Skip to main content
Log in

Fixed-Dose Combination Antihypertensives and Reduction in Target Organ Damage

Are They All the Same?

  • Review Article
  • Published:
American Journal of Cardiovascular Drugs Aims and scope Submit manuscript

Abstract

Hypertension is a multifactorial disorder leading to pathophysiologic changes in target organs over time through diverse mechanisms. In addition, hypertension frequently resists control with monotherapy, necessitating combination therapy with two or more antihypertensive agents. Many currently available fixed-dose antihypertensive combinations combine drugs with different, but complementary, mechanisms of action to improve overall efficacy and tolerability. In addition, it is possible to select drug combinations whereby one drug offsets the negative effects of the other drug. Fixed-dose antihypertensive combinations may provide significant advantages over high-dose monotherapy, such as improved BP-lowering efficacy, reduced adverse event frequency, improved patient compliance, potentially lower treatment costs, and shorter time to BP control. Combination therapy has been recommended as potential first-line therapy in recent consensus guideline statements, especially for higher-risk patients, such as those with stage 2 hypertension. The combination of a renin-angiotensin-aldosterone system-targeting agent, such as an ACE inhibitor or angiotensin II receptor antagonist (ARB), and a diuretic or calcium channel antagonist appears to provide synergy with regard to BP lowering. In addition, ACE inhibitors and ARBs have demonstrated beneficial effects beyond BP reduction, reducing cardiovascular morbidity and mortality, inhibiting development and progression of type 2 diabetes mellitus and the progression of renal disease. Preliminary studies of fixed-dose combinations have shown reductions in left ventricular hypertrophy and improvements in markers of renal function. Additional studies currently underway will compare the effects of available fixed-dose combinations on cardiovascular morbidity and mortality, and markers of renal dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III
Table IV

Similar content being viewed by others

References

  1. Wolf-Maier K, Cooper RS, Banegas JR, et al. Hypertension prevalence and blood pressure levels in 6 European countries, Canada, and the United States. JAMA 2003; 289: 2363–9.

    Article  PubMed  Google Scholar 

  2. Vasan RS, Larson MG, Leip EP, et al. Impact of high-normal blood pressure on the risk of cardiovascular disease. N Engl J Med 2001; 345: 1291–7.

    Article  PubMed  CAS  Google Scholar 

  3. Lewington S, Clarke R, Qizilbash N, et al. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002; 360: 1903–13.

    Article  PubMed  Google Scholar 

  4. Chobanian AV, Bakris GL, Black HR, et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA 2003; 289: 2560–72.

    Article  PubMed  CAS  Google Scholar 

  5. Klag MJ, Whelton PK, Randall BL, et al. Blood pressure and end-stage renal disease in men. N Engl J Med 1996; 334: 13–8.

    Article  PubMed  CAS  Google Scholar 

  6. Perry Jr HM, Miller JP, Fornoff JR, et al. Early predictors of 15-year end-stage renal disease in hypertensive patients. Hypertension 1995; 25: 587–94.

    Article  PubMed  Google Scholar 

  7. Smulyan H, Safar ME. The diastolic blood pressure in systolic hypertension. Ann Intern Med 2000; 132: 233–7.

    PubMed  CAS  Google Scholar 

  8. Duprez DA. Role of the renin-angiotensin-aldosterone system in vascular remodeling and inflammation: a clinical review. J Hypertens 2006; 24: 983–91.

    Article  PubMed  CAS  Google Scholar 

  9. European Society of Hypertension-European Society of Cardiology guidelines for the management of arterial hypertension. J Hypertens 2003; 21: 1011-53.

    Google Scholar 

  10. Whitworth JA. 2003 World Health Organization (WHO)/International Society of Hypertension (ISH) statement on management of hypertension. J Hypertens 2003; 21: 1983–92.

