Skip to main content
Log in

The Molecular Genetics of Therapeutic Resistance in Malignant Astrocytomas

  • Genomics in Human Disease
  • Published:
American Journal of Pharmacogenomics

Abstract

The adverse prognosis associated with malignant astrocytomas (MA) is due in part to the development of resistance by the tumor to chemo- and radiotherapy-induced cytotoxic damage. The mechanisms of resistance are poorly understood but function at the level of the endothelial cell, the blood-brain barrier and the neoplastic cell itself. The classic examples of drug resistance proteins, such as the p-glycoprotein/multidrug resistance protein 1, have been identified within MA biopsy specimens. However, it is questionable to what degree, if at all, these proteins contribute directly to the evolution and prognosis of the MA. Surprisingly, there are specific genes, not traditionally associated with resistance, which appear increasingly relevant to both tumor progression and insensitivity to cytotoxic damage. These genes are involved in cell cycle regulation, and include the retinoblastoma susceptibility gene (Rb), the tumor suppressor gene p53, as well as those encoding the cyclins, their kinases and inhibitors. The interaction between the products of these genes and intratumoral environmental factors appears to involve a dynamic and prognostically adverse selection process. It is from this perspective that the mechanism(s) of hypoxic-ischaemic selection for resistance and its therapeutic repercussions will be analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II

Similar content being viewed by others

References

  1. Shapiro WR. Treatment of neuroectodermal brain tumors. Ann Neurol 1982; 12: 231–7

    Article  PubMed  CAS  Google Scholar 

  2. De Vita VT. The relationship between tumor mass and resistance to chemotherapy. Implications for surgical adjuvant treatment of cancer. Cancer 1983; 51: 1209–20

    Article  Google Scholar 

  3. Liang BC. Effects of hypoxia on drug resistance phenotype and genotype in human glioma cell lines. J Neurol Oncol 1996; 29: 149–55

    Article  CAS  Google Scholar 

  4. Biedler JL, Riehm H. Cellular resistance to actinomycin D in Chinese hamster cell in vitro: cross-resistance, radioautographic and cytogenetic studies. Cancer Res 1970; 30: 1174–84

    PubMed  CAS  Google Scholar 

  5. Dano K. Cross resistance between vinca alkyloids and anthracyclines in Ehrlich ascites tumor in vivo. Cancer Chemother Res 1972; 56: 701–8

    CAS  Google Scholar 

  6. Ashmore SM, Thomas DGT, Darling JL. Does p-glycoprotein play a role in clinical resistance of malignant astrocytoma? Anti-Cancer Drugs 10: 861–872, 1999

    Article  PubMed  CAS  Google Scholar 

  7. Henson JW, Cordon-Cardo C, Posner JB. P-glycoprotein expression in brain tumors. J Neurol Oncol 1992; 14: 37–43

    Article  CAS  Google Scholar 

  8. Takamiya Y, Abe Y, Tanaka Y, et al. Murine p-glycoprotein on stromal vessels mediates multidrug resistance in intracerebral human glioma xenografts. Br J Cancer 1997; 76: 445–50

    Article  PubMed  CAS  Google Scholar 

  9. Billson AL, Palmer AB, Walker DA, et al. Multidrug resistance gene (MDR 1) expression in neuro-axial tumour of children and young adults. Br J Neurosurg 1994; 8: 585–91

    Article  PubMed  CAS  Google Scholar 

  10. Dietzmann K, Bossanyi PV, Franke DS. Die Expression von P-Glykoprotein als Multidrug-Resistance-Genprodukt in reaktiven Astrozyten und astrozytischen Tumoren des Menschen. Zentralblatt fur Pathologie 1994; 140: 149–53

    PubMed  CAS  Google Scholar 

  11. Goldstein LJ. Clinical reversal of drug resistance. Curr Probl Cancer 1995; 19: 65–124

    Article  PubMed  CAS  Google Scholar 

  12. Feun LG, Savaraj N, Landy HJ. Drug resistance in brain tumors. J Neurol Oncol 1994; 20: 165–76

    Article  CAS  Google Scholar 

  13. Mineura K, Yanagisawa T, Watanabe K, et al. Human brain tumor O6-methylguanine-DNA methyltransferase mRNA and its significance as an indicator of selective chloroethylnitrosourea chemotherapy. Int J Cancer 1996; 69: 420–5

