Skip to main content
Log in

Therapeutic Potential of Rho-Kinase Inhibitors in Cardiovascular Diseases

  • Review Article
  • Published:
American Journal of Cardiovascular Drugs Aims and scope Submit manuscript

Abstract

Rho-kinase is a signaling molecule that occurs downstream of the small GTPase Rho, which mediates various cellular functions. The Rho/Rho-kinase pathway plays an important role in pathophysiology and progression of various cardiovascular diseases such as hypertension, coronary vasospasm, angina pectoris, and restenosis after percutaneous coronary intervention, all of which are related to arteriosclerosis/atherosclerosis changes of the vasculature. Activation of the Rho/Rho-kinase pathway contributes to inflammatory and proliferative changes of the blood vessels and affects cardiac myocytes. Evidence from in vitro and in vivo studies suggests that Rho-kinase inhibitors have beneficial effects on cardiovascular diseases, particularly arteriosclerosis and coronary vasospasm. Furthermore, activation of the Rho/Rho-kinase pathway contributes to blood pressure regulation via the central sympathetic nervous system. There is evidence to suggest that Rho-kinase is involved in angiotensin II-induced cardiac hypertrophy and endothelial dysfunction, and preliminary data indicate that inhibition of Rho-kinase may be beneficial in vascular disorders such as pulmonary arterial hypertension and erectile dysfunction. Fasudil is currently the only Rho-kinase inhibitor available for clinical use and it is approved in Japan for the prevention of vasospasm in patients with subarachnoid hemorrhage. Emerging clinical data have shown that oral fasudil 80mg three times daily is effective in preventing myocardial ischemia in patients with stable angina pectoris. Rho-kinase represents a new target for the management of cardiovascular diseases and further studies are needed to define the therapeutic potential of Rho-kinase inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature 2002; 420: 629–35

    Article  PubMed  CAS  Google Scholar 

  2. Brandier C, Ming X-F, Yang Z. Small G proteins as novel therapeutic targets in cardiovascular medicine. News Physiol Sci 2003; 18: 18–22

    Google Scholar 

  3. Takai Y, Sasaki T, Matozaki T. Small GTP-binding proteins. Physiol Rev 2001; 81: 153–208

    PubMed  CAS  Google Scholar 

  4. Shimokawa H. Rho-kinase as a novel target in treatment of cardiovascular diseases. J Cardiovase Pharmacol 2002; 39: 319–27

    Article  CAS  Google Scholar 

  5. Wettschureck N, Offermanns S. Rho/Rho-kinase mediated signaling in physiology and pathophysiology. J Mol Med 2002; 80: 629–38

    Article  PubMed  CAS  Google Scholar 

  6. Madaule P, Axel R. A novel ras-related gene family. Cell 1985; 41: 31–40

    Article  PubMed  CAS  Google Scholar 

  7. Uehata M, Ishizaki T, Satoh H, et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 1997; 389: 990–4

    Article  PubMed  CAS  Google Scholar 

  8. Somlyo AP, Somlyo AV. Signal transduction by G-proteins, Rho-kinase and protein Phosphatase to smooth muscle and non-muscle myosin II. J Physiol 2000; 522: 177–85

    Article  PubMed  CAS  Google Scholar 

  9. Somlyo AP, Somlyo AV. Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin Phosphatase. Physiol Rev 2003; 83: 1325–58

    PubMed  CAS  Google Scholar 

  10. Davies SP, Reddy H, Caivano M, et al. Specificity and metabolism of action of some commonly used protein kinase inhibitors. Biochem J 2000; 351: 95–105

    Article  PubMed  CAS  Google Scholar 

  11. Shimokawa H, Seto M, Katsumata N, et al. Rho-kinase pathway induces enhanced myosin light chain phosphorylations in a swine model of coronary artery spasm. Cardiovasc Res 1999; 43: 1029–39

