nakamura K, et al. CYP2D6 HhaI genotype and the neuroleptic malignant syndrome. Neuropsychobiology 1999; 39: 33–7

    Article  PubMed  CAS  Google Scholar 

  76. Otani K, Kaneko S, Fukushima Y, et al. NMS and genetic drug oxidation. Br J Psychiatry 1991; 159: 595–6

    Article  PubMed  CAS  Google Scholar 

  77. Miyatake R, Iwahashi K, Matsushita M, et al. No association between the neuroleptic malignant syndrome and mutations in the RYR 1 gene associated malignant hyperthermia. J Neurol Sci 1996; 143: 161–5

    Article  PubMed  CAS  Google Scholar 

  78. Kawanishi C, Hanihara T, Maruyama Y. Neuroleptic malignant syndrome and hydroxylase gene mutations: no association with CYP2D6A or CYP2D6B. Psychiatr Genet 1997; 7: 127–9

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors have provided no information on sources of funding or on conflicts of interest directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiaki Kawanishi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawanishi, C. Genetic Predisposition to Neuroleptic Malignant Syndrome. Am J Pharmacogenomics 3, 89–95 (2003). https://doi.org/10.2165/00129785-200303020-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129785-200303020-00002

Keywords

Navigation