    Article  PubMed  CAS  Google Scholar 

  14. Belanich M, Pastor M, Randall T, et al. Retrospective study of the correlation between DNA repair protein alkyltransferase and survival of brain tumor patients treated with carmustine. Cancer Res 1996; 56: 783–8

    PubMed  CAS  Google Scholar 

  15. Grant R, Ironside JW. Glutathione S-transferases and cytochrome P450 detoxifying enzyme distribution in human cerebral glioma. J Neurol Oncol 1995; 25: 1–7

    Article  CAS  Google Scholar 

  16. Gianni L. Anthracycline resistance: the problem and its current definition. Seminars Oncol 1997; 24 Suppl. 10: S10–11–S10–17

    Google Scholar 

  17. Bobola MS, Berger MS, Silber JR. Contribution of O6-methylguanine DNA-methyltransferase to resistance to 1,3-(2-chloroethyl)-1-nitrosourea in human brain tumor-derived cell lines. Mol Carcinog 1995; 13: 81–8

    Article  PubMed  CAS  Google Scholar 

  18. Sarkadi B, Müller M. Search for specific inhibitors of multidrug resistance in cancer. Semin Cancer Biol 1997; 8: 171–82

    Article  PubMed  CAS  Google Scholar 

  19. Kurpad S, Dolan ME, McLendon R, et al. Intraarterial O6-benzylquanine enables the specific therapy of nitrosurea-resistant intracranial human glioma xenografts in athymic rats with 1,3-bis(2-chloroethyl)-1-nitrosourea. Cancer Chemother Pharmacol 1997; 39: 307–16

    Article  PubMed  CAS  Google Scholar 

  20. Dolan ME, Pegg AE. O6-benzylguanine and its role in chemotherapy. Clin Cancer Res 1997; 3: 837–47

    PubMed  CAS  Google Scholar 

  21. Prados MD, Larson DA, Lamborn K, et al. Radiation therapy and hydroxyurea followed by the combination of 6-thioguanine and BCNU for the treatment of primary malignant brain tumors. Int J Radiation Oncol Biol Phys 1998; 40: 57–63

    Article  CAS  Google Scholar 

  22. Stewart DJ, Dahrouge S, Agboola O, et al. Cranial radiation and concomitant cisplatin and mitomycin-C plus resistance modulators for malignant gliomas. J Neurol Oncol 1997; 32: 161–8

    Article  CAS  Google Scholar 

  23. Guan K-L, Jenkins CW, Li Y, et al. Growth suppression by p18, a p16INK4/MTS1and p14INK4B/MTS2-related CDK6 inhibitor, correlates with wild-type pRb function. Genes Dev 1994; 8: 2939–52

    Article  PubMed  CAS  Google Scholar 

  24. Serrano M, Gomez-Lahoz E, dePinho RA, et al. Inhibition of ras-induced proliferation and cellular transformation by p16INH4. Science 1995; 267: 249–52

    Article  PubMed  CAS  Google Scholar 

  25. Weinberg RA. The retinoblastoma protein and cell cycle control. Cell 1995; 81: 323–30

    Article  PubMed  CAS  Google Scholar 

  26. Kamb A, Gruis NA, Weaver-Feldhaus J, et al. A cell cycle regulator potentially involved in the genesis of many tumor types. Science 1994; 264: 436–40

    Article  PubMed  CAS  Google Scholar 

  27. Hannon GJ, Beach D. p15INK4Bis a potential effector of TGF-β-induced cell cycle arrest. Nature 1994; 371: 257–61

    Article  PubMed  CAS  Google Scholar 

  28. Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cycle D/CDK4. Nature 1993; 366: 704–7

    Article  PubMed  CAS  Google Scholar 

  29. Xiong Y, Zhang H, Beach D. Subunit rearrangement of the cyclin-dependent kinases is associated with cellular transformation. Genes Dev 1993; 7: 1572–83

    Article  PubMed  CAS  Google Scholar 

  30. Lukas J, Parry D, Aagaard L, et al. Retinoblastoma-protein-dependent cell-cycle inhibition by the tumour suppressor p16. Nature 1995; 375: 503–6

    Article  PubMed  CAS  Google Scholar 

  31. Otterson GA, Kratzke RA, Coxon A, et al. Absence of p16INK4protein is restricted to the subset of lung cancer lines that retains wildtype RB. Oncogene1994; 9: 3375–8

