Skip to main content
Log in

Cytochrome P450 Polymorphisms as Risk Factors for Steroid Hormone-Related Cancers

  • Genomics in Human Disease
  • Published:
American Journal of Pharmacogenomics

Abstract

The development of cancers of the breast, endometrium, ovaries and possibly prostate is modulated by steroid hormones. Many steroids and environmental carcinogens are subject to cytochrome P450 (P450)-mediated metabolism that generates reactive metabolites and modulates steroid potency, thereby influencing tumor initiation and promotion respectively. These pathways, which are modulated by polymorphisms in P450 genes, are therefore likely to play an important role in the etiology of hormone-related cancers. Several groups have evaluated genotypes of xenobiotic- and steroid-metabolizing P450 enzymes as risk factors for hormone-related cancers. Polymorphisms in P450s that are specifically involved in the metabolism of steroids appear to be single risk factors. The situation is less clear for xenobiotic-metabolizing P450s. For these genes, only combined genotypes of several P450s or combined genotypes of P450s together with other enzymes have been clearly correlated with disease frequency. Success in identifying the appropriate combination of candidate genes requires a thorough knowledge of the metabolic pathways and enzyme systems that control the initial stages of carcinogenesis, as will be illustrated in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I

Similar content being viewed by others

References

  1. Nies A, Spielberg SP. Principles of therapeutics. In: Wonsiewicz MJ, McCurdy P, eds. Goodman & Gilman’s The pharmacological basis of therapeutics. New York: McGraw-Hill, 1996; 43–62

    Google Scholar 

  2. Falany CN. Molecular enzymology of human liver cytosolic sulfotransferases. Trends Pharmacol Sci 1991; 12: 255–9

    Article  PubMed  CAS  Google Scholar 

  3. Guengerich FP, Shimada T. Oxidation of toxic and carcinogenic chemicals by human cytochrome P450 enzymes. Chem Res Toxicol 1991; 4: 391–407

    Article  PubMed  CAS  Google Scholar 

  4. Kaderlik KR, Kadlubar FF. Metabolic polymorphisms and carcinogen-DNA adduct formation in human populations. Pharmacogenetics 1995; S108–17

    Google Scholar 

  5. Cavalieri EL, Rogan EG. Central role of radical cations in metabolic activation of polycyclic aromatic hydrocarbons. Xenobiotica 1995; 25(7): 677–88

    Article  PubMed  CAS  Google Scholar 

  6. Cavalieri EL, Stack DE, Devanesan PD, et al. Molecular origin of cancer: catechol estrogen-3,4-quinones as endogenous tumor initiators. Proc Natl Acad Sci U S A 1997; 94: 10937–42

    Article  PubMed  CAS  Google Scholar 

  7. Appel KE, Fürstenberger G, Hapke HJ, et al. Chemical carcinogenesis: definitions of frequently used terms. In: Arcos JC, Argus MF, Woo V, editors. Chemical induction of cancer: modulation and combination effects. Boston: Birkhäuser, 1995; 227–32

    Google Scholar 

  8. Nelson DR, Koymans L, Kamataki T, et al. P450 superfamily-update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 1996; 6: 1–42

    Article  PubMed  CAS  Google Scholar 

  9. Gonzalez FJ. Human cytochromes P450: problems and prospects. Trends in Pharmacol Sci 1992; 12: 346–52

    Article  Google Scholar 

  10. Smith G, Smith CAD, Wolf CR. Pharmacogenetic polymorphisms. In: Phillips DH, Venitt S, editors. Environmental mutagenesis. BIOS Science, 1995; 83–106

    Google Scholar 

  11. Wormhoudt LW, Commandeur JNN, Vermeulen NPE. Genetic polymorphisms of human N-acetyltransferase, cytochrome P450, glutathione S-transferase, and epoxide hydrolase enzymes: relevance to xenobiotic metabolism and toxicity. Crit Rev Toxicol 1999; 29: 59–124

