Skip to main content
Log in

Left Ventricular Diastolic Dysfunction in Diabetic Patients

Pathophysiology and Therapeutic Implications

  • Review Article
  • Published:
American Journal of Cardiovascular Drugs Aims and scope Submit manuscript

Abstract

Patients with signs and symptoms of heart failure and a preserved left ventricular (LV) systolic function may have significant abnormalities in diastolic function. This condition is called diastolic heart failure (DHF) and is observed in about 40% of patients with chronic heart failure (CHF). Diabetes mellitus is one of the major risk factors for DHF. Diastolic dysfunction is observed in about 40% of patients with diabetes mellitus and correlates with poor glycemic control. Suggested mechanisms for diastolic dysfunction in the diabetic heart are: (i) abnormalities in high-energy phosphate metabolism; (ii) impaired calcium transport; (iii) interstitial accumulation of advanced glycosylation end products; (iv) imbalance in collagen synthesis and degradation; (v) abnormal microvascular function, (vi) activated cardiac renin-angiotensin system; (vii) decreased adiponectin levels; and (viii) alteration in the metabolism of free fatty acids and glucose. Because most large, randomized clinical trials in CHF have enrolled only patients with systolic dysfunction, the specific management of diastolic dysfunction is largely unknown. The CHARM-Preserved (Candesartan in Heart Failure: Assessment of Reduction in Mortality and Morbidity-Preserved) trial, the only mega trial specific for DHF (LV ejection fraction >40%), showed that the angiotensin II type 1 receptor antagonist (angiotensin receptor blocker [ARB]) candesartan cilexetil reduced hospital admissions for CHF but not cardiovascular death. Currently, the pharmacologic treatment used in systolic heart failure is also recommended in DHF and includes administration of diuretics and nitrates for pulmonary congestion, and long-term management with ACE inhibitors, ARBs, aldosterone antagonists, and β-adrenoceptor antagonists. Poor glycemic control is associated with a high incidence of heart failure in diabetic patients, but the preferable antihyperglycemic regimen for DHF in patients with diabetes mellitus needs to be determined in further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Table I
Table II

Similar content being viewed by others

References

  1. American Heart Association. 2002 heart and stroke statistical update. Dallas (TX): American Heart Association, 2003.

    Google Scholar 

  2. Miller LW, Missov ED. Epidemiology of heart failure. Cardiol Clin 2001; 19(4): 547–55.

    Article  PubMed  CAS  Google Scholar 

  3. Tsutsui H, Tsuchihashi M, Takeshita A. Mortality and readmission of hospitalized patients with congestive heart failure and preserved versus depressed systolic function. Am J Cardiol 2001; 88(5): 530–3.

    Article  PubMed  CAS  Google Scholar 

  4. Colucci WS, Braunwald E. Pathophysiology of heart failure. In: Braunwald E, Zipes DP, Libby P, editors. 6th ed. Heart disease: a textbook of cardiovascular medicine. Philadelphia (PA): Saunders, 2001: 503.

    Google Scholar 

  5. Vasan RS, Benjamin EJ, Levy D. Prevalence, clinical features and prognosis of diastolic heart failure: an epidemiologic perspective. J Am Coll Cardiol 1995; 26(7): 1565–74.

    Article  PubMed  CAS  Google Scholar 

  6. Smith GL, Masoudi FA, Vaccarino V, et al. Outcomes in heart failure patients with preserved ejection fraction: mortality, readmission, and functional decline. J Am Coll Cardiol 2003; 41(9): 1510–8.

    Article  PubMed  Google Scholar 

  7. Vasan RS, Larson MG, Benjamin EJ, et al. Congestive heart failure in subjects with normal versus reduced left ventricular ejection fraction: prevalence and mortality in a population-based cohort. J Am Coll Cardiol 1999; 33(7): 1948–55.

    Article  PubMed  CAS  Google Scholar 

  8. Mosterd A, Hoes AW, de Bruyne MC, et al. Prevalence of heart failure and left ventricular dysfunction in the general population: the Rotterdam Study. Eur Heart J 1999; 20(6): 447–55.

    Article  PubMed  CAS  Google Scholar 

  9. McAlister FA, Teo KK, Taher M, et al. Insights into the contemporary epidemiology and outpatient management of congestive heart failure. Am Heart J 1999; 138(1 Pt 1): 87–94.

    Article  PubMed  CAS  Google Scholar 

  10. Senni M, Tribouilloy CM, Rodeheffer RJ, et al. Congestive heart failure in the community: a study of all incident cases in Olmsted County, Minnesota, in 1991. Circulation 1998; 98(21): 2282–9.

    Article  PubMed  CAS  Google Scholar 

  11. Zile MR, Baicu CF, Gaasch WH. Diastolic heart failure: abnormalities in active relaxation and passive stiffness of the left ventricle. N Engl J Med 2004; 350(19): 1953–9.

