Skip to main content
Log in

The Therapeutic Potential of VEGF Inhibition in Diabetic Microvascular Complications

  • Leading Article
  • Published:
American Journal of Cardiovascular Drugs Aims and scope Submit manuscript

Abstract

During the last few years, the incidence of microvascular complications in diabetes mellitus has rapidly increased as a consequence of both an increase in incidence of type 2 and type 1 diabetes mellitus.

The pathogenesis of diabetic microvascular complications is still largely unknown. Among the many hypotheses, a dysfunction in angiogenesis has been suggested as a common origin for retinopathy, nephropathy, and neuropathy. Based on this hypothesis, inhibition of vascular endothelial growth factor (VEGF) has been tested as a potential therapeutic approach to prevent and cure diabetic microvascular complications. Several VEGF inhibitors are currently under evaluation or are approved for the treatment of wet age-related macular degeneration and macular edema. These include inhibitors of intracellular transcription of VEGF (e.g. bevasiranib), inhibitors of extracellular VEGF (e.g. pegaptanib), inhibitors of VEGF receptor expression (e.g. aflibercept [VEGF-TRAP]) and inhibitors of the intracellular signaling cascade activating VEGF (e.g. midostaurin).

According to the existing evidence base, although inhibition of VEGF results in a better outcome in the case of diabetic retinopathy and also, despite some discrepant results, in the case of diabetic nephropathy, there is no final confirmation that VEGF inhibition is a valid approach for diabetic neuropathy. The latter complication actually, in line with other chronic neuropathies, seems to improve with stimulation of angiogenesis through increased expression of VEGF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aiello LP, Wong JS. Role of vascular endothelial growth factor in diabetic vascular complications. Kidney Int 2000; 77: S113–9.

    Article  CAS  Google Scholar 

  2. Shih T, Lindley C. Bevacizumab: an angiogenesis inhibitor for the treatment of solid malignancies. Clin Ther 2006; 28: 1779–802.

    Article  PubMed  CAS  Google Scholar 

  3. Zhu X, Wu S, Dahut WL, et al. Risks of proteinuria and hypertension with bevacizumab, an antibody against vascular endothelial growth factor: systematic review and meta-analysis. Am J Kidney Dis 2007; 49: 186–93.

    Article  PubMed  CAS  Google Scholar 

  4. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003; 9: 669–76.

    Article  PubMed  CAS  Google Scholar 

  5. Vincenti V, Cassano C, Rocchi M, et al. Assignment of the vascular endothelial growth factor gene to human chromosome 6p21.3. Circulation 1996; 93: 1493–5.

    Article  PubMed  CAS  Google Scholar 

  6. Li X, Eriksson U. Novel VEGF family members: VEGF-B, VEGF-C and VEGF-D. Int J Biochem Cell Biol 2001; 33: 421–6.

    Article  PubMed  CAS  Google Scholar 

  7. Shibuya M. Vascular endothelial growth factor receptor-2: its unique signalling and specific ligand, VEGF-E. Cancer Sci 2003; 94: 751–6.

    Article  PubMed  CAS  Google Scholar 

  8. Shalaby F, Rossant J, Yamaguchi TP, et al. Failure of blood-island formation and vasculogenesis in Flk-1 deficient mice. Nature 1995; 376: 62–6.

    Article  PubMed  CAS  Google Scholar 

  9. Fong GH, Rossant J, Gertsenstein M, et al. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 1995; 376: 66–70.

    Article  PubMed  CAS  Google Scholar 

  10. Dumont DJ, Jussila L, Taipale J, et al. Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 1998; 282: 946–9.

    Article  PubMed  CAS  Google Scholar 

  11. Mura M, dos Santos CC, Stewart D, et al. Vascular endothelial growth factor and related molecules in acute lung injury. J Appl Physiol 2004; 97: 1605–17.