    Article  PubMed  CAS  Google Scholar 

  12. Tachibana E, Harada T, Shibuya M, et al. Intra-arterial infusion of fasudil hydrochloride for treating vasospasm following subarachnoid haemorrhage. Acta Neurochir 1999; 141: 13–9

    Article  CAS  Google Scholar 

  13. Sakurada S, Takuwa N, Sugimoto N, et al. Ca2+-dependent activation of Rho and Rho kinase in membrane depolarization-induced and receptor stimulation-induced vascular smooth muscle contraction. Circ Res 2003; 93: 548–56

    Article  PubMed  CAS  Google Scholar 

  14. Seasholtz TM, Zhang T, Morissette MR, et al. Increased expression and activity of RhoA are associated with increased DNA synthesis and reduced p27Kipl expression in the vasculature of hypertensive rats. Circ Res 2001; 89: 488–95

    Article  PubMed  CAS  Google Scholar 

  15. Seko T, Ito M, Kureishi Y, et al. Activation of RhoA and inhibition of myosin Phosphatase as important components in hypertension in vascular smooth muscle. Circ Res 2003; 92: 411–8

    Article  PubMed  CAS  Google Scholar 

  16. Mukai Y, Shimokawa H, Matoba T, et al. Involvement of Rho-kinase in hypertensive vascular disease: a novel therapeutic target in hypertension. FASEB J 2001; 15: 1062–4

    PubMed  CAS  Google Scholar 

  17. Masumoto A, Hirooka Y, Shimokawa H, et al. Possible involvement of Rho-kinase in the pathogenesis of hypertension in humans [published erratum appears in Hypertension 2002; 39: e19]. Hypertension 2001; 38: 1307–10

    Article  PubMed  CAS  Google Scholar 

  18. van Nieuw Amerongen GP, van Delft S, Vermeer MA, et al. Activation of RhoA by fhrombin in endothelial hyperpermeability: role of Rho-kinase and protein tyrosine kinases. Circ Res 2000; 87: 3365–40

    Google Scholar 

  19. van Nieuw Amerongen GP, Vermeer MA, van Hinsbergh VW. Role of RhoA and Rho-kinase in lysophosphatidic acid-induced endothelial barrier dysfunction. Arterioscler Thromb Vasc Biol 2000; 20: E127–33

    Article  Google Scholar 

  20. Eto Y, Shimokawa H, Hiroki J, et al. Gene transfer of dominant negative Rho kinase suppresses neointimal formation after balloon injury in pigs. Am J Physiol 2000; 278: H1744–50

    CAS  Google Scholar 

  21. Sawada N, Itoh H, Ueyama K, et al. Inhibition of Rho-associated kinase results in suppression of neointimal formation of balloon-injured arteries. Circulation 2000; 101: 2030–3

    Article  PubMed  CAS  Google Scholar 

  22. Shibata R, Kai H, Seki Y, et al. Role of Rho-associated kinase neointima formation after vascular injury. Circulation 2001; 103: 284–9

    Article  PubMed  CAS  Google Scholar 

  23. Miyata K, Shimokawa H, Kandabashi T, et al. Rho-kinase is involved in macrophage-mediated formation of coronary vascular lesions in pigs in vivo. Arterioscl Thromb Vasc Biol 2000; 20: 2351–8

    Article  PubMed  CAS  Google Scholar 

  24. Shimokawa H, Hiramori K, Iinuma H, et al. Anti-anginal effect of fasudil, a Rhokinase inhibitor, in patients with stable effort angina: a multicenter study. J Cardiovasc Pharmacol 2002; 40: 751–61

    Article  PubMed  CAS  Google Scholar 

  25. Vicari RM, Smith W, Chaitman BR, et al. A randomized, double-blind, placebocontrolled, phase 2 study: the efficacy of fasudil in patients with stable angina [abstract no. 877]. Eur Heart J 2004; 25: 138

    Google Scholar 

  26. Nakamura M, Takeshita A, Nose Y. Clinical characteristics associated with myocardial infarction, arrhythmias, and sudden death in patients with vasospastic angina. Circulation 1987; 75: 1110–6