    Article  PubMed  CAS  Google Scholar 

  12. European Study Group on Diastolic Heart Failure. How to diagnose diastolic heart failure. Eur Heart J 1998; 19(7): 990–1003.

    Article  Google Scholar 

  13. Vasan RS, Levy D. Defining diastolic heart failure: a call for standardized diagnostic criteria. Circulation 2000; 101(17): 2118–21.

    Article  PubMed  CAS  Google Scholar 

  14. Zile MR, Gaasch WH, Carroll JD, et al. Heart failure with a normal ejection fraction: is measurement of diastolic function necessary to make the diagnosis of diastolic heart failure? Circulation 2001; 104(7): 779–82.

    Article  PubMed  CAS  Google Scholar 

  15. Redfield MM, Jacobsen SJ, Burnett Jr JC, et al. Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA 2003; 289: 194–202.

    Article  PubMed  Google Scholar 

  16. Tsang TS, Barnes ME, Gersh BJ, et al. Left atrial volume as a morphophysiologic expression of left ventricular diastolic dysfunction and relation to cardiovascular risk burden. Am J Cardiol 2002; 90(12): 1284–9.

    Article  PubMed  Google Scholar 

  17. Maisel AS, McCord J, Nowak RM, et al. Bedside B-type natriuretic peptide in the emergency diagnosis of heart failure with reduced or preserved ejection fraction. J Am Coll Cardiol 2003; 41(11): 2010–7.

    Article  PubMed  Google Scholar 

  18. Yamaguchi H, Yoshida J, Yamamoto K, et al. Elevation of plasma brain natriuretic peptide is a hallmark of diastolic heart failure independent of ventricular hypertrophy. J Am Coll Cardiol 2004; 43(1): 55–60.

    Article  PubMed  CAS  Google Scholar 

  19. Levy D, Larson MG, Vasan RS, et al. The progression from hypertension to congestive heart failure. JAMA 1996; 275: 1557–62.

    Article  PubMed  CAS  Google Scholar 

  20. Kitzman DW, Little WC, Brubaker PH, et al. Pathophysiologic characterization of isolated diastolic heart failure in comparison to systolic heart failure. JAMA 2002; 288: 2144–50.

    Article  PubMed  Google Scholar 

  21. Chen HH, Lainchbury JG, Senni M, et al. Diastolic heart failure in the community: clinical profile, natural history, therapy, and impact of proposed diagnostic criteria. J Card Fail 2002; 8(5): 279–87.

    Article  PubMed  Google Scholar 

  22. McDermott MM, Feinglass J, Sy J, et al. Hospitalized congestive heart failure patients with preserved versus abnormal left ventricular systolic function: clinical characteristics and drug therapy. Am J Med 1995; 99(6): 629–35.

    Article  PubMed  CAS  Google Scholar 

  23. Labovitz AJ, Lewen MK, Kern M, et al. Evaluation of left ventricular systolic and diastolic dysfunction during transient myocardial ischemia produced by angioplasty. J Am Coll Cardiol 1987; 10(4): 748–55.

    Article  PubMed  CAS  Google Scholar 

  24. Mahmarian JJ, Pratt CM. Silent myocardial ischemia in patients with coronary artery disease: possible links with diastolic left ventricular dysfunction. Circulation 1990; 81(2 Suppl.): III33–40.

    PubMed  CAS  Google Scholar 

  25. Pardaens K, Van Cleemput J, Vanhaecke J, et al. Atrial fibrillation is associated with a lower exercise capacity in male chronic heart failure patients. Heart 1997; 78(6): 564–8.

    PubMed  CAS  Google Scholar 

  26. Rich MW, McSherry F, Williford WO, et al. Effect of age on mortality, hospitalizations and response to digoxin in patients with heart failure: the DIG Study. J Am Coll Cardiol 2001; 38(3): 806–13.

    Article  PubMed  CAS  Google Scholar 

  27. Tarantini L, Faggiano P, Senni M, et al. Clinical features and prognosis associated with a preserved left ventricular systolic function in a large cohort of congestive heart failure outpatients managed by cardiologists: data from the Italian Network on Congestive Heart Failure. Ital Heart J 2002; 3(11): 656–64.

    PubMed  Google Scholar 

  28. McDermott MM, Feinglass J, Lee PI, et al. Systolic function, readmission rates, and survival among consecutively hospitalized patients with congestive heart failure. Am Heart J 1997; 134(4): 728–36.

    Article  PubMed  CAS  Google Scholar 

  29. Judge KW, Pawitan Y, Caldwell J, et al. Congestive heart failure symptoms in patients with preserved left ventricular systolic function: analysis of the CASS registry. J Am Coll Cardiol 1991; 18(2): 377–82.

