Skip to main content
Log in

Baculovirus Vectors

Novel Mammalian Cell Gene-Delivery Vehicles and Their Applications

  • Technology
  • Published:
American Journal of Pharmacogenomics

Abstract

Various methods have been developed to transfer and express genes in mammalian cells. Each method, whether virally, non-virally, or physically-based, has unique favorable features, but also drawbacks with respect to meeting desired and specific needs. Baculoviruses have been used since 1983 to express recombinant genes controlled by strong insect-virus promoters in their natural host (insect) cells. Today this is a well-established and easy to handle system for producing large quantities of recombinant proteins for numerous purposes.

In 1995 it was first published that recombinant baculoviruses are able to deliver genes into mammalian cells. These genes are expressed provided that they are controlled by a promoter which is active in mammalian cells. Since then, various vector variants have been developed and numerous potential and meaningful applications have been described. It is not surprising that the use of baculovirus vectors as mammalian cell gene delivery vectors is constantly increasing and that the system is undergoing permanent improvements.

Based on the convenience of the system to transfer genes into mammalian cells, baculoviruses can be applied in cell-based assays for drug screening to overcome the long periods of time required to generate stable cell lines. Baculovirus vectors are able to deliver very large DNA sequences into mammalian cells and vectors for toxic gene products can also be generated. In addition, baculoviruses are valuable tools for launching viral infection in cases where there is no appropriate cell culture system. Moreover, recent research has shown that the vectors can be applied in vivo. Depending on the design of the study, baculovirus vectors allow for sustained gene expression or are able to induce an immune response directed against the delivered and/or displayed gene product. The latter offers the opportunity to generate monoclonal antibodies against certain proteins that have failed by other means. In addition, it points to the potential usefulness of baculovirus vectors as new kinds of vaccines. Baculovirus vectors are therefore considered an enabling technology for various product opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Table II

Similar content being viewed by others

References

  1. Ayres MD, Howard SC, Kuzio J, et al. The complete DNA sequence of Autographa californica nuclear polyhedrosis virus. Virology 1994; 202: 586–605

    Article  PubMed  CAS  Google Scholar 

  2. Berghold GH. Die Isolierung des Polyedervirus und die Natur der Polyeder. Z Naturforsch [B] 1947; 2b: 122–43

    Google Scholar 

  3. Smith GE, Summers MD, Fraser MJ. Production of human beta Interferon in insect cells infected with a baculovirus expression vector. Mol Cell Biol 1983; 3: 2156–65

    PubMed  CAS  Google Scholar 

  4. Hofmann C, Sandig V, Jennings G, et al. Efficient gene transfer into human hepatocytes by baculovirus vectors. Proc Natl Acad Sci U S A 1995; 92: 10099–103

    Article  PubMed  CAS  Google Scholar 

  5. Monsma SA, Blissard GW. Identification of a membrane fusion domain and an oligomerization domain in the baculovirus GP64 envelope fusion protein. J Virol 1995; 69: 2583–95

    PubMed  CAS  Google Scholar 

  6. Miller LK. Baculoviruses: high-level expression in insect cells. Curr Opin Genet Dev 1993; 3: 97–101

    Article  PubMed  CAS  Google Scholar 

  7. Cory JS, Bishop DH. Use of baculoviruses as biological insecticides. Mol Biotechnol 1997; 7: 303–13

    Article  PubMed  CAS  Google Scholar 

  8. Vaughn JL, Goodwin RH, Tompkins GJ, et al. The establishment of two cell lines from the insect Spodoptera frugiperda (Lepidoptera; Noctuidae). In Vitro 1977; 13: 213–7

    Article  PubMed  CAS  Google Scholar 

  9. Altmann F, Staudacher E, Wilson IB, et al. Insect cells as hosts for the expression of recombinant glycoproteins. Glycoconj J 1999; 16: 109–23

    Article  PubMed  CAS  Google Scholar 

  10. Luckow VA, Lee SC, Barry GF, et al. Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli. J Virol 1993; 67: 4566–79

    PubMed  CAS  Google Scholar 

  11. Kitts PA, Possee RD. A method for producing recombinant baculovirus expression vectors at high frequency. Biotechniques 1993; 14: 810–7

    PubMed  CAS  Google Scholar 

  12. Patterson RM, Selkirk JK, Merrick BA. Baculovirus and insect cell gene expression: review of baculovirus biotechnology. Environ Health Perspect 1995; 103: 756–9