    Article  PubMed  CAS  Google Scholar 

  12. Ferrara N. Molecular and biological properties of vascular endothelial growth factor. J Mol Med 1999; 77: 527–43.

    Article  PubMed  CAS  Google Scholar 

  13. Robinson CJ, Stringer SE. The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J Cell Sci 2001; 114: 853–65.

    PubMed  CAS  Google Scholar 

  14. Neufeld G, Cohen T, Gengrinovitch S, et al. Vascular endothelial growth factor (VEGF) and its receptors. Faseb J 1999; 13: 9–22.

    Google Scholar 

  15. Sondell M, Sundler F, Kanje M. Vascular endothelial growth factor is a neurotrophic factor which stimulates axonal out-growth through the flk-1 receptor. Eur J Neurosci 2000; 12: 4243–54.

    Article  PubMed  CAS  Google Scholar 

  16. Storkebaum E, Lambrechts D, Carmeliet P. VEGF: once regarded as a specific angiogenic factor, now implicated in neuroprotection. Bioessays 2004; 26: 943–54.

    Article  PubMed  CAS  Google Scholar 

  17. Lambrechts D, Storkebaum E, Morimoto M, et al. VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death. Nat Genet 2003; 34: 383–94.

    Article  PubMed  CAS  Google Scholar 

  18. Kempen JH, O’Colmain BJ, Leske MC, et al. The prevalence of diabetic retinopathy among adults in the United States. Arch Ophthalmol 2004; 122: 552–63.

    Article  PubMed  Google Scholar 

  19. Klein R, Klein BE, Moss SE. The Winsconsin epidemiology study of diabetic retinopathy: a review. Diabetes Metab Rev 1989; 5: 559–70.

    Article  PubMed  CAS  Google Scholar 

  20. Diabetic retinopathy study group. Preliminary report on effects of photocoagulation theraphy. Am J Ophthalmol 1976; 81: 383–96.

    Google Scholar 

  21. Early Treatment Diabetic Retinopathy Study Research Group. Early photocoagulation for diabetic retinopathy: ETDRS report number 9. Ophthalmology 1991; 98: 766–85.

    Google Scholar 

  22. Shimura M, Yasuda K, Nakazawa T, et al. Quantifying alterations of macular thickness before and after panretinal photocoaculation in patients with severe diabetic retinopathy and good vision. Ophthalmology 2003; 110: 2386–94.

    Article  PubMed  Google Scholar 

  23. Yamagishi S, Imaizumi T. Diabetic vascular complications: pathophysiology, biochemical basis and potential therapeutic strategy. Curr Pharm Des 2005; 11: 2279–99.

    Article  PubMed  CAS  Google Scholar 

  24. Stitt AW, Simpson DA, Boocock C, et al. Expression of vascular endothelial growth factor (VEGF) and its receptors is regulated in eyes with intra-ocular tumours. J Pathol 1998; 186: 306–12.

    Article  PubMed  CAS  Google Scholar 

  25. Boulton M, Foreman D, Williams G, et al. VEGF localisation in diabetic retinopathy. Br J Ophthalmol 1998; 82: 561–8.

    Article  PubMed  CAS  Google Scholar 

  26. Witmer AN, Blaauwgeers HG, Weich HA, et al. Altered expression patterns of VEGF receptors in human diabetic retina and in experimental VEGF-induced retinopathy in monkey. Invest Ophthalmol Vis Sci 2002; 43: 849–57.

    PubMed  Google Scholar 

  27. Sheetz MJ, King LK. Molecular understanding of hyperglicemia’s adverse effects for diabetic complications. JAMA 2002; 288: 2579–88.

    Article  PubMed  CAS  Google Scholar 

  28. Mill JW, Adamis AP, Aiello LP. Vascular endothelium growth factor in ocular neovascularization and proliferative diabetic retinopathy. Diabetes Metab Rev 1997; 13: 37–50.

    Article  Google Scholar 

  29. Aiello LP, Avery RL, Arrigg PG, et al. Vascular endothelium growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 1994; 331: 1480–7.

    Article  PubMed  CAS  Google Scholar 

  30. Leung DW, Cachianes G, Kuang WJ, et al. Vascular endothelium growth factor is a secreted angiogenic mitogen. Science 1989; 246: 1306–9.