    Article  PubMed  CAS  Google Scholar 

  30. Philbin EF, Rocco TA, Lindenmuth NW, et al. Systolic versus diastolic heart failure in community practice: clinical features, outcomes, and the use of angiotensin-converting enzyme inhibitors. Am J Med 2000; 109(8): 605–13.

    Article  PubMed  CAS  Google Scholar 

  31. Pernenkil R, Vinson JM, Shah AS, et al. Course and prognosis in patients ≥70 years of age with congestive heart failure and normal versus abnormal left ventricular ejection fraction. Am J Cardiol 1997; 79(2): 216–9.

    Article  PubMed  CAS  Google Scholar 

  32. Kannel WB, Hjortland M, Castelli WP. Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol 1974; 34(1): 29–34.

    Article  PubMed  CAS  Google Scholar 

  33. O’Connor CM, Gattis WA, Shaw L, et al. Clinical characteristics and long-term outcomes of patients with heart failure and preserved systolic function. Am J Cardiol 2000; 86(8): 863–7.

    Article  PubMed  Google Scholar 

  34. Raev DC. Which left ventricular function is impaired earlier in the evolution of diabetic cardiomyopathy? An echocardiographic study of young type I diabetic patients. Diabetes Care 1994; 17(7): 633–9.

    Article  PubMed  CAS  Google Scholar 

  35. Seneviratne BI. Diabetic cardiomyopathy: the preclinical phase. Br Med J 1977; 1(6074): 1444–6.

    Article  PubMed  CAS  Google Scholar 

  36. Zabalgoitia M, Ismaeil MF, Anderson L, et al. Prevalence of diastolic dysfunction in normotensive, asymptomatic patients with well-controlled type 2 diabetes mellitus. Am J Cardiol 2001; 87(3): 320–3.

    Article  PubMed  CAS  Google Scholar 

  37. Liu JE, Palmieri V, Roman MJ, et al. The impact of diabetes on left ventricular filling pattern in normotensive and hypertensive adults: the Strong Heart Study. J Am Coll Cardiol 2001; 37(7): 1943–9.

    Article  PubMed  CAS  Google Scholar 

  38. Uusitupa M, Siitonen O, Aro A, et al. Effect of correction of hyperglycemia on left ventricular function in non-insulin-dependent [type 2] diabetics. Acta Med Scand 1983; 213(5): 363–8.

    Article  PubMed  CAS  Google Scholar 

  39. Iribarren C, Karter AJ, Go AS, et al. Glycemic control and heart failure among adult patients with diabetes. Circulation 2001; 103(22): 2668–73.

    Article  PubMed  CAS  Google Scholar 

  40. Poirier P, Bogaty P, Garneau C, et al. Diastolic dysfunction in normotensive men with well-controlled type 2 diabetes: importance of maneuvers in echocardiographic screening for preclinical diabetic cardiomyopathy. Diabetes Care 2001; 24(1): 5–10.

    Article  PubMed  CAS  Google Scholar 

  41. Zile MR, Brutsaert DL. New concepts in diastolic dysfunction and diastolic heart failure: I. diagnosis, prognosis, and measurements of diastolic function. Circulation 2002; 105(11): 1387–93.

    Article  PubMed  Google Scholar 

  42. Gilbert JC, Glantz SA. Determinants of left ventricular filling and of the diastolic pressure-volume relation. Circ Res 1989; 64(5): 827–52.

    Article  PubMed  CAS  Google Scholar 

  43. Huang B, Wang S, Qin D, et al. Diminished basal phosphorylation level of phospholamban in the postinfarction remodeled rat ventricle: role of beta-adrenergic pathway, G[i] protein, phosphodiesterase, and phosphatases. Circ Res 1999; 85(9): 848–55.

    Article  PubMed  CAS  Google Scholar 

  44. Brittsan AG, Kranias EG. Phospholamban and cardiac contractile function. J Mol Cell Cardiol 2000; 32(12): 2131–9.

    Article  PubMed  CAS  Google Scholar 

  45. Weber KT. Extracellular matrix remodeling in heart failure: a role for de novo angiotensin II generation. Circulation 1997; 96(11): 4065–82.

    Article  PubMed  CAS  Google Scholar 

  46. Hardin NJ. The myocardial and vascular pathology of diabetic cardiomyopathy. Coron Artery Dis 1996; 7(2): 99–108.

    Article  PubMed  CAS  Google Scholar 

  47. Zile MR, Brutsaert DL. New concepts in diastolic dysfunction and diastolic heart failure. Part II: causal mechanisms and treatment. Circulation 2002; 105(12): 1503–8.

    Article  PubMed  Google Scholar 

  48. Cain BS, Meldrum DR, Joo KS, et al. Human SERCA2a levels correlate inversely with age in senescent human myocardium. J Am Coll Cardiol 1998; 32(2): 458–67.