    Article  PubMed  CAS  Google Scholar 

  27. Katsumata N, Shimokawa H, Seto M, et al. Enhanced myosin light chain phosphorylations as a central mechanism for coronary artery spasm in a swine model with interleukin-1β. Circulation 1997; 96: 4357–67

    Article  PubMed  CAS  Google Scholar 

  28. Shimokawa H, Ito A, Fukumoto Y, et al. Chronic treatment with interleukin-1β induces coronary intimal lesions and vasospastic responses in pigs in vivo: the role of platelet-derived growth factor. J Clin Invest 1996; 97: 769–76

    Article  PubMed  CAS  Google Scholar 

  29. Kandabashi T, Shimokawa H, Miyata K, et al. Inhibition of myosin Phosphatase by upregulated Rho-kinase plays a key role for coronary artery spasm in a porcine model with interleukin-1β. Circulation 2000; 101: 1319–23

    Article  PubMed  CAS  Google Scholar 

  30. Kandabashi T, Shimokawa H, Miyata K, et al. Evidence for protein kinase C-mediated activation of Rho-kinase in a porcine model of coronary artery spasm. Arterioscl Thromb Vasc Biol 2003; 23: 2209–14

    Article  PubMed  CAS  Google Scholar 

  31. Kandabashi T, Shimokawa H, Mukai Y, et al. Involvement of Rho-kinase in agonists-induced contractions of arterioselerotic human arteries. Arteriosel Thromb Vasc Biol 2002; 22: 243–8

    Article  CAS  Google Scholar 

  32. Masumoto A, Mohri M, Shimokawa H, et al. Suppression of coronary artery spasm by the Rho-kinase inhibitor fasudil in patients with vasospastic angina. Circulation 2002; 105: 1545–7

    Article  PubMed  CAS  Google Scholar 

  33. Mohri M, Koyanagi M, Egashira K, et al. Angina pectoris caused by coronary microvascular spasm. Lancet 1998; 351: 1165–9

    Article  PubMed  CAS  Google Scholar 

  34. Mohri M, Shimokawa H, Hirakawa Y, et al. Rho-kinase inhibition with intracoronary fasudil prevents myocardial ischemia in patients with coronary microvascular spasm. J Am Coll Cardiol 2003; 41: 15–9

    Article  PubMed  CAS  Google Scholar 

  35. Andersen HR, Maeng M, Thorwest M, et al. Remodeling rather than neointimal formation explains luminal narrowing after deep vessel wall injury: insights from a porcine coronary (re)stenosis model. Circulation 1996; 93: 1716–24

    Article  PubMed  CAS  Google Scholar 

  36. Tutar E, Ozcan M, Kilickap M, et al. Elevated whole-blood tissue factor procoagulant activity as a marker of restenosis after percutaneous transluminal coronary angioplasty and stent implantation. Circulation 2003; 108: 1581–4

    Article  PubMed  CAS  Google Scholar 

  37. Farb A, Burke AP, Kolodgie ED, et al. Pathological mechanisms of fatal late coronary stent thrombosis in humans. Circulation 2003; 108: 1701–6

    Article  PubMed  Google Scholar 

  38. Shimokawa H, Morishige K, Miyata K, et al. Long-term inhibition of Rho-kinase induces a regression of arteriosclerotic coronary lesions in a swine model in vivo. Cardiovasc Res 2001; 51: 169–77

    Article  PubMed  CAS  Google Scholar 

  39. Morishige K, Shimokawa H, Eto Y, et al. Adenovirus-mediated transfer of dominant-negative Rho-kinase induces a regression of coronary arteriosclerosis in pigs in vivo. Arterioscler Thromb Vasc Biol 2001; 21: 548–54

    Article  PubMed  CAS  Google Scholar 

  40. Matsumoto Y, Uwatoku T, Oi K, et al. Long-term inhibition of Rho-kiuase suppresses neointimal formation after stent implantation in porcine coronary arteries: involvement of multiple mechanisms. Arterioscler Thromb Vasc Biol 2004; 24: 181–6