    Article  PubMed  Google Scholar 

  11. Hajjar I, Kotchen TA. Trends in prevalence, awareness, treatment, and control of hypertension in the United States, 1988–2000. JAMA 2003; 290: 199–206.

    Article  PubMed  Google Scholar 

  12. Hosie J, Wiklund I. Managing hypertension in general practice: can we do better. J Hum Hypertens 1995; 9 Suppl. 2: S15–8.

    PubMed  Google Scholar 

  13. Cushman WC, Ford CE, Cutler JA, et al. Success and predictors of blood pressure control in diverse North American settings: the antihypertensive and lipidlowering treatment to prevent heart attack trial (ALLHAT). J Clin Hypertens (Greenwich) 2002; 4: 393–404.

    Article  Google Scholar 

  14. Chobanian AV, Bakris GL, Black HR, et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 2003; 42: 1206–52.

    Article  PubMed  CAS  Google Scholar 

  15. Bakris GL. The role of combination antihypertensive therapy and the progression of renal disease hypertension: looking toward the next millennium. Am J Hypertens 1998; 11: 158S–62S.

    Article  PubMed  CAS  Google Scholar 

  16. Rosenthal T, Gavras I. Fixed-drug combinations as first-line treatment for hypertension. Prog Cardiovasc Dis 2006; 48: 416–25.

    Article  PubMed  CAS  Google Scholar 

  17. Karpha M, Lip GYH. The pathophysiology of target organ damage in hypertension. Minerva Cardioangiol 2006; 54: 417–29.

    PubMed  CAS  Google Scholar 

  18. Brewster UC, Setaro JF, Perazella MA. The renin-angiotensin-aldosterone system: cardiorenal effects and implications for renal and cardiovascular disease states. Am J Med Sci 2003; 326: 15–24.

    Article  PubMed  Google Scholar 

  19. Duprez DA. Angiotensin II, platelets and oxidative stress. J Hypertens 2004; 22: 1085–6.

    Article  PubMed  CAS  Google Scholar 

  20. Touyz RM, Tabet F, Schiffrin EL. Redox-dependent signalling by angiotensin II and vascular remodelling in hypertension. Clin Exp Pharmacol Physiol 2003; 30: 860–6.

    Article  PubMed  CAS  Google Scholar 

  21. Sierra C, de la Sierra A. Antihypertensive, cardiovascular, and pleiotropic effects of angiotensin-receptor blockers. Curr Opin Nephrol Hypertens 2005; 14: 435–41.

    Article  PubMed  CAS  Google Scholar 

  22. Turner ST, Boerwinkle E. Genetics of hypertension, target-organ complications, and response to therapy. Circulation 2000; 102: IV40–5.

    Article  PubMed  CAS  Google Scholar 

  23. Nakazono K, Watanabe N, Matsuno K, et al. Does superoxide underlie the pathogenesis of hypertension? Proc Natl Acad Sci U S A 1991; 88: 10045–8.

    Article  PubMed  CAS  Google Scholar 

  24. Radomski MW, Palmer RM, Moncada S. The anti-aggregating properties of vascular endothelium: interactions between prostacyclin and nitric oxide. Br J Pharmacol 1987; 92: 639–46.

    Article  PubMed  CAS  Google Scholar 

  25. Garg UC, Hassid A. Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Investig 1989; 83: 1774–7.

    Article  PubMed  CAS  Google Scholar 

  26. Dubey RK, Jackson EK, Luscher TF. Nitric oxide inhibits angiotensin II-induced migration of rat aortic smooth muscle cell. Role of cyclic-nucleotides and angiotensin1 receptors. J Clin Invest 1995; 96: 141–9.

    Article  PubMed  CAS  Google Scholar 

  27. De Caterina R, Libby P, Peng HB, et al. Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Investig 1995; 96: 60–8.

    Article  PubMed  Google Scholar 

  28. Neal B, MacMahon S, Chapman N. Effects of ACE inhibitors, calcium antagonists, and other blood-pressure-lowering drugs: results of prospectively designed overviews of randomised trials. Blood Pressure Lowering Treatment Trialists’ Collaboration. Lancet 2000; 356: 1955–64.