    PubMed  CAS  Google Scholar 

  32. Kawamata N, Morosetti R, Miller CW, et al. Molecular analysis of the cyclin-dependent kinase inhibitor gene p27/Kipl in human malignancies. Cancer Res 1995; 55: 2266–9

    PubMed  CAS  Google Scholar 

  33. Shiohara M, El-Diery WS, Wada M, et al. Absence of WAF1 mutations in a variety of human malignancies. Blood 1994; 84: 3781–4

    PubMed  CAS  Google Scholar 

  34. Xiong Y, Connolly T, Futcher B, et al. Human D-type cyclin. Cell 1991; 65: 691–9

    Article  PubMed  CAS  Google Scholar 

  35. Barkova J, Lukas J, Strauss M, et al. Cyclin D1 oncoprotein aberrantly accumulates in malignancies of diverse histogenesis. Oncogene 1995; 10: 775–8

    Google Scholar 

  36. Jen J, Harper JW, Bigner SH, et al. Deletion of p16 and p15 genes in brain tumors. Cancer Res 1994; 54: 6353–8

    PubMed  CAS  Google Scholar 

  37. Schmidt EE, Ichimura K, Reifenberger G, et al. CDKN2 (p16/MTS1) gene deletion or CDK4 amplification occurs in the majority of glioblastomas. Cancer Res 1994; 54: 6321–4

    PubMed  CAS  Google Scholar 

  38. Fults D, Pedone CA, Thomas GA, et al. Allelotype of human malignant astrocytoma. Cancer Res 1990; 50: 5784–9

    PubMed  CAS  Google Scholar 

  39. James CD, Caribom E, Dumanski JP, et al. Clonal genomic alterations in glioma malignancy stages. Cancer Res 1988; 48: 5546–51

    PubMed  CAS  Google Scholar 

  40. Venter DJ, Bevan KL, Ludwig RL, et al. Retinoblastoma gene deletions in human glioblastomas. Oncogene 1991; 6: 445–8

    PubMed  CAS  Google Scholar 

  41. Henson JW, Schnitker BL, Correa KM, et al. The retinoblastoma gene is involved in malignant progression of astrocytomas. Ann Neurology 1994; 36: 714–21

    Article  CAS  Google Scholar 

  42. Nakamura M, Konishi N, Tsunoda S, et al. Retinoblastoma protein expression and MIB-1 correlate with survival of patients with malignant astrocytoma. Cancer 1997; 80: 242–9

    Article  PubMed  CAS  Google Scholar 

  43. Hochhauser D, Schnieders B, Ercikan-Abali E, et al. Effect of cyclin D1 overexpression on drug sensitivity in a human fibrosarcoma cell line. J Natl Cancer Instit 1996; 88: 1255–1256

    Article  Google Scholar 

  44. St Croix B, Florenes VA, Rak JW, et al. Impact of the cyclin-dependent kinase inhibitor p27Kip1 on resistance of tumor cells to anticancer agents. Nature Med 1996; 2: 1204–10

    Article  Google Scholar 

  45. Volm M, Stammler G: Retinoblastoma (Rb) protein expression and resistance in squamous lung carcinomas. Anticancer Res 1996; 16: 891–4

    PubMed  CAS  Google Scholar 

  46. Li W, Fan J, Hochhauser D, et al. Lack of functional retinoblastoma protein mediates increased resistance to antimetabolites in human sarcoma cell lines. Proc Natl Acad Sci U S A 1995; 92: 10436–40

    Article  PubMed  CAS  Google Scholar 

  47. Dou QP, Lui VW: Failure to dephosphorylate retinoblastoma protein in drug-resistant cells. Cancer Res 1995; 55: 5222–5

    PubMed  CAS  Google Scholar 

  48. An B, Jin JR, Dou QP: Failure to activate interleukin 1beta-converting enzyme-like proteases and to cleave retinoblastoma protein in drug-resistant cells. FEBS Lett 1996; 399: 158–62

    Article  PubMed  CAS  Google Scholar 

  49. Lang FF, Miller DC, Koslow M, et al. Pathways leading to glioblastoma multiforme: a molecular analysis of genetic alterations in 65 astrocytic tumors. J Neurosurg 1994; 81: 427–36

