Skip to main content
Log in

Gene Therapy for Hereditary Hematological Disorders

  • Molecular Medicine
  • Published:
American Journal of Pharmacogenomics

Abstract

The year 2000 saw the first successful treatment of a genetic disorder by gene therapy. Pediatric patients with X-linked severe combined immunodeficiency disorder (SCID-X1) received autologous CD34+ hematopoietic cells following ex vivo gene transfer using a retroviral vector, with subsequent demonstration of improved immune responses. A number of preclinical and clinical studies have been conducted with the aim of developing gene therapy for hemophilia, Fanconi anemia, sickle cell disease, β-thalassemia, chronic granulomatous disease, and other inherited hematological disorders. The greatest advances in novel approaches toward treatment of hematological disorders have been made in hemophilia, with 3 current phase I clinical trials ongoing. Two trials are investigating the safety and feasibility of utilizing either an ex vivo, non-viral gene transfer technique or an intravenous infusion of a retroviral vector to treat adults with severe hemophilia A (factor VIII deficiency). The third study involves intramuscular administration of an adeno-associated viral (AAV) vector for expression of factor IX in adult patients with hemophilia B. Results from this study and from preclinical studies preceding the trial demonstrate that it is possible to safely administer high doses of a viral vector in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Table I

Similar content being viewed by others

Notes

  1. 1Use of tradenames is for identification purposes only and does not imply endorsement.

References

  1. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basille G, et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000; 288: 669–72

    Article  PubMed  CAS  Google Scholar 

  2. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basille G, et al. Gene therapy for human severe combined immunodeficiency (SCID)-X1 disease. Blood 2000a; 96 Suppl.: 590a

    Google Scholar 

  3. Blaese RM, Culver KW, Miller AD, et al. T lymphocyte-directed gene therapy for ADA-SCID: initial trial results after 4 years. Science 1995; 270: 475–80

    Article  PubMed  CAS  Google Scholar 

  4. Kohn DB, Hershfield MS, Carbonaro D, et al. T lymphocytes with a normal ADA gene accumulate after transplantation of transduced autologous umbilical cord blood CD34+ cells in ADA-deficient SCID neonates. Nat Med 1998; 4: 775–80

    Article  PubMed  CAS  Google Scholar 

  5. Abonour R, Williams DA, Einhorn L, et al. Efficient retrovirus-mediated MDR-1 gene transfer into autologous long-term repopulating hemotopoietic stem cells. Nat Med 2000; 6: 652–8

    Article  PubMed  CAS  Google Scholar 

  6. High KA. Gene transfer as an approach to treating hemophilia. Circ Res 2001; 88: 137–44

    Article  PubMed  CAS  Google Scholar 

  7. High KA. Gene therapy for disorders of hemostasis. Hematology 1999; 438–446

    Google Scholar 

  8. VandenDriessche T, Vanslembrouck V, Goovaerts I, et al. Long-term expression of human coagulation factor VIII and correction of hemophilia A after in vivo retroviral gene transfer in factor VIII-deficient mice. Proc Natl Acad Sci USA 1999; 96: 9973–5

    Article  Google Scholar 

  9. Roth DA, Tawa NE, O’Brien J, et al. Non-viral gene transfer of blood coagulation factor VIII in patients with severe hemophilia A. Blood 2000; Suppl.: 590a

    Google Scholar 

  10. Fisher KJ, Jooss K, Alston J, et al. Recombinant adeno-associated virus for muscle directed gene therapy. Nat Med 1997; 3: 306–12

    Article  PubMed  CAS  Google Scholar 

  11. Arruda VR, Hagstrom JN, Deitch J, et al. Post-translational modifications or recombinant myotube-synthesized human factor IX. Blood 2001; 97: 130–8

    Article  PubMed  CAS  Google Scholar 

  12. Ferrari FK, Xiao X, McCarty D, et al. New developments in the generation of Ad-free, high titer rAAV gene therapy vectors. Nat Med 1997; 3: 1295–7

    Article  PubMed  CAS  Google Scholar 

  13. Matsushita T, Elliger S, Elliger C, et al. Adeno-associated virus vectors can be efficiently produced without helper virus. Gene Ther 1998; 5: 938–45