    Article  PubMed  CAS  Google Scholar 

  29. Weir MR. The role of combination antihypertensive therapy in the prevention and treatment of chronic kidney disease. Am J Hypertens 2005; 18: 100S–5S.

    Article  PubMed  CAS  Google Scholar 

  30. Bakris GL, Williams M, Dworkin L, et al. Preserving renal function in adults with hypertension and diabetes: a consensus approach. National Kidney Foundation Hypertension and Diabetes Executive Committees Working Group. Am J Kidney Dis 2000; 36: 646–61.

    Article  PubMed  CAS  Google Scholar 

  31. O’Brien E, Barton J, Nussberger J, et al. Aliskiren reduces blood pressure and suppresses plasma renin activity in combination with a thiazide diuretic, an angiotensin-converting enzyme inhibitor, or an angiotensin receptor blocker. Hypertension 2007; 49: 276–84.

    Article  PubMed  CAS  Google Scholar 

  32. Law MR, Wald NJ, Morris JK, et al. Value of low dose combination treatment with blood pressure lowering drugs: analysis of 354 randomised trials. BMJ 2003; 326: 1427.

    Article  PubMed  CAS  Google Scholar 

  33. Bakris GL, Weir MR. Achieving goal blood pressure in patients with type 2 diabetes: conventional versus fixed-dose combination approaches. J Clin Hypertens 2003; 5: 202–9.

    Article  CAS  Google Scholar 

  34. Jamerson KA, Nwose O, Jean-Louis L, et al. Initial angiotensin-converting enzyme inhibitor/calcium channel blocker combination therapy achieves superior blood pressure control compared with calcium channel blocker monotherapy in patients with stage 2 hypertension. Am J Hypertens 2004; 17: 495–501.

    Article  PubMed  CAS  Google Scholar 

  35. Lacourciere Y, Tytus R, O’Keefe D, et al. Efficacy and tolerability of a fixed-dose combination of telmisartan plus hydrochlorothiazide in patients uncontrolled with telmisartan monotherapy. J Hum Hypertens 2001; 15: 763–70.

    Article  PubMed  CAS  Google Scholar 

  36. Neutel JM, Saunders E, Bakris GL, et al. The efficacy and safety of low- and highdose fixed combinations of irbesartan/hydrochlorothiazide in patients with uncontrolled systolic blood pressure on monotherapy: the INCLUSIVE trial. J Clin Hypertens 2005; 7: 578–86.

    Article  CAS  Google Scholar 

  37. Ofili EO, Ferdinand KC, Saunders E, et al. Irbesartan/HCTZ fixed combinations in patients of different racial/ethnic groups with uncontrolled systolic blood pressure on monotherapy. J Natl Med Assoc 2006; 98: 618–26.

    PubMed  Google Scholar 

  38. Chrysant SG, Weber MA, Wang AC, et al. Evaluation of antihypertensive therapy with the combination of olmesartan medoxomil and hydrochlorothiazide. Am J Hypertens 2004; 17: 252–9.

    Article  PubMed  CAS  Google Scholar 

  39. Bangalore S, Kamalakkannan G, Parkar S, et al. Fixed-dose combinations improve medication compliance: a meta-analysis. Am J Med 2007; 120: 713–9.

    Article  PubMed  Google Scholar 

  40. Basile JN. Fixed-dose combination therapy in the treatment of hypertension: ready for prime time. South Med J 2007; 100: 343–4.

    Article  PubMed  Google Scholar 

  41. Sapienza S, Sacco P, Floyd K, et al. Results of a pilot pharmacotherapy quality improvement program using fixed-dose, combination amlodipine/benazepril antihypertensive therapy in a long-term care setting. Clin Ther 2003; 25: 1872–87.