    PubMed  CAS  Google Scholar 

  13. Doller G, Reimann R, Groner A. Baculovirus proteins binding to human immunoglobulins without neutralizing activity. Naturwissenschaften 1983; 70: 370–1

    Article  PubMed  CAS  Google Scholar 

  14. Tjia ST, zu Altenschildesche GM, Doerfler W. Autographa californica nuclearpolyhedrosis virus (AcNPV) DNA does not persist in mass cultures of mammalian cells. Virology 1983; 125: 107–17

    Article  PubMed  CAS  Google Scholar 

  15. Carbonell LF, Miller LK. Baculovirus interaction with nontarget organisms: a virus-borne reporter gene is not expressed in two mammalian cell lines. Appl Environ Microbiol 1987; 53: 1412–7

    PubMed  CAS  Google Scholar 

  16. Carbonell LF, Klowden MJ, Miller LK. Baculovirus-mediated expression of bacterial genes in dipteran and mammalian cells. J Virol 1985; 56: 153–60

    PubMed  CAS  Google Scholar 

  17. Hartig PC, Chapman MA, Hatch GG, et al. Insect virus: assays for toxic effects and transformation potential in mammalian cells. Appl Environ Microbiol 1989; 55: 1916–20

    PubMed  CAS  Google Scholar 

  18. Hartig PC, Cardon MC, Kawanishi CY. Insect virus: assays for viral replication and persistence in mammalian cells. J Virol Methods 1991; 31: 335–44

    Article  PubMed  CAS  Google Scholar 

  19. Boyce FM, Bucher NL. Baculovirus-mediated gene transfer into mammalian cells. Proc Natl Acad Sci U S A 1996; 93: 2348–52

    Article  PubMed  CAS  Google Scholar 

  20. Duisit G, Saleun S, Douthe S, et al. Baculovirus vector requires electrostatic interactions including heparan sulfate for efficient gene transfer in mammalian cells. J Gene Med 1999; 1: 93–102

    Article  PubMed  CAS  Google Scholar 

  21. Tani H, Nishijima M, Ushijima H, et al. Characterization of cell-surface determinants important for baculovirus infection. Virology 2001; 279: 343–53

    Article  PubMed  CAS  Google Scholar 

  22. Volkman LE, Goldsmith PA. Mechanism of neutralization of budded Autographa californica nuclear polyhedrosis virus by a monoclonal antibody: inhibition of entry by adsorptive endocytosis. Virol 1985; 143: 185–95

    Article  CAS  Google Scholar 

  23. Hofmann C, Lehnert W, Strauss M. The baculovirus vector system for gene delivery into hepatocytes. Gene Ther Mol Biol 1998; 1: 231–9

    Google Scholar 

  24. Charlton CA, Volkman LE. Penetration of Autographa californica nuclear polyhedrosis virus nucleocapsids into IPLB Sf 21 cells induces actin cable formation. Virology 1993; 197: 245–54

    Article  PubMed  CAS  Google Scholar 

  25. van Loo ND, Fortunati E, Ehlert E, et al. Baculovirus infection of nondividing mammalian cells: mechanisms of entry and nuclear transport of capsids. J Virol 2001; 75: 961–70

    Article  PubMed  Google Scholar 

  26. Shoji I, Aizaki H, Tani H, et al. Efficient gene transfer into various mammalian cells, including non-hepatic cells, by baculovirus vectors. J Gen Virol 1997; 78: 2657–64

    PubMed  CAS  Google Scholar 

  27. Park SW, Lee HK, Kim TG, et al. Hepatocyte-specific gene expression by baculovirus pseudotyped with vesicular stomatitis virus envelope glycoprotein. Biochem Biophys Res Commun 2001; 289: 444–50

    Article  PubMed  CAS  Google Scholar 

  28. Condreay JP, Witherspoon SM, Clay WC, et al. Transient and stable gene expression in mammalian cells transduced with a recombinant baculovirus vector. Proc Natl Acad Sci U S A 1999; 96: 127–32

    Article  PubMed  CAS  Google Scholar 

  29. Sarkis C, Serguera C, Petres S, et al. Efficient transduction of neural cells in vitro and in vivo by a baculovirus-derived vector. Proc Natl Acad Sci U S A 2000; 97: 14638–43

    Article  PubMed  CAS  Google Scholar 

  30. Chen WY, Bailey EC, McCune SL, et al. Reactivation of silenced, virally transduced genes by inhibitors of histone deacetylase. Proc Natl Acad Sci U S A 1997; 94: 5798–803