    Article  PubMed  CAS  Google Scholar 

  14. Herzog RW, Hagstrom JN, Kung Z-H, et al. Stable gene transfer and expression of human blood coagulation factor IX after intramuscular injection of recombinant adeno-associated virus. Proc Natl Acad Sci U S A 1997; 94: 5804–9

    Article  PubMed  CAS  Google Scholar 

  15. Herzog RW, High KA. AAV-mediated gene transfer of factor IX for treatment of hemophilia B by gene therapy. Throm Haemost 1999; 82: 540–6

    CAS  Google Scholar 

  16. Herzog RW, Yang EY, Couto LB, et al. Long-term correction of canine hemophilia B by gene transfer of blood coagulation factor IX mediated by adeno-associated viral vector. Nat Med 1999; 5: 56–63

    Article  PubMed  CAS  Google Scholar 

  17. Fabb SA, Dickson JG. Technology evaluation: AAV factor IX gene therapy, Avigen Inc. Curr Opin Molec Ther 2000; 2: 601–6

    CAS  Google Scholar 

  18. Fields PA, Kowalczyk DW, Arruda VR, et al. Choice of vector determines T cell subsets involved in immune responses against the secreted transgene product factor IX. Mol Ther 2000; 1: 225–35

    Article  PubMed  CAS  Google Scholar 

  19. Anonymous. Gene therapy and the germline [editorial; comment]. Nat Med 1999; 5: 245

    Article  Google Scholar 

  20. Epstein S, Bauer S, Miller A, et al. FDA Comments on phase I clinical trials without vector biodistribution data. Nat Genet 1999; 22: 326

    Article  PubMed  CAS  Google Scholar 

  21. Arruda VR, Fields PA, Milner R, et al. Risk of inadvertent germline transmission of vector sequence following injection of recombinant AAV into skeletal muscle. Blood 1999; 94 Suppl.: 363a

    Google Scholar 

  22. Hagstrom JN, Couto LB, Scallan C, et al. Enhanced muscle-derived expression of coagulation factor IX from a skeletal actin/CMV hybrid promoter. Blood 2000; 95: 2536–42

    PubMed  CAS  Google Scholar 

  23. Xiao W, Chirmule N, Berta SC, et al. Gene therapy vectors based on adeno-associated virus type 1. J Virol 1999; 73: 3994–4003

    PubMed  CAS  Google Scholar 

  24. Kay MA, Manno CS, Ragni MV, et al. Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nat Genet 2000; 24: 257–61

    Article  PubMed  CAS  Google Scholar 

  25. Snyder RO, Miao CH, Patijn GA, et al. Persistent and therapeutic concentrations of human factor IX in mice after hepatic gene transfer of recombinant AAV vectors. Nat Genet 1997; 16: 270–6

    Article  PubMed  CAS  Google Scholar 

  26. Nakai H, Herzog R, Hagstrom JN, et al. AAV-mediated gene transfer of human blood coagulation factor IX into mouse liver. Blood 1998; 91: 4600–7

    PubMed  CAS  Google Scholar 

  27. Snyder RO, Miao C, Meuse L, et al. Correction of hemophilia B in canine and murine models using recombinant adeno-associated viral vectors. Nat Med 1999; 5: 64–70

    Article  PubMed  CAS  Google Scholar 

  28. Nakai H, Ohashi K, Arruda VR, et al. A proposed rAAV-liver directed clinical trial for hemophilia B. Blood 2000; 96 Suppl.: 798a–799a

    Google Scholar 

  29. Chao H, Mao L, Bruce AT, et al. Sustained expression of human factor VIII in mice using a parvovirus-based vector. Blood 2000; 95: 1594–9

    PubMed  CAS  Google Scholar 

  30. Burton M, Nakai H, Colosi P, et al. Coexpression of factor VIII heavy and light chain adeno-associated viral vectors produces biologically active protein. Proc Nat Acad Sci U S A 1999; 95: 12725–30

    Article  Google Scholar 

  31. Morral N, O’Neal W, Rice K, et al. Administration of helper-dependent adenoviral vectors and sequential delivery of different vector serotype for long-term liver-directed gene transfer in baboons. Proc Natl Acad Sci U S A 1999; 96: 12816–21