    Article  PubMed  Google Scholar 

  42. Hilleman DE, Reyes AP, Wurdeman RL, et al. Efficacy and safety of a therapeutic interchange from high-dose calcium channel blockers to a fixed-dose combination of amlodipine/benazepril in patients with moderate-to-severe hypertension. J Hum Hypertens 2001; 15: 559–65.

    Article  PubMed  CAS  Google Scholar 

  43. Cooper R, Rotimi C. Hypertension in Blacks. Am J Hypertens 1997; 10: 804–12.

    Article  PubMed  CAS  Google Scholar 

  44. Jamerson K, DeQuattro V. The impact of ethnicity on response to antihypertensive therapy. Am J Med 1996; 101: 22S–32S.

    Article  PubMed  CAS  Google Scholar 

  45. Saunders E, Weir MR, Kong BW, et al. A comparison of the efficacy and safety of a beta-blocker, a calcium channel blocker, and a converting enzyme inhibitor in hypertensive blacks. Arch Intern Med 1990; 150: 1707–13.

    Article  PubMed  CAS  Google Scholar 

  46. Cushman WC, Reda DJ, Perry HM, et al. Regional and racial differences in response to antihypertensive medication use in a randomized controlled trial of men with hypertension in the United States. Department of Veterans Affairs Cooperative Study Group on Antihypertensive Agents. Arch Intern Med 2000; 160: 825–31.

    Article  PubMed  CAS  Google Scholar 

  47. Brown NJ, Ray WA, Snowden M, et al. Blacks Americans have an increased rate of angiotensin converting enzyme inhibitor-associated angioedema. Clin Pharmacol Ther 1996; 60: 8–13.

    Article  PubMed  CAS  Google Scholar 

  48. Elliott WJ. Higher incidence of discontinuation of angiotensin converting enzyme inhibitors due to cough in Black subjects. Clin Pharmacol Ther 1996; 60: 582–8.

    Article  PubMed  CAS  Google Scholar 

  49. Dahlof B, Sever PS, Poulter NR, et al. Prevention of cardiovascular events with an antihypertensive regimen of amlodipine adding perindopril as required versus atenolol adding bendroflumethiazide as required, in the Anglo-Scandinavian Cardiac Outcomes Trial-Blood Pressure Lowering Arm (ASCOT-BPLA): a multicentre randomised controlled trial. Lancet 2005; 366: 895–906.

    Article  PubMed  CAS  Google Scholar 

  50. Dahlof B, Devereux RB, Kjeldsen SE, et al. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 2002; 359: 995–1003.

    Article  PubMed  CAS  Google Scholar 

  51. Brown MJ, Palmer CR, Castaigne A, et al. Morbidity and mortality in patients randomised to double-blind treatment with a long-acting calcium-channel blocker or diuretic in the International Nifedipine GITS study: Intervention as a Goal in Hypertension Treatment (INSIGHT). Lancet 2000; 356: 366–72.

    Article  PubMed  CAS  Google Scholar 

  52. Hansson L, Lindholm LH, Niskanen L, et al. Effect of angiotensin-convertingenzyme inhibition compared with conventional therapy on cardiovascular morbidity and mortality in hypertension: the Captopril Prevention Project (CAPPP) randomised trial. Lancet 1999; 353: 611–6.

    Article  PubMed  CAS  Google Scholar 

  53. Hansson L, Lindholm LH, Ekbom T, et al. Randomised trial of old and new antihypertensive drugs in elderly patients: cardiovascular mortality and morbidity the Swedish Trial in Old Patients with Hypertension-2 study. Lancet 1999; 354: 1751–6.

    Article  PubMed  CAS  Google Scholar 

  54. Hansson L, Hedner T, Lund-Johansen P, et al. Randomised trial of effects of calcium antagonists compared with diuretics and beta-blockers on cardiovascular morbidity and mortality in hypertension: the Nordic Diltiazem (NORDIL) study. Lancet 2000; 356: 359–65.