    Article  PubMed  CAS  Google Scholar 

  49. Diamant M, Lamb HJ, Groeneveld Y, et al. Diastolic dysfunction is associated with altered myocardial metabolism in asymptomatic normotensive patients with well-controlled type 2 diabetes mellitus. J Am Coll Cardiol 2003; 42(2): 328–35.

    Article  PubMed  CAS  Google Scholar 

  50. Penpargkul S, Fein F, Sonnenblick EH, et al. Depressed cardiac sarcoplasmic reticular function from diabetic rats. J Mol Cell Cardiol 1981; 13(3): 303–9.

    Article  PubMed  CAS  Google Scholar 

  51. Teshima Y, Takahashi N, Saikawa T, et al. Diminished expression of sarcoplasmic reticulum Ca2+ ATPase and ryanodine sensitive Ca2+ channel mRNA in streptozotocin-induced diabetic rat heart. J Mol Cell Cardiol 2000; 32(7): 655–64.

    Article  PubMed  CAS  Google Scholar 

  52. Belke DD, Dillmann WH. Altered cardiac calcium handling in diabetes. Curr Hypertens Rep 2004; 6(6): 424–9.

    Article  PubMed  Google Scholar 

  53. Jalil JE, Doering CW, Janicki JS, et al. Fibrillar collagen and myocardial stiffness in the intact hypertrophied rat left ventricle. Circ Res 1989; 64(6): 1041–50.

    Article  PubMed  CAS  Google Scholar 

  54. Weber KT, Janicki JS, Pick R, et al. Myocardial fibrosis and pathologic hypertrophy in the rat with renovascular hypertension. Am J Cardiol 1990; 65(14): 1G–7G.

    Article  PubMed  CAS  Google Scholar 

  55. Kato S, Spinale FG, Tanaka R, et al. Inhibition of collagen cross-linking: effects on fibrillar collagen and ventricular diastolic function. Am J Physiol 1995; 269(3 Pt 2): H863–8.

    PubMed  CAS  Google Scholar 

  56. Burlew BS, Weber KT. Cardiac fibrosis as a cause of diastolic dysfunction. Herz 2002; 27(2): 92–8.

    Article  PubMed  Google Scholar 

  57. Regan TJ, Lyons MM, Ahmed SS, et al. Evidence for cardiomyopathy in familial diabetes mellitus. J Clin Invest 1977; 60(4): 885–99.

    Article  Google Scholar 

  58. Nunoda S, Genda A, Sugihara N, et al. Quantitative approach to the histopathology of the biopsied right ventricular myocardium in patients with diabetes mellitus. Heart Vessels 1985; 1(1): 43–7.

    Article  PubMed  CAS  Google Scholar 

  59. Das AK, Das JP, Chandrasekar S. Specific heart muscle disease in diabetes mellitus: a functional structural correlation. Int J Cardiol 1987; 17(3): 299–302.

    Article  PubMed  CAS  Google Scholar 

  60. Genda A, Mizuno S, Nunoda S, et al. Clinical studies on diabetic myocardial disease using exercise testing with myocardial scintigraphy and endomyocardial biopsy. Clin Cardiol 1986; 9(8): 375–82.

    Article  PubMed  CAS  Google Scholar 

  61. van Hoeven KH, Factor SM. A comparison of the pathological spectrum of hypertensive, diabetic, and hypertensive-diabetic heart disease. Circulation 1990; 82(3): 848–55.

    Article  PubMed  Google Scholar 

  62. Brownlee M, Vlassara H, Kooney A, et al. Aminoguanidine prevents diabetes-induced arterial wall protein cross-linking. Science 1986; 23(4758): 1629–32.

    Article  Google Scholar 

  63. Norton GR, Candy G, Woodiwiss AJ. Aminoguanidine prevents the decreased myocardial compliance produced by streptozotocin-induced diabetes mellitus in rats. Circulation 1996; 93(10): 1905–12.

    Article  PubMed  CAS  Google Scholar 

  64. Regan TJ, Wu CF, Yeh CK, et al. Myocardial composition and function in diabetes: the effects of chronic insulin use. Circ Res 1981; 49: 1268–77.

    Article  PubMed  CAS  Google Scholar 

  65. Shimizu M, Umeda K, Sugihara N, et al. Collagen remodelling in myocardia of patients with diabetes. J Clin Pathol 1993; 46(1): 32–6.

    Article  PubMed  CAS  Google Scholar 

  66. Mizushige K, Yao L, Noma T, et al. Alteration in left ventricular diastolic filling and accumulation of myocardial collagen at insulin-resistant prediabetic stage of a type II diabetic rat model. Circulation 2000; 101(8): 899–907.

    Article  PubMed  CAS  Google Scholar 

  67. Spiro MJ, Crowley TJ. Increased rat myocardial type VI collagen in diabetes mellitus and hypertension. Diabetologia 1993; 36(2): 93–8.