    Article  PubMed  CAS  Google Scholar 

  12. Brock WJ, Waterman MR. Biochemical differences between rat and human cytochrome P450c17 support the different steroidogenic needs of these two species. Biochemistry 1999; 38: 1598–606

    Article  PubMed  CAS  Google Scholar 

  13. Zhu BT, Conney AH. Functional role of estrogen metabolism in target cells: review and perspectives. Carcinogenesis 1998; 19: 1–27

    Article  PubMed  Google Scholar 

  14. Brinton LA, Hoover RN. Epidemiology of gynecologic cancers. In: Hoskins WJ, Perez CA, Young RC, editors. Principles and practise of gynecologic oncology. 2nd ed. Philadelphia: Lippincott-Raven, 1997; 3–30

    Google Scholar 

  15. Gupta S, Ahmad N, Mohan RR, et al. Prostate cancer chemoprevention by green tea: in vitro and in vivo inhibition of testosterone-mediated induction of ornithine decarboxylase. Cancer Res1999; 59(9): 2115–20

    PubMed  CAS  Google Scholar 

  16. Lookingbill DP, Demers IM, Wang C. Clinical and histological parameters of androgen action in normal healthy Caucasian versus Chinese subjects. J Clin Endocrinol Metab 1991; 72: 1242–8

    Article  PubMed  CAS  Google Scholar 

  17. Ross RK, Bernstein L, Lobo RA. Evidence for reduced 5-alpha-reductase activity in Japanese compared to US white and black males: implications for prostate cancer risk. Lancet 1992; 339: 887–9

    Article  PubMed  CAS  Google Scholar 

  18. Shimada T, Hayes CL, Yamazaki H, et al. Activation of chemically diverse pro-carcinogens by human cytochrome P450 1B1. Cancer Res 1996; 56: 2979–84

    PubMed  CAS  Google Scholar 

  19. Yamazaki H, Shaw PM, Guengerich FP, et al. Roles of cytochrome P450 1A2 and 3A4 in the oxidation of estradiol in human liver microsomes. Chem Res Toxicol 1998; 11: 659–65

    Article  PubMed  CAS  Google Scholar 

  20. Hellmold H, Rylander T, Magnusson M, et al. Characterization of cytochrome P450 enzymes in human breast tissue from reduction mammaplasties. J Clin Endocrinol Metab 1998; 83: 886–95

    Article  PubMed  CAS  Google Scholar 

  21. Kiyohara C, Hirohata T, Inutsuka S. The relationship between aryl hydrocarbon hydroxylase and polymorphisms of the CYP1A1 gene. Jpn J Cancer Res 1996; 87: 18–24

    Article  PubMed  CAS  Google Scholar 

  22. Zhang ZY, Fasco MJ, Huang L, et al. Characterization of purified human recombinant cytochrome P4501A1 Ile462 and Val462: assessment of a role for the rare allele in carcinogenesis. Cancer Res 1996; 56: 3926–33

    PubMed  CAS  Google Scholar 

  23. Murray GI, Taylor MC, McFadyen MCE, et al. Tumor-specific expression of cytochrome-P450 CYP1B1. Cancer Res 1997; 57: 3026–31

    PubMed  CAS  Google Scholar 

  24. Spink DC, Spink BC, Cao JQ, et al. Differential expression of CYP1A1 and CYP1B1 in human breast epithelial-cells and breast-tumor cells. Carcinogenesis 1998; 19(2): 291–8

    Article  PubMed  CAS  Google Scholar 

  25. Larsen MC, Angus WGR, Brake PB, et al. Characterization of CYP1B1 and CYP1A1 expression in human mammary epithelial-cells — role of the aryl-hydrocarbon receptor in polycyclic aromatic hydrocarbon metabolism. Cancer Res 1998; 58: 2366–74