    Article  PubMed  CAS  Google Scholar 

  31. Funatsu H, Yamashita H, Nakamura S, et al. Vitreous levels of pigment epitheliumderived factor and vascular endothelium growth factor are related to diabetic macular edema. Ophthalmology 2006; 113: 294–301.

    Article  PubMed  Google Scholar 

  32. Adamis AP, Miller JW, Bernal MT, et al. Increased vascular endothelial growth factor levels in vitreous of eyes with proliferative diabetic retinopathy. Am J Ophthalmol 1994; 118: 445–50.

    PubMed  CAS  Google Scholar 

  33. Shen J, Samul R, Silva RL, et al. Suppresion of ocular neovascularitazion with siRNA targeting VEGF receptor 1. Gene Ther 2006; 13: 225–34.

    Article  PubMed  CAS  Google Scholar 

  34. Macugen Diabetic Study group. A phase II randomised double-masked trial of pegabtanib, an anti-vascular endothelial growth factor aptamer, for diabetic macular edema. Ophthalmolgy 2005; 112: 1747–57.

    Article  Google Scholar 

  35. Adamis AP, Altaweel M, Bressler NM, et al., for the Macugen Diabetic Retinopathy Study Group. Changes in retinal neovascularization after pegaptanib (Macugen) therapy in diabetic individuals. Ophthalmology 2006; 113: 23–8.

    Article  PubMed  Google Scholar 

  36. Chun DW, Heier JS, Topping TM, et al. A pilot study of multiple intravitreal injections of ranibizumab in patients with center-involving clinically significant diabetic macular edema. Ophthalmology 2006; 113: 1706–12.

    Article  PubMed  Google Scholar 

  37. Avery RL. Regression of retinal and iris neovascolarization after intravitreal bevacizumeb (Avastin) treatment. Retina 2006; 26: 356–7.

    Article  Google Scholar 

  38. Spaide RF, Fischer YL. Intravitreal bevacizumab (Avastin) treatment of proliferative diabetic retinopathy complicated by vitreous hemmorage. Retina 2006; 26: 275–8.

    Article  PubMed  Google Scholar 

  39. Avery RL, Pearlman J, Pieramici DJ, et al. Intraviteal bevacizumab (Avastin) in the treatment of proliferative diabetic retinopathy. Ophthalmology 2006; 113: 363–72.

    Article  PubMed  Google Scholar 

  40. Jager RD, Aiello LP, Patel SC, et al. Risk of intravenous injection: a comprehensive review. Retina 2004; 24: 676–98.

    Article  PubMed  Google Scholar 

  41. Gragoudas ES, Adamis AP, Cunningham Jr ET, et al. Pegabtanib for neovascular age-related macular degeneration. N Engl J Med 2004; 351: 2805–16.

    Article  PubMed  CAS  Google Scholar 

  42. Chong NV, Adewoyin T. Intravitreal injection: balancing the risks. Eye 2007; 21: 313–6.

    Article  PubMed  CAS  Google Scholar 

  43. Saishin Y, Sayshin Y, Takahashi K, et al. VEGF-TRAP (R1R2) suppresses choroidal neovascularization and VEGF-induced breakdown of blood-retinal barrier. J Cell Physiol 2003; 195: 241–8.

    Article  PubMed  CAS  Google Scholar 

  44. Ryan AJ, Wedge SR. ZD647: a novel inhibitor of VEGFR and EGFR tyrosine kinase activity. Br J Cancer 2005; 92 Suppl. 1: S6–13.

    Article  PubMed  CAS  Google Scholar 

  45. Wedge SR, Kendrew J, Hennequin LF, et al. AZD2171: a highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer. Cancer Res 2005; 65: 4389–400.

    Article  PubMed  CAS  Google Scholar 

  46. Hess-Stumpp H, Haberey M, Thierauch KH. PTK 787/ZK 222584, a tyrosine kinase inhibitor of all known VEGF receptors, represses tumor growth with high efficacy. Chembiochem 2005; 6: 550–7.