    Article  PubMed  CAS  Google Scholar 

  68. Mott JD, Khalifah RG, Nagase H, et al. Nonenzymatic glycation of type IV collagen and matrix metalloprotease susceptibility. Kidney Int 1997; 52(5): 1302–12.

    Article  PubMed  CAS  Google Scholar 

  69. Vishwanath V, Frank KE, Elmets CA, et al. Glycation of skin collagen in type I diabetes mellitus: correlation with long-term complications. Diabetes 1986; 35(8): 916–21.

    Article  PubMed  CAS  Google Scholar 

  70. Bonow RO, Udelson JE. Left ventricular diastolic dysfunction as a cause of congestive heart failure: mechanisms and management. Ann Intern Med 1992; 117: 502–10.

    PubMed  CAS  Google Scholar 

  71. Gaasch WH. Congestive heart failure in patients with normal left ventricular systolic function: a manifestation of diastolic dysfunction. Herz 1991; 16: 22–32.

    PubMed  CAS  Google Scholar 

  72. Ledet T. Histological and histochemical changes in the coronary arteries of old diabetic patients. Diabetologia 1968; 4(5): 268–72.

    Article  PubMed  CAS  Google Scholar 

  73. Fischer VW, Barner HB, Leskiw ML. Capillary basal laminar thichness in diabetic human myocardium. Diabetes 1979; 28(8): 713–9.

    Article  PubMed  CAS  Google Scholar 

  74. Factor SM, Okun EM, Minase T. Capillary microaneurysms in the human diabetic heart. N Engl J Med 1980; 302(7): 384–8.

    Article  PubMed  CAS  Google Scholar 

  75. Zoneraich S, Silverman G, Zoneraich O. Primary myocardial disease, diabetes mellitus, and small vessel disease. Am Heart J 1980; 100(5): 754–5.

    Article  PubMed  CAS  Google Scholar 

  76. Pitzalis MV, Iacoviello M, Massari F, et al. Influence of gender and family history of hypertension on autonomic control of heart rate, diastolic function and brain natriuretic peptide. J Hypertens 2001; 19(1): 143–8.

    Article  PubMed  CAS  Google Scholar 

  77. Friedrich SP, Lorell BH, Rousseau MF, et al. Intracardiac angiotensin-converting enzyme inhibition improves diastolic function in patients with left ventricular hypertrophy due to aortic stenosis. Circulation 1994; 90(6): 2761–71.

    Article  PubMed  CAS  Google Scholar 

  78. Schunkert H, Jackson B, Tang SS, et al. Distribution and functional significance of cardiac angiotensin converting enzyme in hypertrophied rat hearts. Circulation 1993; 87(4): 1328–39.

    Article  PubMed  CAS  Google Scholar 

  79. Flesch M, Schiffer F, Zolk O, et al. Angiotensin receptor antagonism and angiotensin converting enzyme inhibition improve diastolic dysfunction and Ca (2+)-ATPase expression in the sarcoplasmic reticulum in hypertensive cardiomyopathy. J Hypertens 1997; 15(9): 1001–9.

    Article  PubMed  CAS  Google Scholar 

  80. Yamamoto K, Masuyama T, Sakata Y, et al. Local neurohumoral regulation in the transition to isolated diastolic heart failure in hypertensive heart disease: absence of ATI receptor downregulation and ‘overdrive’ of the endothelin system. Cardiovasc Res 2000; 46(3): 421–32.

    Article  PubMed  CAS  Google Scholar 

  81. Lopez B, Querejeta R, Varo N, et al. Usefulness of serum carboxy-terminal propeptide of procollagen type I in assessment of the cardioreparative ability of antihypertensive treatment in hypertensive patients. Circulation 2001; 104(3): 286–91.

    Article  PubMed  CAS  Google Scholar 

  82. Varo N, Iraburu MJ, Varela M, et al. Chronic AT (1) blockade stimulates extracellular collagen type I degradation and reverses myocardial fibrosis in spontaneously hypertensive rats. Hypertension 2000; 35(6): 1197–202.

    Article  PubMed  CAS  Google Scholar 

  83. Fiordaliso F, Li B, Latini R, et al. Myocyte death in streptozotocin-induced diabetes in rats in angiotensin II- dependent. Lab Invest 2000; 80(4): 513–27.

    Article  PubMed  CAS  Google Scholar 

  84. Hong SJ, Park CG, Seo HS, et al. Associations among plasma adiponectin, hypertension, left ventricular diastolic function and left ventricular mass index. Blood Press 2004; 13(4): 236–42.

    Article  PubMed  CAS  Google Scholar 

  85. Liao Y, Takashima S, Maeda N, et al. Exacerbation of heart failure in adiponectin-deficient mice due to impaired regulation of AMPK and glucose metabolism. Cardiovasc Res 2005; 67(4): 705–13.