    PubMed  CAS  Google Scholar 

  26. Buters JTM, Sakai S, Richter T, et al. Cytochrome P450 CYP1B1 determines susceptibility to 7,12-dimethylbenz[a]anthracene-induced lymphomas. Proc Natl Acad Sci U S A 1999; 96(5): 1977–82

    Article  PubMed  CAS  Google Scholar 

  27. Liehr JG, Ricci MJ, Jefcoate CR, et al. 4-hydroxylation of estradiol by human uterine myometrium and myoma microsomes: Implications for the mechanism of uterine tumorigenesis. Proc Natl Acad Sci U S A 1995; 92: 9220–4

    Article  PubMed  CAS  Google Scholar 

  28. Liehr JG, Ricci MJ. 4-hydroxylation of estrogens as marker of human mammary tumors. Proc Natl Acad Sci U S A 1996; 93: 3294–6

    Article  PubMed  CAS  Google Scholar 

  29. Christou M, Savas U, Schroeder S, et al. Cytochromes CYP1A1 and CYP1B1 in the rat mammary-gland — cell-specific expression and regulation by polycyclic aromatic-hydrocarbons and hormones. Mol Cell Endocrinol 1995; 115(1): 41–50

    Article  PubMed  CAS  Google Scholar 

  30. Heidel SM, Czuprynski CJ, Jefcoate CR. Bone marrow stromal cells constitutively express high levels of cytochrome P4501B1 that metabolize 7,12-dimethylbenz[a]anthracene. Mol Pharmacol 1998; 54: 1000–6

    PubMed  CAS  Google Scholar 

  31. Heidel SM, Holston K, Buters JTM, et al. Bone marrow stromal cell cytochrome P4501B1 is required for pre-B cell apoptosis induced by 7,12-dimethylbenz[a] anthracene. Mol Pharmacol 1999; 56: 1317–23

    PubMed  CAS  Google Scholar 

  32. Stoilov I, Akarsu AN, Alozie I, et al. Sequence-analysis and homology modeling suggest that primary congenital glaucoma on 2p21 results from mutations disrupting either the hinge region or the conserved core structures of cytochrome P4501B1. Am J Hum Genet 1998; 62: 573–84

    Article  PubMed  CAS  Google Scholar 

  33. Stoilov I, Akarsu AN, Sarfarazi M. Identification of three different truncating mutations in cytochrome P4501B1 (CYP1B1) as the principal cause of primary congenital glaucoma (Buphthalmos) in families linked to the GLC3A locus on chromosome 2p21. Hum Mol Genet 1997; 6: 641–7

    Article  PubMed  CAS  Google Scholar 

  34. Plasilova M, Stoilov I, Sarfarazi M, et al. Identification of a single ancestral CYP1B1 mutation in Slovak gypsies (Roms) affected with primary congenital glaucoma. J Med Genet 1999; 36: 290–4

    PubMed  CAS  Google Scholar 

  35. Watanabe J, Shimada T, Gillam EM, et al. Association of CYP1B1 genetic polymorphism with incidence to breast and lung cancer. Pharmacogenetics 2000; 10: 25–33

    Article  PubMed  CAS  Google Scholar 

  36. Tang YM, Green BL, Chen GF, et al. Human CYP1B1 Leu432Val gene polymorphism: ethnic distribution in African-Americans, Caucasians and Chinese: oestradiol hydroxylase activity, and distribution in prostate cancer cases and controls. Pharmacogenetics 2000; 10: 761–6

    Article  PubMed  CAS  Google Scholar 

  37. Li DN, Seidel A, Pritchard MP, et al. Polymorphisms in P450 CYP1B1 affect the conversion of estradiol to the potentially carcinogenic metabolite 4-hydroxyestradiol. Pharmacogenetics 2000; 10: 343–53

    Article  PubMed  CAS  Google Scholar 

  38. Hanna IH, Dawling S, Roodi N, et al. Cytochrome P4501B1 (CYP1B1) pharmacogenetics: association of polymorphisms with functional differences in estrogen hydroxylation activity. Cancer Res 2000; 60: 3440–4