    Article  PubMed  CAS  Google Scholar 

  32. Balague C, Zhou JM, Dai YF, et al. Sustained high-level expression of full-length human factor VIII and restoration of clotting activity in hemophilic mice using a minimal adenovirus vector. Blood 2000; 95: 820–8

    PubMed  CAS  Google Scholar 

  33. Verma IM. A tumultuous year for gene therapy. Mol Ther 2000; 2: 415–6

    Article  PubMed  CAS  Google Scholar 

  34. Muruve DA, Barnes MJ, Stillman IE, et al. Adenoviral gene therapy leads to rapid induction of multiple chemokines and acute neutrophil-dependent hepatic injury in vivo. Hum Gene Ther 1999; 10: 965–76

    Article  PubMed  CAS  Google Scholar 

  35. Bristol JA, Shirley P, Idamakanti N, et al. In vivo dose threshold effect of adeno-virus-mediated factor VIII gene therapy in hemophiliac mice. Mol Ther 2000; 2: 223–32

    Article  PubMed  CAS  Google Scholar 

  36. Gallo-Penn AM, Shirley PS, Andrews JL, et al. Systemic delivery of an adenoviral vector encoding canine factor VIII results in short-term phenotypic correction, inhibitor development, and biphasic liver toxicity in hemophilia A dogs. Blood 2001; 97: 107–13

    Article  PubMed  CAS  Google Scholar 

  37. Liu JM. Fanconi’s Anemia. In: Young NS, editor. Bone marrow failure syndromes. Philadelphia: WB Saunders Co., 2000

    Google Scholar 

  38. Auerbach AD. Fanconi anemia diagnosis and the diepoxybutane (DEB) test. Exp Hematol 1993; 21: 731–3

    PubMed  CAS  Google Scholar 

  39. Kupfer GM, Naf D, D’Andrea AD. Molecular biology of Fanconi anemia. Hematol Oncol Clin North Am 1997; 11: 1045–60

    Article  PubMed  CAS  Google Scholar 

  40. Garcia-Higuera I, Kuang Y, D’Andrea AD. The molecular and cellular biology of Fanconi anemia. Curr Opin Hematol 1999; 6: 83–8

    Article  PubMed  CAS  Google Scholar 

  41. Strathdee CA, Gavish H, Shannon WR, et al. Cloning of cDNAs for Fanconi’s anaemia by functional complementation. Nature 1992; 356: 763–7

    Article  PubMed  CAS  Google Scholar 

  42. Consortium Fabc. Positional cloning of the Fanconi anaemia group A gene. Nat Genet 1996; 14: 324–8

    Article  Google Scholar 

  43. Liu JM. Gene transfer for the eventual treatment of Fanconi’s anemia. Semin Hematol 1998; 35: 168–79

    PubMed  CAS  Google Scholar 

  44. Fu KL, Thuss PC, Fujino T, et al. Retroviral gene transfer for the assignment of Fanconi anemia (FA) patients to a FA complementation group. Hum Genet 1998; 102: 166–9

    Article  PubMed  CAS  Google Scholar 

  45. Fu KL, Foe JR, Joenje H, et al. Functional correction of Fanconi anemia group A hematopoietic cells by retroviral gene transfer. Blood 1997; 90: 3296–303

    PubMed  CAS  Google Scholar 

  46. Gush KA, Fu KL, Grompe M, et al. Phenotypic correction of Fanconi anemia group C knockout mice. Blood 2000; 95: 700–4

    PubMed  CAS  Google Scholar 

  47. Battaile KP, Bateman RL, Mortimer D, et al. In vivo selection of wild-type hematopoietic stem cells in a murine model of Fanconi anemia. Blood 1999; 94: 2151–8

    PubMed  CAS  Google Scholar 

  48. Liu JM, Kim S, Read EJ, et al. Engraftment of hematopoietic progenitor cells transduced with the Fanconi anemia group C gene (FANCC). Hum Gene Ther 1999; 10: 2337–46