    Article  PubMed  CAS  Google Scholar 

  86. Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 2005; 85(3): 1093–129.

    Article  PubMed  CAS  Google Scholar 

  87. Young ME, McNulty P, Taegtmeyer H. Adaptation and maladaptation of the heart in diabetes. Part II: potential mechanisms. Circulation 2002; 105(15): 1861–70.

    Article  PubMed  CAS  Google Scholar 

  88. Iozzo P, Chareonthaitawee P, Dutka D, et al. Independent association of type 2 diabetes and coronary artery disease with myocardial insulin resistance. Diabetes 2002; 51(10): 3020–4.

    Article  PubMed  CAS  Google Scholar 

  89. Fang ZY, Prins JB, Marwick TH. Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev 2004; 25(4): 543–67.

    Article  PubMed  CAS  Google Scholar 

  90. Rodrigues B, Cam MC, McNeill JH. Metabolic disturbances in diabetic cardiomyopathy. Mol Cell Biochem 1998; 180(1–2): 53–7.

    Article  PubMed  CAS  Google Scholar 

  91. Depre C, Young ME, Ying J, et al. Streptozotocin-induced changes in cardiac gene expression in the absence of severe contractile dysfunction. J Mol Cell Cardiol 2000; 32(6): 985–96.

    Article  PubMed  CAS  Google Scholar 

  92. Golfman L, Dixon IM, Takeda N, et al. Differential changes in cardiac myofibrillar and sarcoplasmic reticular gene expression in alloxan-induced diabetes. Mol Cell Biochem 1999; 200(1–2): 15–25.

    Article  PubMed  CAS  Google Scholar 

  93. Rich MW, McSherry F, Williford WO, et al. Effect of age on mortality, hospitalizations and response to digoxin in patients with heart failure: the DIG study. J Am Coll Cardiol 2001; 38(3): 806–13.

    Article  PubMed  CAS  Google Scholar 

  94. Yusuf S, Pfeffer MA, Swedberg K, et al. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved Trial. Lancet 2003; 362(9386): 777–81.

    Article  PubMed  CAS  Google Scholar 

  95. Hunt SA, Abraham WT, Chin MH, et al. ACC/AHA 2005 Guideline Update for the Diagnosis and Management of Chronic Heart Failure in the Adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure): developed in collaboration with the American College of Chest Physicians and the International Society for Heart and Lung Transplantation: endorsed by the Heart Rhythm Society. Circulation 2005; 112(12): el54–235. Epub 2005 Sep 13.

    Article  Google Scholar 

  96. Kawasaki D, Kosugi K, Waki H, et al. Long-term angiotensin II receptor blockade improves left ventricular diastolic filling in diabetic patients trough modulation of collagen type 1 turnover and diastolic property [abstract]. Circulation 2005; 112(17 Suppl.): 11–505.

    Google Scholar 

  97. Hayashi T, Sohmiya K, Ukimura A, et al. Angiotensin II receptor blockade prevents microangiopathy and preserves diastolic function in the diabetic rat heart. Heart 2003; 89(10): 1236–42.

    Article  PubMed  CAS  Google Scholar 

  98. Nakashima H, Kumagai K, Urata H, et al. Angiotensin II antagonist prevents electrical remodeling in atrial fibrillation. Circulation 2000; 101(22): 2612–7.

    Article  PubMed  CAS  Google Scholar 

  99. Wachtell K, Lehto M, Gerdts E, et al. Angiotensin II receptor blockade reduces new-onset atrial fibrillation and subsequent stroke compared to atenolol: the Losartan Intervention For End Point Reduction in Hypertension (LIFE) study. J Am Coll Cardiol 2005; 45(5): 712–9.

    Article  PubMed  CAS  Google Scholar 

  100. Pitt B, Williams G, Remme W, et al. The EPHESUS trial: eplerenone in patients with heart failure due to systolic dysfunction complicating acute myocardial infarction. Eplerenone Post-AMI Heart Failure Efficacy and Survival Study. Cardiovasc Drugs Ther 2001; 15(1): 79–87.

    Article  PubMed  CAS  Google Scholar 

  101. Pitt B, Remme W, Zannad F, et al. Eplerenone post-acute myocardial infarction heart failure efficacy and survival study investigators: eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 2003; 348(14): 1309–21. Epub 2003 Mar 31.

    Article  PubMed  CAS  Google Scholar 

  102. Mottram PM, Haluska B, Leano R, et al. Effect of aldosterone antagonism on myocardial dysfunction in hypertensive patients with diastolic heart failure. Circulation 2004; 110(5): 558–65.

    Article  PubMed  CAS  Google Scholar 

  103. Roongsritong C, Sutthiwan P, Bradley J, et al. Spironolactone improves diastolic function in the elderly. Clin Cardiol 2005; 28(10): 484–7.