    PubMed  CAS  Google Scholar 

  39. Shimada T, Watanabe J, Kawajiri K, et al. Catalytic properties of polymorphic human cytochrome P450 1B1 variants. Carcinogenesis 1999; 20: 1607–13

    Article  PubMed  CAS  Google Scholar 

  40. Agundez JA, Martinez C, Olivera M, et al. Expression in human prostate of drug and carcinogen-metabolizing enzymes: association with prostate cancer risk. Br J Cancer 1998; 78: 1361–7

    Article  PubMed  CAS  Google Scholar 

  41. Gough AC, Miles JS, Spurr NK, et al. Identification of the primary gene defect at the cytochrome P450 CYP2D locus. Nature 1990; 347: 773–6

    Article  PubMed  CAS  Google Scholar 

  42. Crespi CL, Penman BW, Gelboin HV, et al. A tobacco smoke-derived nitrosamine, 4-(methynitrosamino)-1-(3-pyridyl)-1-butanone is activated by multiple human cytochrome P450s including the polymorphic human cytochrome P4502D6. Carcinogenesis 1991; 12: 1197–201

    Article  PubMed  CAS  Google Scholar 

  43. Wolf CR, Smith CA, Gough AC, et al. Relationship between the debrisoquine hydroxylase polymorphism and cancer susceptibility. Carcinogenesis 1992; 13: 1035–8

    Article  PubMed  CAS  Google Scholar 

  44. Wolf CR, Smith G. Pharmacogenetics. Br Med Bull 1999; 55: 366–86

    Article  PubMed  CAS  Google Scholar 

  45. Feigelson HS, McKean-Cowdin R, Pike MC, et al. Cytochrome P450c17alpha gene (CYP17) polymorphism predicts use of hormone replacement therapy. Cancer Res 1999; 59: 3908–10

    PubMed  CAS  Google Scholar 

  46. Feigelson HS, Shames LS, Pike MC, et al. Cytochrome P450c17alpha gene (CYP17) polymorphism is associated with serum estrogen and progesterone concentrations. Cancer Res 1998; 58: 585–7

    PubMed  CAS  Google Scholar 

  47. Watanabe J, Harada N, Suemasu K, et al. Arginine-cystein polymorphism at codon 264 of the human CYP19 gene does not affect aromatase activity. Pharmacogenetics 1997; 7: 419–24

    Article  PubMed  CAS  Google Scholar 

  48. Kristensen VN, Harada N, Yoshimura N, et al. Genetic variants of CYP19 (aromatase) and breast cancer risk. Oncogene 2000; 19: 1329–33

    Article  PubMed  CAS  Google Scholar 

  49. Ishibe N, Hankinson SE, Colditz GA, et al. Cigarette smoking, cytochrome P450 1A1 polymorphisms, and breast cancer risk in the Nurses’ Health Study. Cancer Res 1998; 58: 667–71

    PubMed  CAS  Google Scholar 

  50. Bailey LR, Roodi N, Verrier CS, et al. Breast cancer and CYP1A1, GSTM1, and GSTT1 polymorphisms: evidence of a lack of association in Caucasians and African Americans. Cancer Res 1998; 58(1): 65–70

    PubMed  CAS  Google Scholar 

  51. Ambrosone CB, Freudenheim JL, Graham S, et al. Cytochrome P4501A1 and glutathione S-transferase (M1) genetic polymorphisms and postmenopausal breast cancer risk. Cancer Res 1995; 55(16): 3483–5

    PubMed  CAS  Google Scholar 

  52. Solin LJ, Fox K, August DA, et al. Breast cancer. In: Hoskins WJ, Perez CA, Young RC, editors. Principles and practise of gynecologic oncology. 2nd ed. Philadephia: Lippincott-Raven, 1997; 1079–142