    Article  PubMed  CAS  Google Scholar 

  55. Major outcomes in high-risk hypertensive patients randomized to angiotensinconverting enzyme inhibitor or calcium channel blocker vs diuretic: the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA 2002; 288: 2981–97.

  56. Black HR, Elliott WJ, Grandits G, et al. Principal results of the Controlled Onset Verapamil Investigation of Cardiovascular End Points (CONVINCE) trial. JAMA 2003; 289: 2073–82.

    Article  PubMed  CAS  Google Scholar 

  57. Wing LM, Reid CM, Ryan P, et al. A comparison of outcomes with angiotensin-converting-enzyme inhibitors and diuretics for hypertension in the elderly. N Engl J Med 2003; 348: 583–92.

    Article  PubMed  CAS  Google Scholar 

  58. Yusuf S, Sleight P, Pogue J, et al. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients: the Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 2000; 342: 145–53.

    Article  PubMed  CAS  Google Scholar 

  59. EURopean trial On reduction of cardiac events with Perindopril in stable coronary Artery disease Investigators. Efficacy of perindopril in reduction of cardiovascular events among patients with stable coronary artery disease: randomised, double-blind, placebo-controlled, multicentre trial (the EUROPA study). Lancet 2003; 362: 782–8.

    Article  CAS  Google Scholar 

  60. Braunwald E, Domanski MJ, Fowler SE, et al. Angiotensin-converting-enzyme inhibition in stable coronary artery disease. N Engl J Med 2004; 351: 2058–68.

    Article  PubMed  CAS  Google Scholar 

  61. Cohn JN, Tognoni G. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N Engl J Med 2001; 345: 1667–75.

    Article  PubMed  CAS  Google Scholar 

  62. Young JB, Dunlap ME, Pfeffer MA, et al. Mortality and morbidity reduction with candesartan in patients with chronic heart failure and left ventricular systolic dysfunction: results of the CHARM low-left ventricular ejection fraction trials. Circulation 2004; 110: 2618–26.

    Article  PubMed  CAS  Google Scholar 

  63. Kjeldsen SE, Julius S, Mancia G, et al. Effects of valsartan compared to amlodipine on preventing type 2 diabetes in high-risk hypertensive patients: the VALUE trial. J Hypertens 2006; 24: 1405–12.

    Article  PubMed  CAS  Google Scholar 

  64. Aguilar D, Solomon SD. ACE inhibitors and angiotensin receptor antagonists and the incidence of new-onset diabetes mellitus: an emerging theme. Drugs 2006; 66: 1169–77.

    Article  PubMed  CAS  Google Scholar 

  65. Sherwin RS, Anderson RM, Buse JB, et al. Prevention or delay of type 2 diabetes. Diabetes Care 2004; 27 Suppl. 1: S47–54.

    PubMed  Google Scholar 

  66. Gillespie EL, White CM, Kardas M, et al. The impact of ACE inhibitors or angiotensin II type 1 receptor blockers on the development of new-onset type 2 diabetes. Diabetes Care 2005; 28: 2261–6.

    Article  PubMed  CAS  Google Scholar 

  67. Abuissa H, Jones PG, Marso SP, et al. Angiotensin-converting enzyme inhibitors or angiotensin receptor blockers for prevention of type 2 diabetes: a metaanalysis of randomized clinical trials. J Am Coll Cardiol 2005; 46: 821–6.

    Article  PubMed  CAS  Google Scholar 

  68. Brenner BM, Cooper ME, de Zeeuw D, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 2001; 345: 861–9.

    Article  PubMed  CAS  Google Scholar 

  69. Lewis EJ, Hunsicker LG, Clarke WR, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med 2001; 345: 851–60.

    Article  PubMed  CAS  Google Scholar 

  70. Parving HH, Lehnert H, Brochner-Mortensen J, et al. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med 2001; 345: 870–8.