    Article  PubMed  CAS  Google Scholar 

  31. Hüser A. Hüllmodifiziertes Bakulovirus Autographa californica als Gentransfervektor in vitro und in vivo [dissertation]. Berlin: Humboldt University, 2001

    Google Scholar 

  32. Barsoum J, Brown R, McKee M, et al. Efficient transduction of mammalian cells by a recombinant baculovirus having the vesicular stomatitis virus G glycoprotein. Hum Gene Ther 1997; 8: 2011–8

    Article  PubMed  CAS  Google Scholar 

  33. Mangor JT, Monsma SA, Johnson MC, et al. A GP64-null baculovirus pseudotyped with vesicular stomatitis virus G protein. J Virol 2001; 75: 2544–56

    Article  PubMed  CAS  Google Scholar 

  34. Boublik Y, Di Bonito P, Jones IM. Eukaryotic virus display: engineering the major surface glycoprotein of the Autographa californica nuclear polyhedrosis virus (AcNPV) for the presentation of foreign proteins on the virus surface. Biotechnology (N Y) 1995; 13: 1079–84

    Article  CAS  Google Scholar 

  35. Grabherr R, Ernst W, Doblhoff-Dier O, et al. Expression of foreign proteins on the surface of Autographa californica nuclear polyhedrosis virus. Biotechniques 1997; 22: 730–5

    PubMed  CAS  Google Scholar 

  36. Mottershead D, van der Linden I, von Bonsdorff CH, et al. Baculoviral display of the green fluorescent protein and rubella virus envelope proteins. Biochem Biophys Res Commun 1997; 238: 717–22

    Article  PubMed  CAS  Google Scholar 

  37. Lindley KM, Su JL, Hodges PK, et al. Production of monoclonal antibodies using recombinant baculovirus displaying gp64-fusion proteins. J Immunol Methods 2000; 234: 123–35

    Article  PubMed  CAS  Google Scholar 

  38. Mottershead DG, Alfthan K, Ojala K, et al. Baculoviral display of functional scFv and synthetic IgG-binding domains. Biochem Biophys Res Commun 2000; 275: 84–90

    Article  PubMed  CAS  Google Scholar 

  39. Grabherr R, Ernst W, Oker-Blom C, et al. Developments in the use of baculoviruses for the surface display of complex eukaryotic proteins. Trends Biotechnol 2001; 19: 231–6

    Article  PubMed  CAS  Google Scholar 

  40. Harris JD, Lemoine NR. Strategies for targeted gene therapy. Trends Genet 1996; 12: 400–5

    Article  PubMed  CAS  Google Scholar 

  41. Hüser A, Rudolph M, Hofmann C. Incorporation of decay-accelerating factor into the baculovirus envelope generates complement-resistant gene transfer vectors. Nat Biotechnol 2001; 19: 451–5

    Article  PubMed  Google Scholar 

  42. Gao R, McCormick CJ, Arthur MJ, et al. High efficiency gene transfer into cultured primary rat and human hepatic stellate cells using baculovirus vectors. Liver 2002; 22: 15–22

    PubMed  Google Scholar 

  43. Ma L, Tamarina N, Wang Y, et al. Baculovirus-mediated gene transfer into pancreatic islet cells. Diabetes 2000; 49: 1986–91

    Article  PubMed  CAS  Google Scholar 

  44. Kronschnabl M, Marschall M, Stamminger T. Efficient and tightly regulated expression systems for the human cytomegalovirus major transactivator protein IE2p86 in permissive cells. Virus Res 2002; 83: 89–102

    Article  PubMed  CAS  Google Scholar 

  45. Condreay JP. Application of recombinant baculoviruses to mammalian cell-based assay development [abstract]. 5th Gene Delivery and Cellular Protein Expression Conference; 2001 Sep 9–13, Semmering, Austria

  46. Yap CC, Ishii K, Aoki Y, et al. A hybrid baculovirus-T7 RNA polymerase system for recovery of an infectious virus from cDNA. Virology 1997; 231: 192–200

    Article  PubMed  CAS  Google Scholar 

  47. Delaney WEI, Edwards R, Colledge D, et al. Cross-resistance testing of anti-hepadnaviral compounds using novel recombinant baculoviruses which encode drug-resistant strains of hepatitis B virus. Antimicrob Agents Chemother 2001; 45: 1705–13

    Article  PubMed  CAS  Google Scholar 

  48. Delaney WE, Isom HC. Hepatitis B virus replication in human HepG2 cells mediated by hepatitis B virus recombinant baculovirus. Hepatology 1998; 28: 1134–46