    Google Scholar 

  53. Houlston RS. CYP1A1 polymorphisms and lung cancer risk: a meta-analysis. Pharmacogenetics 2000; 10: 105–14

    Article  PubMed  CAS  Google Scholar 

  54. Kihara M, Kihara M, Noda K. Risk of smoking for squamous and small cell carcinomas of the lung modulated by combinations of CYP1A1 and GSTM1 gene polymorphims in a Japanese population. Carcinogenesis 1995; 16: 2331–6

    Article  PubMed  CAS  Google Scholar 

  55. Nakachi K, Imai K, Hayahi S, et al. Polymorphisms of the CYP1A1 and glutathione S-transferase genes associated with susceptibility to lung cancer in relation to cigarette dose in a Japanese population. Cancer Res 1993; 53: 2994–9

    PubMed  CAS  Google Scholar 

  56. Huang CS, Shen CY, Chang KJ, et al. Cytochrome P4501A1 polymorphism as a susceptibility factor for breast cancer in postmenopausal Chinese women in Taiwan. Br J Cancer 1999; 80: 1838–43

    Article  PubMed  CAS  Google Scholar 

  57. Zheng W, Xie DW, Jin F, et al. Genetic polymorphism of cytochrome P450-1B1 and risk of breast cancer. Cancer Epidemiol Biomarkers Prev 2000; 9: 147–50

    PubMed  CAS  Google Scholar 

  58. Bailey LR, Roodi N, Dupont WD, et al. Association of cytochrome-P450 1B1 (CYP1B1) polymorphism with steroid-receptor status in breast-cancer. Cancer Res 1998; 58(22): 5038–41

    PubMed  CAS  Google Scholar 

  59. Angus WG, Larsen MC, Jefcoate CR. Expression of CYP1A1 and CYP1B1 depends on cell-specific factors in human breast cancer cell lines: role of estrogen receptor status. Carcinogenesis 1999; 20(6): 947–55

    Article  PubMed  CAS  Google Scholar 

  60. Pink JJ, Jordan VC. Models of estrogen receptor regulation by estrogens and anti-estrogens in breast cancer cell lines. Cancer Res 1996; 56: 2321–30

    PubMed  CAS  Google Scholar 

  61. Seo HS, Larsimont D, Querton G, et al. Estrogenic and antiestrogenic regulation of estrogen-receptor in MCF-7 breast cancer cells-comparison of immunocytochemical data with biochemical measurements. Int J Cancer 1998; 78: 760–5

    Article  PubMed  CAS  Google Scholar 

  62. Haiman CA, Hankinson SE, Spiegelman D, et al. Relationship between a polymorphism in CYP17 with plasma hormone levels and breast cancer. Cancer Res 1999; 59: 1015–20

    PubMed  CAS  Google Scholar 

  63. Dunning AM, Healey CS, Pharoah PDP, et al. No association between a polymorphism in the steroid metabolism gene CYP17 and the risk for breast cancer. Br J Cancer 1998; 77: 2045–7

    Article  PubMed  CAS  Google Scholar 

  64. Young IE, Kurian KM, Annink C, et al. A polymorphism in the CYP17 gene is associated with male breast cancer. Br J Cancer 1999; 81: 141–3

    Article  PubMed  CAS  Google Scholar 

  65. Kristensen NV, Andersen TI, Lindblom A, et al. A rare CYP19 (aromatase) variant may increase the risk of breast cancer. Pharmacogenetics 1998; 8: 43–8

    Article  PubMed  CAS  Google Scholar 

  66. Haiman CA, Hankinson SE, Spiegelman D, et al. A tetranucleotide repeat polymorphism in CYP19 and breast cancer risk. Int J Cancer 2000; 87: 204–10

    Article  PubMed  CAS  Google Scholar 

  67. Healey CS, Dunning AM, Durocher F, et al. Polymorphisms in the human aromatase cytochrome P450 gene (CYP19) and breast cancer risk. Carcinogenesis 2000; 21: 189–93