    Article  PubMed  CAS  Google Scholar 

  71. Halimi S. Primary cardiorenal prevention in patients with type-2 diabetes. The Roadmap study [in French]. Presse Med 2005; 34: 1300–2.

    CAS  Google Scholar 

  72. Haller H, Viberti GC, Mimran A, et al. Preventing microalbuminuria in patients with diabetes: rationale and design of the Randomised Olmesartan and Diabetes Microalbuminuria Prevention (ROADMAP) study. J Hypertens 2006; 24: 403–8.

    Article  PubMed  CAS  Google Scholar 

  73. Imai E, Ito S, Haneda M, et al. Olmesartan reducing incidence of endstage renal disease in diabetic nephropathy trial (ORIENT): rationale and study design. Hypertens Res 2006; 29: 703–9.

    Article  PubMed  CAS  Google Scholar 

  74. Brown MJ, Cruickshank JK, Dominiczak AF, et al. Better blood pressure control: how to combine drugs. J Hum Hypertens 2003; 17: 81–6.

    Article  PubMed  CAS  Google Scholar 

  75. Laragh JH, Letcher RL, Pickering TG. Renin profiling for diagnosis and treatment of hypertension. JAMA 1979; 241: 151–6.

    Article  PubMed  CAS  Google Scholar 

  76. Beevers DG. The end of beta blockers for uncomplicated hypertension? Lancet 2005; 366: 1510–2.

    Article  PubMed  Google Scholar 

  77. Sever P. New hypertension guidelines from the National Institute for Health and Clinical Excellence and the British Hypertension Society. J Renin Angiotensin Aldosterone Syst 2006; 7: 61–3.

    Article  PubMed  Google Scholar 

  78. Jamerson KA, Nwose O, Jean-Louis L, et al. Initial angiotensin-converting enzyme inhibitor/calcium channel blocker combination therapy achieves superior blood pressure control compared with calcium channel blocker monotherapy in patients with stage 2 hypertension. Am J Hypertens 2004; 17: 495–501.

    Article  PubMed  CAS  Google Scholar 

  79. Pool J, Kaihlanen P, Lewis G, et al. Once-daily treatment of patients with hypertension: a placebo-controlled study of amlodipine and benazepril vs amlodipine or benazepril alone. J Hum Hypertens 2001; 15: 495–8.

    Article  PubMed  CAS  Google Scholar 

  80. Frishman WH, Ram CV, McMahon FG, et al. Comparison of amlodipine and benazepril monotherapy to amlodipine plus benazepril in patients with systemic hypertension: a randomized, double-blind, placebo-controlled, parallel-group study. The Benazepril/Amlodipine Study Group. J Clin Pharmacol 1995; 35: 1060–6.

    PubMed  CAS  Google Scholar 

  81. Fogari R, Corea L, Cardoni O, et al. Combined therapy with benazepril and amlodipine in the treatment of hypertension inadequately controlled by an ACE inhibitor alone. J Cardiovasc Pharmacol 1997; 30: 497–503.

    Article  PubMed  CAS  Google Scholar 

  82. Fogari R, Zoppi A, Lusardi P, et al. Fixed combination of benazepril and low-dose amlodipine in the treatment of mild to moderate essential hypertension: evaluation by 24-hour noninvasive ambulatory blood pressure monitoring. J Cardiovasc Pharmacol 1997; 30: 176–81.

    Article  PubMed  CAS  Google Scholar 

  83. Kuschnir E, Acuna E, Sevilla D, et al. Treatment of patients with essential hypertension: amlodipine 5 mg/benazepril 20mg compared with amlodipine 5 mg, benazepril 20 mg, and placebo. Clin Ther 1996; 18: 1213–24.