    Article  PubMed  Google Scholar 

  104. Izawa H, Murohara T, Nagata K, et al. Mineralocorticoid receptor antagonism ameliorates left ventricular diastolic dysfunction and myocardial fibrosis in mildly symptomatic patients with idiopathic dilated cardiomyopathy: a pilot study. Circulation 2005 Nov 8; 112(19): 2940–5.

    PubMed  CAS  Google Scholar 

  105. CIBIS-II investigators. The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet 1999; 353(9146): 9–13.

    Article  Google Scholar 

  106. MERIT-HF Study Group. Effect of metoprolol CR/XL in chronic heart failure: metoprolol CR/XL randomised intervention trial in congestive heart failure (MERIT-HF). Lancet 1999; 353(9169): 2001–7.

    Article  Google Scholar 

  107. Packer M, Bristow MR, Cohn JN, et al. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. US Carvedilol Heart Failure Study Group. N Engl J Med 1996; 334(21): 1349–55.

    Article  PubMed  CAS  Google Scholar 

  108. Packer M, Coats AJ, Fowler MB, et al. Effect of carvedilol on survival in severe chronic heart failure. N Engl J Med 2001; 344(22): 1651–8.

    Article  PubMed  CAS  Google Scholar 

  109. Gottlieb SS, McCarter RJ, Vogel RA. Effect of beta-blockade on mortality among high-risk and low-risk patients after myocardial infarction. N Engl J Med 1998; 339(8): 489–97.

    Article  PubMed  CAS  Google Scholar 

  110. UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ 1998; 317(7160): 703–13.

    Article  Google Scholar 

  111. Packer M. Beta-adrenergic blockade in chronic heart failure: principles, progress, and practice. Prog Cardiovasc Dis 1998; 41(1 Suppl. 1): 39–52.

    Article  PubMed  CAS  Google Scholar 

  112. Reaven GM, Lithell H, Landsberg L. Hypertension and associated metabolic abnormalities: the role of insulin resistance and the sympathoadrenal system. N Engl J Med 1996; 334(6): 374–81.

    Article  PubMed  CAS  Google Scholar 

  113. Bakris GL, Fonseca V, Katholi RE, et al. GEMINI Investigators. Metabolic effects of carvedilol vs metoprolol in patients with type 2 diabetes mellitus and hypertension: a randomized controlled trial. JAMA 2004; 292(18): 2227–36.

    Article  PubMed  CAS  Google Scholar 

  114. Mohacsi P, Fowler MB, Krum H, et al. Should physicians avoid the use of beta-blockers in patients with heart failure who have diabetes? Results of the COPERNICUS study [abstract]. Circulation 2001; 104 Suppl. II: II–754.

    Google Scholar 

  115. Bristow MR. Effect of carvedilol on LV function and mortality in diabetic vs non-diabetic patients with ischemic or nonischemic dilated cardiomyopathy [abstract]. Circulation 1996; 84: I–664.

    Google Scholar 

  116. Wedel H, Demets D, Deedwania P, et al. Challenges of subgroup analyses in multinational clinical trials: experiences from the MERIT-HF trial. Am Heart J 2001; 142(3): 502–11.

    Article  PubMed  CAS  Google Scholar 

  117. Erdmann E, Lechat P, Verkenne P, et al. Results from post-hoc analyses of the CIBIS II trial: effect of bisoprolol in high-risk patient groups with chronic heart failure. Eur J Heart Fail 2001 Aug; 3(4): 469–79.

    Article  PubMed  CAS  Google Scholar 

  118. Poole-Wilson PA, Swedberg K, Cleland JG, et al. Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol Or Metoprolol European Trial (COMET): randomised controlled trial. Lancet 2003; 362: 7–13.

    Article  PubMed  CAS  Google Scholar 

  119. Flather MD, Shibata MC, Coats AJ, et al. Randomized trial to determine the effect of nebivolol on mortality and cardiovascular hospital admission in elderly patients with heart failure (SENIORS). Eur Heart J 2005; 26(3): 215–25.

    Article  PubMed  CAS  Google Scholar 

  120. Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001; 108(8): 1105–7.

    Google Scholar 

  121. American Society of Health System Pharmacists. AHFS drag information. Bethesda (MD): American Society of Health-System Pharmacists, 2004.

    Google Scholar 

  122. Eurich DT, Majumdar SR, McAlister FA, et al. Improved clinical outcomes associated with metformin in patients with diabetes and heart failure. Diabetes Care 2005; 28(10): 2345–51.

    Article  PubMed  CAS  Google Scholar 

  123. Nichols GA, Koro CE, Gullion CM, et al. The incidence of congestive heart failure associated with antidiabetic therapies. Diabetes Metab Res Rev 2005; 21(1): 51–7.