    Article  PubMed  CAS  Google Scholar 

  49. Delaney WE, Miller TG, Isom HC. Use of the hepatitis B virus recombinant baculovirus-HepG2 system to study the effects of (-)-beta-2′,3′-dideoxy-3′-thiacytidine on replication of hepatitis B virus and accumulation of covalently closed circular DNA. Antimicrob Agents Chemother 1999; 43: 2017–26

    PubMed  CAS  Google Scholar 

  50. Yap CC, Ishii K, Aizaki H, et al. Expression of target genes by coinfection with replication-deficient viral vectors. J Gen Virol 1998; 79: 1879–88

    PubMed  CAS  Google Scholar 

  51. Fipaldini C, Bellei B, La Monica N. Expression of hepatitis C virus cDNA in human hepatoma cell line mediated by a hybrid baculovirus-HCV vector. Virology 1999; 255: 302–11

    Article  PubMed  CAS  Google Scholar 

  52. McCormick CJ, Rowlands DJ, Harris M. Efficient delivery and regulable expression of hepatitis C virus full-length and minigenome constructs in hepatocyte-derived cell lines using baculovirus vectors. J Gen Virol 2002; 83: 383–94

    PubMed  CAS  Google Scholar 

  53. Hagglund R, Munger J, Poon AP, et al. U(S)3 protein kinase of herpes simplex virus 1 blocks caspase 3 activation induced by the products of U(S)1.5 and U(L)13 genes and modulates expression of transduced U(S)1.5 open reading frame in a cell type-specific manner. J Virol 2002; 76: 743–54

    Article  PubMed  CAS  Google Scholar 

  54. Ye GJ, Roizman B. The essential protein encoded by the UL31 gene of herpes simplex virus 1 depends for its stability on the presence of UL34 protein. Proc Natl Acad Sci U S A 2000; 97: 11002–7

    Article  PubMed  CAS  Google Scholar 

  55. Ye GJ, Vaughan KT, Vallee RB, et al. The herpes simplex virus 1 U(L)34 protein interacts with a cytoplasmic dynein intermediate chain and targets nuclear membrane. J Virol 2000; 74: 1355–63

    Article  PubMed  CAS  Google Scholar 

  56. Zhou G, Galvan V, Campadelli-Fiume G, et al. Glycoprotein D or J delivered in trans blocks apoptosis in SK-N-SH cells induced by a herpes simplex virus 1 mutant lacking intact genes expressing both glycoproteins. J Virol 2000; 74: 11782–91

    Article  PubMed  CAS  Google Scholar 

  57. Munger J, Roizman B. The US3 protein kinase of herpes simplex virus 1 mediates the posttranslational modification of BAD and prevents BAD-induced programmed cell death in the absence of other viral proteins. Proc Natl Acad Sci U S A 2001; 98: 10410–5

    Article  PubMed  CAS  Google Scholar 

  58. Munger J, Chee AV, Roizman B. The U(S)3 protein kinase blocks apoptosis induced by the d120 mutant of herpes simplex virus 1 at a premitochondrial stage. J Virol 2001; 75: 5491–7

    Article  PubMed  CAS  Google Scholar 

  59. Lopez P, Van Sant C, Roizman B. Requirements for the nuclear-cytoplasmic translocation of infected-cell protein 0 of herpes simplex virus 1. J Virol 2001; 75: 3832–40

    Article  PubMed  CAS  Google Scholar 

  60. Sciortino MT, Taddeo B, Poon AP, et al. Of the three tegument proteins that package mRNA in herpes simplex virions, one (VP22) transports the mRNA to uninfected cells for expression prior to viral infection. Proc Natl Acad Sci U S A 2002; 99: 8318–23

    Article  PubMed  CAS  Google Scholar 

  61. Dwarakanath RS, Clark CL, McElroy AK, et al. The use of recombinant baculoviruses for sustained expression of human cytomegalovirus immediate early proteins in fibroblasts. Virology 2001; 284: 297–307

    Article  PubMed  CAS  Google Scholar 

  62. Cheshenko N, Krougliak N, Eisensmith RC, et al. A novel system for the production of fully deleted adenovirus vectors that does not require helper adenovirus. Gene Ther 2001; 8: 846–54

    Article  PubMed  CAS  Google Scholar 

  63. Sollerbrant K, Elmen J, Wahlestedt C, et al. A novel method using baculovirus-mediated gene transfer for production of recombinant adeno-associated virus vectors. J Gen Virol 2001; 82: 2051–60