    Article  PubMed  CAS  Google Scholar 

  50. Rasheed BKA, McLendon RE, Herndon JE, et al. Alterations of the TP53 gene in human gliomas. Cancer Res 1994; 54: 1324–30

    PubMed  CAS  Google Scholar 

  51. Frankel RH, Bayona W, Koslow M, et al. p53 mutations in human malignant gliomas: comparison of loss of heterozygosity with mutation frequency. Cancer Res 1992; 52: 1427–33

    PubMed  CAS  Google Scholar 

  52. Newcombe EW, Madonia WJ, Pisharody S, et al. A correlative study of p53 protein alteration and p53 gene mutation in glioblastoma multiforme. Brain Pathol 1993; 3: 229–35

    Article  Google Scholar 

  53. Van Meir EG, Kikuchi T, Tada M, et al. Analysis of the p53 gene and its expression in human glioblastoma cells. Cancer Res 1994; 54: 649–52

    Google Scholar 

  54. vonDeimling A, Louis DN, von Ammon K, et al. Molecular genetic evidence for two distinct subsets of glioblastoma multiforme. Clin Neuropathol 1992; 11: 265–6

    Google Scholar 

  55. Momand J, Zambetti GP, Olson DC, et al. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 1992; 69: 1237–45

    Article  PubMed  CAS  Google Scholar 

  56. Riefenberger G, Liu L, Ichimura K, et al. Amplification and overexpression of the MDM2 gene in a subset of human malignant gliomas without p53 mutations. Cancer Res 1993; 53: 2736–9

    Google Scholar 

  57. Sidransky D, Mikkelsen T, Schwechheimer D, et al. Clonal expansion of p53 mutant cells is associated with brain tumour progression. Nature 1992; 355: 846–7

    Article  PubMed  CAS  Google Scholar 

  58. Lowe SW, Schmitt EM, Smith SW, et al. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 1993; 362: 847–9

    Article  PubMed  CAS  Google Scholar 

  59. Kastan MB, Onyekwere N, Sidransky D, et al. Participation of p53 protein in cellular response to DNA damage. Cancer Res 1991; 51: 6304–11

    PubMed  CAS  Google Scholar 

  60. O’Connor PM, Jackman J, Jondle D, et al. Role of the p53 tumor suppressor gene in cell cycle arrest and radiosensitivity of Burkitt’s lymphoma cells. Cancer Res 1993; 53: 4776–80

    PubMed  Google Scholar 

  61. Iwadate Y, Fujimoto S, Tagawa M, et al. Association of p53 gene mutation with decreased chemosensitivity in human malignant gliomas. Int J Cancer 1996; 69: 236–40

    Article  PubMed  CAS  Google Scholar 

  62. Kyritsis AP, Bondy ML, Hess KR, et al. Prognostic significance of p53 immunoreactivity in patients with glioma. Clin Cancer Res 1995; 1: 1617–22

    PubMed  CAS  Google Scholar 

  63. Dulic V, Kaufmann WK, Wilson SJ, et al. p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell 1994; 76: 1013–23

    Article  PubMed  CAS  Google Scholar 

  64. Waga S, Hannon GJ, Beach D, et al. The p21 inhibitor of cyclin-dependent kinases controls DNA replication via interaction with PCNA. Nature 1994; 369: 574–8

    Article  PubMed  CAS  Google Scholar 

  65. Namba H, Hara T, Tukazaki T, et al. Radiation-induced G1 arrest is selectively mediated by the p53-WAF1/Cip1 pathway in human thyroid cells. Cancer Res 1995; 55: 2075–1080

    PubMed  CAS  Google Scholar 

  66. Hainaut P. The tumor suppressor protein p53: a receptor to genotoxic stress that controls cell growth and survival. Curr Opin Oncol 1995; 7: 76–82

    PubMed  CAS  Google Scholar 

  67. Flatt PM, Pietenpol JA: Mechanisms of cell-cycle checkpoints: at the crossroads of carcinogenesis and drug discovery. Drug Metab Rev 2000; 32: 283–305