    Article  PubMed  CAS  Google Scholar 

  41. Hattori T, Shimokawa H, Higashi M, et al. Long-term treatment with a specific Rho-kinase inhibitor suppresses cardiac allograft vasculopathy in mice. Circ Res 2004; 94: 46–52

    Article  PubMed  CAS  Google Scholar 

  42. Numaguchi K, Egashira K, Takemoto M, et al. Chronic inhibition of nitric oxide synthesis causes coronary microvascular remodeling in rats. Hypertension 1995; 26: 957–62

    Article  PubMed  CAS  Google Scholar 

  43. Takemoto M, Egashira K, Usui M, et al. Important role of tissue angiotensinconverting enzyme activity in the pathogenesis of coronary vascular and myocardial structural changes induced by long-term blockade of nitric oxide synthesis in rats. J Clin Invest 1997; 99: 278–98

    Article  PubMed  CAS  Google Scholar 

  44. Kataoka C, Egashira K, Inoue S, et al. Important role of Rho-kinase in the pathogenesis of cardiovascular inflammation and remodeling induced by long-term blockade of nitric oxide synthesis in rats. Hypertension 2002; 39: 245–50

    Article  PubMed  CAS  Google Scholar 

  45. Ikegaki I, Hattori T, Yamaguchi T, et al. Involvement of Rho-kinase in vascular remodeling caused by long-term inhibition of nitric oxide synthesis in rats. Eur J Pharmacol 2001; 427: 69–75

    Article  PubMed  CAS  Google Scholar 

  46. Takemoto M, Liao JK. Pleiotropic effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. Arterioscler Thromb Vasc Biol 2001; 21: 1712–9

    Article  PubMed  CAS  Google Scholar 

  47. Laufs U, Kilter H, Konkol C, et al. Impact of HMG CoA reductase inhibition on small GTPases in the heart. Cardiovasc Res 2002; 53: 911–20

    Article  PubMed  CAS  Google Scholar 

  48. Sawada N, Itoh H, Yamashita J, et al. cGMP-dependent protein kinase phosphorylates and inactivates RhoA. Biochem Biophys Res Commun 2001; 280: 798–805

    Article  PubMed  CAS  Google Scholar 

  49. Ming X-F, Viswambharan H, Barandier C, et al. Rho GTPase/Rho kinase negatively regulates endothelial nitric oxide synthase phosphorylation through the inhibition of protein kinase B/Akt in human endothelial cells. Mol Cell Biol 2002; 22: 8467–77

    Article  PubMed  CAS  Google Scholar 

  50. Higashi M, Shimokawa H, Hattori T, et al. Long-term inhibition of Rho-kinase suppresses angiotensin II-induced cardiovascular hypertrophy in rats in vivo: effect on endothelial NAD(P)H oxidase system. Circ Res 2003; 93: 767–75

    Article  PubMed  CAS  Google Scholar 

  51. Aoki H, Izumo S, Sadoshima J, et al. Angiotensin II activates RhoA in cardiac myocytes: a critical role of RhoA in angiotensin II-induced premyofibril formation. Circ Res 1998; 82: 666–76

    Article  PubMed  CAS  Google Scholar 

  52. Funakoshi Y, Ichiki T, Shimokawa H, et al. Rho-kinase mediates angiotensin II-induced monocyte chemoattractant protein-1 expression in rat vascular smooth muscle cells. Hypertension 2001; 38: 100–4

    Article  PubMed  CAS  Google Scholar 

  53. Takeda K, Ichiki T, Tokunou T, et al. Critical role of Rho-kinase and MEK/ERK pathways for angiotensin II-induced Plasminogen activator inhibitor type-1 gene expression. Arterioscler Thromb Vasc Biol 2001; 21: 868–73