    Article  PubMed  CAS  Google Scholar 

  49. Walsh C. Gene therapy for group A Fanconi anemia patients. Science letter of the Fanconi Anemia Research Fund 2000

    Google Scholar 

  50. Baehner RL, Nathan DG. Defective activity in chronic granulomatous disease. Science 1967; 155: 835–6

    Article  PubMed  CAS  Google Scholar 

  51. Sega BH, Leto TL, Gallin JI, et al. Genetic, biochemical, and clinical features of chronic granulomatous disease. Medicine (Baltimore) 2000; 79: 170–200

    Article  Google Scholar 

  52. Malech HL, Bauer TRJ, Hickstein DD. Prospects for gene therapy of neutrophil defects. Semin Hematol 1997; 34: 355–61

    PubMed  CAS  Google Scholar 

  53. Malech HL, Maples PB, Whiting-Theobald N, et al. Prolonged production of NADPH oxidase-corrected granulocytes after gene therapy of chronic granulomatous disease. Proc Natl Acad Sci U S A 1997; 94: 133–8

    Article  Google Scholar 

  54. Bjorgvinsdottir H, Ding C, Pech N, et al. Retroviral-mediated gene transfer of gp91phox into bone marrow cells rescues defect in host defense against Aspergillus fumigatus in murine X-linked chronic granulomatous disease. Blood 1997; 89: 41–8

    PubMed  CAS  Google Scholar 

  55. Mardiney MI, Jackson SH, Spratt SK, et al. Enhanced host defense after gene transfer in the murine p47phox-deficient model of chronic granulomatous disease. Blood 1997; 89: 2268–75

    PubMed  CAS  Google Scholar 

  56. Blouin MJ, Beauchemin H, Wright A, et al. Genetic correction of sickle cell disease: Insights using transgenic mouse models. Nat Med 2000; 6: 177–82

    Article  PubMed  CAS  Google Scholar 

  57. Cole-Strauss A, Yoon K, Xiang Y, et al. Correction of the mutation responsible for sickle cell anemia by an RNA-DNA oligonucleotide. Science 1996; 273: 1386–9

    Article  PubMed  CAS  Google Scholar 

  58. Lan N, Howrey RP, Lee SW, et al. Ribozyme-mediated repair of sickle beta-globin mRNAs in erythrocyte precursors. Science 1998; 280: 1593–6

    Article  PubMed  CAS  Google Scholar 

  59. Kelly PF, Vandergriff J, Nathwani A, et al. Highly efficient gene transfer into cord blood nonobese diabetic/severe combined immunodeficiency repopulating cells by oncoretroviral vector particles pseudotyped with the feline endogenous retrovirus (RD114) envelope protein. Blood 2000; 96: 1206–14

    PubMed  CAS  Google Scholar 

  60. Rivella S, Sadelain M. Genetic treatment of severe hemoglobinopathies: the combat against transgene variegation and transgene silencing. Semin Hematol 1998; 35: 112–25

    PubMed  CAS  Google Scholar 

  61. Kalberer CP, Pawliuk R, Imren S, et al. Preselection of retrovirally transduced bone marrow avoids subsequent stem cell gene silencing and age-dependent extinction of expression of human beta-globin in engrafted mice. Proc Natl Acad Sci U S A 2000; 97: 5411–5

    Article  PubMed  CAS  Google Scholar 

  62. Li Q, Emery DW, Fernandez M, et al. Development of viral vectors for gene therapy of beta-chain hemoglobinopathies: optimization of a gamma-globin gene expression cassette. Blood 1999; 93: 2208–16

    PubMed  CAS  Google Scholar 

  63. May C, Rivella S, Callegari J, et al. Therapeutic haemoglobin synthesis in beta-thalassaemic mice expressing lentivirus-encoded human beta-globin. Nature 2000; 406: 82–6

    Article  PubMed  CAS  Google Scholar 

  64. Bodine D. Globin gene therapy: one (seemingly) small vector change, one giant leap in optimism. Mol Ther 2000; 2: 101–2

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

R.W. Herzog is supported by a Career Development Award by the National Hemophilia Foundation. The authors thank Dr. K.A. High for suggestions for the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland W. Herzog.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herzog, R.W., Hagstrom, J.N. Gene Therapy for Hereditary Hematological Disorders. Am J Pharmacogenomics 1, 137–144 (2001). https://doi.org/10.2165/00129785-200101020-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129785-200101020-00006

Keywords

Navigation