    Article  PubMed  CAS  Google Scholar 

  84. Morgan T, Anderson A. A comparison of candesartan, felodipine, and their combination in the treatment of elderly patients with systolic hypertension. Am J Hypertens 2002; 15: 544–9.

    Article  PubMed  CAS  Google Scholar 

  85. Kohlmann Jr O, Oigman W, Mion Jr D, et al. The ‘LOTHAR’ study: evaluation of efficacy and tolerability of the fixed combination of amlodipine and losartan in the treatment of essential hypertension [in Portuguese]. Arq Bras Cardiol 2006; 86: 39–51.

    Article  PubMed  Google Scholar 

  86. Maxwell MH, Garrett BN, Saunders E, et al. Postmarketing survey of the effects of an atenolol/chlorthalidone combination in the treatment of hypertension. Clin Ther 1987; 9: 380–9.

    PubMed  CAS  Google Scholar 

  87. Frishman WH, Bryzinski BS, Coulson LR, et al. A multifactorial trial design to assess combination therapy in hypertension: treatment with bisoprolol and hydrochlorothiazide. Arch Intern Med 1994; 154: 1461–8.

    Article  PubMed  CAS  Google Scholar 

  88. Maharaj B, van der Byl K. Randomised double-blind comparative study of efficacy and safety of hydroflumethiazide and reserpine and chlortalidone and atenolol in the treatment of mild to moderate hypertension in black patients. J Hum Hypertens 1993; 7: 447–50.

    PubMed  CAS  Google Scholar 

  89. Ames R. Hyperlipidemia of diuretic therapy. Arch Mal Coeur Vaiss 1998; 91 Suppl.: 23–7.

    PubMed  Google Scholar 

  90. Weidmann P, de Courten M, Ferrari P. Effect of diuretics on the plasma lipid profile. Eur Heart J 1992; 13 Suppl. G: 61–7.

    Article  PubMed  Google Scholar 

  91. Adalet K, Oflaz H, Sezer A, et al. Efficacy and tolerability of fixed, low-dose combination therapy with verapamil sustained-release and trandolapril in patients with mild to severe essential hypertension uncontrolled by monotherapy: an open-label, multicenter trial. Curr Ther Res Clin Exp 2001; 62: 261–71.

    Article  CAS  Google Scholar 

  92. Aksoyek S, Ozer N, Aytemir K, et al. Verapamil SR and trandolapril combination therapy is safe and effective in hypertensive patients with metabolic disorders. Int J Clin Pract 2001; 55: 5–9.

    PubMed  CAS  Google Scholar 

  93. Derici U, Sindel S, Arinsoy T, et al. Effects of verapamil slow release plus trandolapril combination therapy in essential hypertension. Curr Ther Res Clin Exp 2003; 64: 10–20.

    Article  CAS  Google Scholar 

  94. PROCOPA study group. Dissociation between blood pressure reduction and fall in proteinuria in primary renal disease: a randomized double-blind trial. J Hypertens 2002; 20: 729–37.

    Article  Google Scholar 

  95. Rubio-Guerra AF, Trevino-Gomezharper C, Rodríguez-López L, et al. Renoprotective effects of the combination of trandolapril/verapamil in patients with type 2 diabetes mellitus and hypertension. Clin Drug Invest 2002; 22: 541–6.

    Article  CAS  Google Scholar 

  96. de Luca N, Mallion JM, O’Rourke MF, et al. Regression of left ventricular mass in hypertensive patients treated with perindopril/indapamide and as a first-line combination: the REASON echocardiography study. Am J Hypertens 2004; 17: 660–7.

    PubMed  Google Scholar 

  97. Mogensen CE, Viberti G, Halimi S, et al. Effect of low-dose perindopril/indapamide on albuminuria in diabetes: preterax in albuminuria regression: PREMIER. Hypertension 2003; 41: 1063–71.