    Article  PubMed  CAS  Google Scholar 

  68. Brown JM, Giaccia AJ. Tumour hypoxia: the picture has changed in the 1990’s. Int J Radiat Biol 1994; 65: 95–102

    Article  PubMed  CAS  Google Scholar 

  69. Evans SM, Joiner B, Jenkins WT, et al. Identification of hypoxia in cells and tissues of epigastric 9L glioma using EF5 [2-(2-nitro-1H-imidazol-1yl)-N-(2,2,3,3,3,-pentafluoropropyl) acetamide]. Br J Cancer 1995; 72: 875–82

    Article  PubMed  CAS  Google Scholar 

  70. Dachs GU, Patterson AV, Firth JD, et al. Targeting gene expression to hypoxic tumor cells. Nature Med 1997; 3: 515–20

    Article  PubMed  CAS  Google Scholar 

  71. Green SL, Giaccia AJ. Tumor hypoxia and the cell cycle: implications for malignant progression and response to therapy. Cancer J 1998; 4: 214–23

    Google Scholar 

  72. Graeber TC, Osmanian C, Jacks T, et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumors. Nature 1996; 379: 88–91

    Article  PubMed  CAS  Google Scholar 

  73. Weller M, Rieger J, Grimmel C, et al. Predicting chemoresistance in human malignant glioma cells: the role of molecular genetic analysis. Int J Cancer 1998; 79: 640–4

    Article  PubMed  CAS  Google Scholar 

  74. Rieger J, Durka S, Streffer J, et al. Gemcitabine cytotoxicity of human malignant glioma cells: modulation by antioxidants, BDL-2 and dexamethasone. Eur J Pharmacol 1996; 365: 301–8

    Article  Google Scholar 

  75. Rolhion D, Penault-Llorca F, Kemeny J-L, et al. O6-methylguanine-DNA methyltransferase gene (MGMT) expression in human glioblastomas in relation to patient characteristics and p53 accumulation. Int J Cancer 1999; 84: 416–20

    Article  PubMed  CAS  Google Scholar 

  76. Chin K-V, Ueda K, Pastan I, et al. Modulation of activity of the promoter of the human MDR1 gene by ras and p53. Science 1992; 255: 459–62

    Article  PubMed  CAS  Google Scholar 

  77. Kinzler KW, Vogelstein B. Clinical implications of basic research: cancer therapy meets p53. N Engl J Med 1994; 331: 49–50

    Article  PubMed  CAS  Google Scholar 

  78. McLendon RE, Friedman HS, Bigner SH, et al. DNA mismatch repair enzyme detection in adult glioblastoma (GBM) by immunohistochemistry. Modern Pathol 1998; 11: 160A

    Google Scholar 

  79. Kat A, Thilly WG, Fang WH, et al. An alkylation-tolerant, mutator human cell line is deficient in strand-specific mismatch repair. Proc Natl Acad Sci U S A 1993; 90: 6424–8

    Article  PubMed  CAS  Google Scholar 

  80. Parsons R, Li GM, Longley MJ, et al. Hypermutability and mismatch repair deficiency in RER+ tumor cells. Cell 1993; 75: 1227–36

    Article  PubMed  CAS  Google Scholar 

  81. Friedman HS, Johnson SP, Dong Q, et al. Methylator resistance mediated by mismatch repair deficiency in a glioblastoma multiforme xenograft. Cancer Res 1997; 57: 2933–6

    PubMed  CAS  Google Scholar 

  82. Zeman EC. Catastrophe theory. Scient Amer 1976; 234: 65–83

    Article  Google Scholar 

  83. Lehnert M. Multidrug resistance in human cancer. J Neurol Oncol 1994; 22: 239–43

    Article  CAS  Google Scholar 

  84. Chen ZP, Yarosh D, Garcia Y, et al. Relationship between O6-methylguanine-DNA methyltransferase levels and clinical response induced by choroethylnitrosourea therapy in glioma patients. Canadian J Neurol Sci 1999; 26: 104–9

    CAS  Google Scholar 

  85. H’sli P, Sappino AP, de Tribolet N, et al. Malignant glioma: should chemotherapy by overthrown by experimental treatments? Ann Oncol 1998; 9: 589–600

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the S.C. Montgomery and M.D. Greene Research Funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark T. Jennings.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jennings, M.T., Iyengar, S. The Molecular Genetics of Therapeutic Resistance in Malignant Astrocytomas. Am J Pharmacogenomics 1, 93–99 (2001). https://doi.org/10.2165/00129785-200101020-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129785-200101020-00002

Keywords

Navigation