    PubMed  CAS  Google Scholar 

  64. Palombo F, Monciotti A, Recchia A, et al. Site-specific integration in mammalian cells mediated by a new hybrid baculovirus-adeno-associated virus vector. J Virol 1998; 72: 5025–34

    PubMed  CAS  Google Scholar 

  65. Kost TA, Klein JL, Condreay JP. Application of recombinant baculoviruses in biopharmaceutical research. In: Al-Rubeai M, editor. Cell engineering. Dordrecht: Kluwer Academic Publishers, 2000: 1–28

    Chapter  Google Scholar 

  66. Merrihew RV, Clay WC, Condreay JP, et al. Chromosomal integration of transduced recombinant baculovirus DNA in mammalian cells. J Virol 2001; 75: 903–9

    Article  PubMed  CAS  Google Scholar 

  67. Sandig V, Hofmann C, Steinert S, et al. Gene transfer into hepatocytes and human liver tissue by baculovirus vectors. Hum Gene Ther 1996; 7: 1937–45

    Article  PubMed  CAS  Google Scholar 

  68. Hofmann C, Strauss M. Baculovirus-mediated gene transfer in the presence of human serum or blood facilitated by inhibition of the complement system. Gene Ther 1998; 5: 531–6

    Article  PubMed  CAS  Google Scholar 

  69. Hofmann C, Hüser A, Lehnert W, et al. Protection of baculovirus-vectors against complement-mediated inactivation by recombinant soluble complement receptor type 1. Biol Chem 1999; 380: 393–5

    Article  PubMed  CAS  Google Scholar 

  70. Gronowski AM, Hilbert DM, Sheehan KC, et al. Baculovirus stimulates antiviral effects in mammalian cells. J Virol 1999; 73: 9944–51

    PubMed  CAS  Google Scholar 

  71. Beck NB, Sidhu JS, Omiecinski CJ. Baculovirus vectors repress phenobarbital-mediated gene induction and stimulate cytokine expression in primary cultures of rat hepatocytes. Gene Ther 2000; 7: 1274–83

    Article  PubMed  CAS  Google Scholar 

  72. Bilello JP, Delaney WE, Boyce FM, et al. Transient disruption of intercellular junctions enables baculovirus entry into nondividing hepatocytes. J Virol 2001; 75: 9857–71

    Article  PubMed  CAS  Google Scholar 

  73. Hoare JM, Waddington SN, Khan S, et al. Soluble complement receptor 1(SCR1) rescues mice from fatal toxicity following intra-portal administration of baculovirus vectors [abstract]. Mol Ther 2002; 5: S152

    Google Scholar 

  74. Kircheis R, Wightman L, Schreiber A, et al. Polyethylenimine/DNA complexes shielded by transferrin target gene expression to tumors after systemic application. Gene Ther 2001; 8: 28–40

    Article  PubMed  CAS  Google Scholar 

  75. Airenne KJ, Hiltunen MO, Turunen MP, et al. Baculovirus-mediated periadventitial gene transfer to rabbit carotid artery. Gene Ther 2000; 7: 1499–504

    Article  PubMed  CAS  Google Scholar 

  76. Haeseleer F, Imanishi Y, Saperstein DA, et al. Gene transfer mediated by recombinant baculovirus into mouse eye. Invest Ophthalmol Vis Sci 2001; 42: 3294–300

    PubMed  CAS  Google Scholar 

  77. Aoki H, Sakoda Y, Jukuroki K, et al. Induction of antibodies in mice by a recombinant baculovirus expressing pseudorabies virus glycoprotein B in mammalian cells. Vet Microbiol 1999; 68: 197–207

    Article  PubMed  CAS  Google Scholar 

  78. Pieroni L, Maione D, La Monica N. In vivo gene transfer in mouse skeletal muscle mediated by baculovirus vectors. Hum Gene Ther 2001; 12: 871–81

    Article  PubMed  CAS  Google Scholar 

  79. Song SU, Boyce FM. Combination treatment for osteosarcoma with baculoviral vector mediated gene therapy (p53) and chemotherapy (adriamycin). Exp Mol Med 2001; 33: 46–53

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Part of the work reviewed in this manuscript was supported by a grant of the BMBF “Gesundheitsforschung 2000” (01GE9628). The authors have no conflicts of interest that are directly relevant to the content of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Hofmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hüser, A., Hofmann, C. Baculovirus Vectors. Am J Pharmacogenomics 3, 53–63 (2003). https://doi.org/10.2165/00129785-200303010-00007

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129785-200303010-00007

Keywords

Navigation