    Article  PubMed  CAS  Google Scholar 

  68. Probst-Hensch NM, Ingles SA, Diep AT, et al. Aromatase and breast cancer susceptibility. Endocr Relat Cancer 1999; 6: 165–73

    Article  PubMed  CAS  Google Scholar 

  69. Esteller M, Garcia A, Martinez-Palones JM, et al. Germ line polymorphisms in cytochrome-P450 1A1 (C4887 CYP1A1) and methylenetetrahydrofolate reductase (MTHFR) genes and endometrial cancer susceptibility. Carcinogenesis 1997; 18: 2307–11

    Article  PubMed  CAS  Google Scholar 

  70. Spurdle AB, Chen X, Abbazadegan M, et al. CYP17 promotor polymorphism and ovarian cancer risk. Int J Cancer 2000; 86: 436–9

    Article  PubMed  CAS  Google Scholar 

  71. Bingham SA. High-meat diets and cancer risk. Proceedings of the Nutrition Society 1999; 58(2): 243–8

    Article  PubMed  CAS  Google Scholar 

  72. Murata M, Shiraishi T, Fukutome K, et al. Cytochrome P4501A1 and glutathione S-transferase M1 genotypes as risk factors for prostate cancer in Japan. Jpn J Clin Oncol 1998; 28: 657–60

    Article  PubMed  CAS  Google Scholar 

  73. Wadelius M, Autrup JL, Stubbins MJ, et al. Polymorphisms in NAT2, CYP2D6, CYP2C19 and GSTP1 and their association with prostate cancer. Pharmacogenetics 1999; 9(3): 333–40

    Article  PubMed  CAS  Google Scholar 

  74. Febbo PG, Kantoff PW, Giovannucci E, et al. Debrisoquine hydroxylase (CYP2D6) and prostate cancer. Cancer Epidemiol Biomarkers Prev 1998; 7: 1075–8

    PubMed  CAS  Google Scholar 

  75. Walker AH, Jaffe JM, Gunasegaram S, et al. Characterization of an allelic variant in the nifedipine-specific element of CYP3A4: ethnic distribution and implications for prostate cancer risk. Hum Mutat 1998; 12: 289

    PubMed  CAS  Google Scholar 

  76. Rebbeck TR, Jaffe JM, Walker AH, et al. Modification of clinical presentation of prostate cancers by a novel genetic variant in CYP3A4. J Natl Cancer Inst 1998; 90: 1225–9

    Article  PubMed  CAS  Google Scholar 

  77. Westlind A, Lofberg L, Tindberg N, et al. Interindividual differences in hepatic expression of CYP3A4: relationships to genetic polymorphism in the 5′-up-stream regulatory region. Biochem Biophys Res Commun 1999; 259: 201–5

    Article  PubMed  CAS  Google Scholar 

  78. Wadelius M, Andersson AO, Johansson JE, et al. Prostate cancer associated with CYP17 genotype. Pharmacogenetics 1999; 9: 635–9

    Article  PubMed  CAS  Google Scholar 

  79. Lunn RM, Bell DA, Mohler JL, et al. Prostate cancer risk and polymorphism in 17 hydroxylase (CYP17) and steroid reductase (SRD5A2). Carcinogenesis 1999; 20: 1727–31

    Article  PubMed  CAS  Google Scholar 

  80. Gsur A, Bernhofer G, Hinteregger S, et al. A polymorphism in the CYP17 gene is associated with prostate cancer risk. Int J Cancer 2000; 87: 434–7

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Friedberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedberg, T. Cytochrome P450 Polymorphisms as Risk Factors for Steroid Hormone-Related Cancers. Am J Pharmacogenomics 1, 83–91 (2001). https://doi.org/10.2165/00129785-200101020-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129785-200101020-00001

Keywords

Navigation