    Article  PubMed  CAS  Google Scholar 

  47. Rosen LS. VEGF-targeted therapy: therapeutic potential and recent advances. Oncologist 2005; 10: 382–91.

    Article  PubMed  CAS  Google Scholar 

  48. Aiello LP, Bursell SE, Clermont A, et al. Vascular endothelium growth factorinduced retinal permeability is mediate by protein kinase C in vivo and suppressed by an orally effective β-isoform-selective inhibitor. Diabetes 1997; 46: 1473–80.

    Article  PubMed  CAS  Google Scholar 

  49. Danis RP, Bingaman DP, Jirousek M, et al. Inhibition of intraocular neovascularization caused by retinal ischemia in pigs by PCK β inhibition with LY333531. Invest Ophthalmol Vis Sci 1998; 39: 171–9.

    PubMed  CAS  Google Scholar 

  50. The PCK-DRS Study group. The effect of ruboxistaurin on visual loss in patients with moderately severe to severe nonproliferative diabetic retinopathy: initial results of the Protein Kinase C β inhibitor Diabetic Retinopathy Study (PCK-DRS) multicenter randomised clinical trial. Diabetes 2005; 54: 2188–97.

    Article  Google Scholar 

  51. Aiello LP, Clermont A, Arora V, et al. Inhibition of PCK β by oral administration of ruboxistaurine is well tolerated and ameliorates diabetes-induced retinal hemodynamic abnormalities in patients. Invest Ophthalmol Vis Sci 2006; 47: 86–92.

    Article  PubMed  Google Scholar 

  52. Eggers PW. Effect of transplantation on the Medicare endstage renal disease program. N Engl J Med 1988; 318: 223–6.

    Article  PubMed  CAS  Google Scholar 

  53. USRDS. Annual Data Report 1994. Incidence and causes of treated ESRD. Am J Kidney Dis 1994; 24: S48–56.

    Google Scholar 

  54. Borch-Johnsen K, Andersen PK, Deckert T. The effect of proteinuria on relative mortality in type I (insulin-dependent) diabetes mellitus. Diabetologia 1985; 28: 290–6.

    Article  Google Scholar 

  55. Brown LF, Berse B, Tognazzi K, et al. Vascular permeability factor mRNA and protein expression in human kidney. Kidney Int 1992; 42: 1457–61.

    Article  PubMed  CAS  Google Scholar 

  56. Khamaisi M, Schrijvers BF, De Vriese AS, et al. The emerging role of VEGF in diabetic kidney disease. Nephrol Dial Transplant 2003; 8: 1427–30.

    Article  Google Scholar 

  57. Simon M, Grone HJ, Johren O, et al. Expression of vascular endothelial growth factor and its receptors in human renal ontogenesis and in adult kidney. Am J Physiol 1995; 268: F240–50.

    PubMed  CAS  Google Scholar 

  58. Simon M, Rocckl W, Hornig C, et al. Receptors of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) in fetal and adult human kidney: localisation and [125I]VEGF binding sites. J Am Soc Nephrol 1998; 9: 1032–44.

    PubMed  CAS  Google Scholar 

  59. Brenchley PE. VEGF/VPF: a modulator of microvascular function with potential roles in glomerular pathophysiology. J Nephrol 1996; 9: 10–7.

    Google Scholar 

  60. Cooper ME, Vranes D, Youssef S, et al. Increased renal expression of vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 in experimental diabetes. Diabetes 1999; 48: 2229–39.

    Article  PubMed  CAS  Google Scholar 

  61. Tsuchida K, Makita Z, Yamagishi S, et al. Suppression of transforming growth factor beta and vascular endothelial growth factor in diabetic nephropathy in rats by a novel advanced glycation end product inhibitor, OPB-9195. Diabetologia 1999; 42: 579–88.

    Article  PubMed  CAS  Google Scholar 

  62. Nyengaard JR, Rasch R. The impact of experimental diabetes mellitus in rats on glomerular capillary number and sizes. Diabetologia 1993; 36: 189–94.

    Article  PubMed  CAS  Google Scholar 

  63. de Vriese AS, Tilton RG, Elger M, et al. Antibodies against vascular endothelial growth factor improve early renal dysfunction in experimental diabetes. J Am Soc Nephrol 2001; 12: 993–1000.