    Article  PubMed  CAS  Google Scholar 

  98. Neutel JM, Smith DH, Weber MA. Effect of antihypertensive monotherapy and combination therapy on arterial distensibility and left ventricular mass. Am J Hypertens 2004; 17: 37–42.

    Article  PubMed  CAS  Google Scholar 

  99. Acanfora D, Lowenthal DT, Furgi G, et al. The effects of delapril in combination with indapamide on glomerular filtration rate in elderly in hypertensive patients. Am J Ther 1997; 4: 405–8.

    Article  PubMed  CAS  Google Scholar 

  100. Bramlage P, Pittrow D, Kirch W, et al. The effect of irbesartan in reducing cardiovascular risk in hypertensive type 2 diabetic patients: an observational study 16,600 patients in primary care. Curr Med Res Opin 2004; 20: 1625–31.

    Article  PubMed  CAS  Google Scholar 

  101. Cuspidi C, Muiesan ML, Valagussa L, et al. Comparative effects of candesartan and enalapril on left ventricular hypertrophy in patients with essential hypertension: the candesartan assessment in the treatment of cardiac hypertrophy (CATCH) study. J Hypertens 2002; 20: 2293–300.

    Article  PubMed  CAS  Google Scholar 

  102. de Pablos-Velasco PL, Pazos Toral F, Esmatjes JE, et al. Losartan titration versus diuretic combination in type 2 diabetic patients. J Hypertens 2002; 20: 715–9.

    Article  PubMed  Google Scholar 

  103. Devereux RB, Dahlof B, Gerdts E, et al. Regression of hypertensive left ventricular hypertrophy by losartan compared with atenolol: the Losartan Intervention for Endpoint Reduction in Hypertension (LIFE) trial. Circulation 2004; 110: 1456–62.

    Article  PubMed  CAS  Google Scholar 

  104. Malmqvist K, Kahan T, Edner M, et al. Regression of left ventricular hypertrophy in human hypertension with irbesartan. J Hypertens 2001; 19: 1167–76.

    Article  PubMed  CAS  Google Scholar 

  105. Thurmann PA. Angiotensin II antagonism and the heart: valsartan in left ventricular hypertrophy. Cardiology 1999; 91 Suppl. 1: 3–7.

    PubMed  CAS  Google Scholar 

  106. Jamerson KA, Bakris GL, Wun CC, et al. Rationale and design of the avoiding cardiovascular events through combination therapy in patients living with systolic hypertension (ACCOMPLISH) trial: the first randomized controlled trial to compare the clinical outcome effects of first-line combination therapies in hypertension. Am J Hypertens 2004; 17: 793–801.

    PubMed  CAS  Google Scholar 

  107. Ogihara T, Matsuzaki M, Matsuoka H, et al. The combination therapy of hypertension to prevent cardiovascular events (COPE) trial: rationale and design. Hypertens Res 2005; 28: 331–8.

    Article  PubMed  CAS  Google Scholar 

  108. ClinicalTrials.gov. OlmeSartan and Calcium Antagonists Randomized (OSCAR) Study [online]. Available from URL: http://clinicaltrials.gov/ct2/show/NCT00134160 [Accessed 2007 Nov 21]

Download references

Acknowledgments

The preparation of this manuscript was supported by Daiichi Sankyo, Inc. We would like to thank Karen Stauffer, PhD and Alan J. Klopp, PhD, Wolters Kluwer Health Medical Communications for their editorial assistance. Dr Smith is in the Speaker’s Bureau of Novartis, Bristol Myers Squibb, Sanofi-Aventis, Biovail, Pfizer, Reliant, and Boehringer-Ingelheim.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David H. G. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, D.H.G. Fixed-Dose Combination Antihypertensives and Reduction in Target Organ Damage. Am J Cardiovasc Drugs 7, 413–422 (2007). https://doi.org/10.2165/00129784-200707060-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129784-200707060-00004

Keywords

Navigation