    Article  PubMed  CAS  Google Scholar 

  124. Russell III RR, Li J, Coven DL, et al. AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. J Clin Invest 2004; 114(4): 495–503.

    PubMed  CAS  Google Scholar 

  125. Misbin RI. The phantom of lactic acidosis due to metformin in patients with diabetes. Diabetes Care 2004; 27(7): 1791–3.

    Article  PubMed  Google Scholar 

  126. Inzucchi SE. Metformin and heart failure: innocent until proven guilty. Diabetes Care 2005; 28(10): 2585–7.

    Article  PubMed  Google Scholar 

  127. McCormack J, Johns K, Tildesley H. Metformin’s contraindications should be contraindicated. CMAJ 2005; 173(5): 502–4.

    Article  PubMed  Google Scholar 

  128. Paralkar AA, Pendergrass ML, Granda-Ayala R, et al. Nonhypoglycemic effects of thiazolidinediones [published erratum appears in Ann Intern Med 2001; 135 (4): 307]. Ann Intern Med 2001 Jan 2; 134(1): 61–71.

    Google Scholar 

  129. Dormandy JA, Charbonnel B, Eckland D, et al. PROactive investigators. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 2005; 366(9493): 1279–89.

    Article  PubMed  CAS  Google Scholar 

  130. Nesto RW, Bell D, Bonow RO, et al. American Heart Association; American Diabetes Association. Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association. October 7, 2003. Circulation 2003; 108(23): 2941–8.

    Article  PubMed  Google Scholar 

  131. Masoudi FA, Inzucchi SE, Wang Y, et al. Thiazolidinediones, metformin, and outcomes in older patients with diabetes and heart failure: an observational study. Circulation 2005; 111(5): 583–90.

    Article  PubMed  CAS  Google Scholar 

  132. Tsuji T, Mizushige K, Noma T, et al. Pioglitazone improves left ventricular diastolic function and decreases collagen accumulation in prediabetic stage of a type II diabetic rat. J Cardiovasc Pharmacol 2001; 38(6): 868–74.

    Article  PubMed  CAS  Google Scholar 

  133. Hirayama H, Sugano M, Abe N, et al. Troglitazone, an antidiabetic drug, improves left ventricular mass and diastolic function in normotensive diabetic patients. Int J Cardiol 2001; 77(1): 75–9.

    Article  PubMed  CAS  Google Scholar 

  134. Horio T, Suzuki M, Suzuki K, et al. Pioglitazone improves left ventricular diastolic function in patients with essential hypertension. Am J Hypertens 2005; 18(7): 949–57.

    Article  PubMed  CAS  Google Scholar 

  135. Srivastava PM, Calafiore P, MacIsaac RJ, et al. Thiazolidinediones and congestive heart failure: exacerbation or new onset of left ventricular dysfunction? Diabet Med 2004; 21(8): 945–50.

    Article  PubMed  CAS  Google Scholar 

  136. Quast U, Stephan D, Bieger S, et al. The impact of ATP-sensitive K+ channel subtype selectivity of insulin secretagogues for the coronary vasculature and the myocardium. Diabetes 2004; 53 Suppl. 3: S156–64.

    Article  PubMed  CAS  Google Scholar 

  137. Bienengraeber M, Olson TM, Selivanov VA, et al. ABCC9 mutations identified in human dilated cardiomyopathy disrupt catalytic KATP channel gating. Nat Genet 2004; 36(4): 382–7. Epub 2004 Mar 21.

    Article  PubMed  CAS  Google Scholar 

  138. Meinert CL, Knatterad GL, Prout TE, et al. A study of the effects of hypoglycemic agents on vascular complications in patients with adult-onset diabetes: II. Mortality results. Diabetes 1970; (19 Suppl.): 789–830.

    PubMed  Google Scholar 

  139. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998; 352(9131): 837–53.

    Article  Google Scholar 

  140. Harrower AD. Comparative tolerability of sulphonylureas in diabetes mellitus. Drug Saf 2000; 22(4): 313–20.

    Article  PubMed  CAS  Google Scholar 

  141. Chiasson JL, Josse RG, Gomis R, et al. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: The STOP-NIDDM trial. JAMA 2003; 290(4): 486–94.

    Article  PubMed  CAS  Google Scholar 

  142. Doehner W, Rauchhaus M, Ponikowski P, et al. Impaired insulin sensitivity as an independent risk factor for mortality in patients with stable chronic heart failure. J Am Coll Cardiol 2005; 46(6): 1019–26.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Tsujino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsujino, T., Kawasaki, D. & Masuyama, T. Left Ventricular Diastolic Dysfunction in Diabetic Patients. Am J Cardiovasc Drugs 6, 219–230 (2006). https://doi.org/10.2165/00129784-200606040-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129784-200606040-00002

Keywords

Navigation