    PubMed  Google Scholar 

  64. Sung SH, Ziyadeh FN, Wang A, et al. Blockade of vascular endothelial growth factor signaling ameliorates diabetic albuminuria in mice. J Am Soc Nephrol 2006; 17: 3093–104.

    Article  PubMed  CAS  Google Scholar 

  65. Schrijvers BF, Flyvbjerg A, Tilton RG, et al. A neutralizing VEGF antibody prevents glomerular hypertrophy in a model of obese type 2 diabetes, the Zucker diabetic fatty rat. Nephrol Dial Transplant 2006; 21: 324–9.

    Article  PubMed  CAS  Google Scholar 

  66. Yamamoto Y, Maeshima Y, Kitayama H, et al. Tumstatin peptide, an inhibitor of angiogenesis, prevents glomerular hypertrophy in the early stage of diabetic nephropathy. Diabetes 2004; 53: 1831–40.

    Article  PubMed  CAS  Google Scholar 

  67. Schrijvers BF, De Vriese AS, Tilton RG, et al. Inhibition of vascular endothelial growth factor (VEGF) does not affect early renal changes in a rat model of lean type 2 diabetes. Horm Metab Res 2005; 37: 21–5.

    Article  PubMed  CAS  Google Scholar 

  68. Vinik AI, Mitchell BD, Leichter SB, et al. Epidemiology of the complications of diabetes. In: Leslie RDG, Robbins DC, editors. Diabetes: clinical science in practice. Cambridge: Cambridge University Press, 1994: 221–87.

    Google Scholar 

  69. Skold MK. VEGF and VEGF receptor expression after experimental brain contusion in rat. J Neurotrauma 2005; 22: 353–67.

    Article  PubMed  Google Scholar 

  70. Mukouyama YS, Gerber HP, Ferrara N, et al. Peripheral nerve-derived VEGF promotes arterial differentiation via neuropilin 1-mediated positive feedback. Development 2005; 132: 941–52.

    Article  PubMed  CAS  Google Scholar 

  71. Storkebaum E, Lambrechts D, Carmeliet P. VEGF: once regarded as a specific angiogenic factor, now implicated in neuroprotection. Bioassays 2004; 26: 943–54.

    Article  CAS  Google Scholar 

  72. Schratzberger P, Walter DH, Rittig K, et al. Reversal of experimental diabetic neuropathy by VEGF gene transfer. J Clin Invest 2001; 107: 1083–92.

    Article  PubMed  CAS  Google Scholar 

  73. Murakami T, Arai M, Sunada Y, et al. VEGF 164 gene transfer by electroporation improves diabetic sensory neuropathy in mice. J Gene Med 2006; 8: 773–81.

    Article  PubMed  CAS  Google Scholar 

  74. Schratzberger P, Schratzberger G, Silver M, et al. Favorable effect of VEGF gene transfer on ischemic peripheral neuropathy. Nat Med 2000; 6: 405–13.

    Article  PubMed  CAS  Google Scholar 

  75. Chattopadhyay M, Krisky D, Wolfe D, et al. HSV-mediated gene transfer of vascular endothelial growth factor to dorsal root ganglia prevents diabetic neuropathy. Gene Ther 2005; 12: 1377–84.

    Article  PubMed  CAS  Google Scholar 

  76. Price SA, Dent C, Duran-Jimenez B, et al. Gene transfer of an engineered transcription factor promoting expression of VEGF-A protects against experimental diabetic neuropathy. Diabetes 2006; 55: 1847–54.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors have no conflicts of interest that are directly relevant to the content of this review. No sources of funding were used to assist in the preparation of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianpaolo Zerbini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tremolada, G., Lattanzio, R., Mazzolari, G. et al. The Therapeutic Potential of VEGF Inhibition in Diabetic Microvascular Complications. Am J Cardiovasc Drugs 7, 393–398 (2007). https://doi.org/10.2165/00129784-200707060-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129784-200707060-00002

Keywords

Navigation