    Article  PubMed  CAS  Google Scholar 

  54. Cavapare A, Endolich N, Assaloni R, et al. Rho-kinase inhibition blunts renal vasoconstriction induced by distinct signaling pathways in vivo. J Am Soc Nephrol 2003; 13: 37–45

    Google Scholar 

  55. Farber HW, Loscalzo J. Pulmonary arterial hypertension. New Engl J Med 2004; 351(16): 1655–65

    Article  PubMed  CAS  Google Scholar 

  56. Abe K, Shimokawa H, Uwatoku T, et al. Long-term treatment with a Rho-kinase inhibitor improves monocrotaline-induced fatal pulmonary hypertension in rats. Circ Res 2004; 94(3): 385–93

    Article  PubMed  CAS  Google Scholar 

  57. Chitaley K, Wingard CT, Webb RC, et al. Antagonism of Rho-kinase stimulates rat penile erection via a nitric oxide-independent pathway. Nat Med 2001; 7: 119–22

    Article  PubMed  CAS  Google Scholar 

  58. Wingard CJ, Johnson JA, Holmes A, et al. Improved erectile function after Rhokinase inhibition in a rat model of erectile dysfunction. Am J Physiol Regul Integr Comp Physiol 2003; 284: R1572–9

    PubMed  CAS  Google Scholar 

  59. Hashimoto R, Nakamura Y, Kosako H, et al. Distribution of Rho-kinase in the bovine brain. Biochem Biophys Res Commun 1999; 263: 575–9

    Article  PubMed  CAS  Google Scholar 

  60. Olenik C, Barth H, Just I, et al. Gene expression of the small GTP-binding proteins RhoA, RhoB, Rac1, and Cdc42 in adult rat brain. Brain Res Mol Brain Res 1997; 52: 263–9

    Article  PubMed  CAS  Google Scholar 

  61. Hirose M, Ishizaki T, Watanabe N, et al. Molecular dissection of the Rhoassociated protein kinase (p160ROCK)-regulated neunte remodeling in neuroblastoma N1E-115 cells. J Cell Biol 1998; 141: 1625–36

    Article  PubMed  CAS  Google Scholar 

  62. Bito H, Furuyashiki T, Ishihara H, et al. A critical role for a Rho-associated kinase, p160ROCK, in determining axon outgrowth in mammalian CNS neurons. Neuron 2000; 26: 431–41

    Article  PubMed  CAS  Google Scholar 

  63. Maekawa M, Ishizaki T, Boku S, et al. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 1999; 285: 895–8

    Article  PubMed  CAS  Google Scholar 

  64. Fischer M, Kaech S, Knutti D, et al. Rapid acti-based plasticity in dendritic spines. Neuron 1998; 20: 847–54

    Article  PubMed  CAS  Google Scholar 

  65. Engert F, Bonhoeffer T. Densritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 1999; 399: 66–70

    Article  PubMed  CAS  Google Scholar 

  66. Yamaguchi Y, Katoh H, Yasui H, et al. Gα12 and Gα13 inhibit Ca2+-dependent exocytosis through Rho/Rho-associated kinase-dependent pathway. J Neurochem 2000; 75: 708–17

    Article  PubMed  CAS  Google Scholar 

  67. Ito K, Hirooka Y, Sakai K, et al. Rho/Rho-kinase pathway in brain stem contributes to blood pressure regulation via sympathetic nervous system: possible involvement in neural mechanisms of hypertension. Circ Res 2003; 92: 1337–43

    Article  PubMed  CAS  Google Scholar 

  68. Eshima K, Hirooka Y, Shigematsu H, et al. Angiotensin in the nucleus tractus solitarii contributes to neurogenic hypertension caused by chronic nitric oxide synthase inhibition. Hypertension 2000; 36: 259–63

    Article  PubMed  CAS  Google Scholar 

  69. Ito K, Hirooka Y, Kishi T, et al. Rho/Rho-kinase pathway in the brainstem contributes to hypertension caused by chronic nitric oxide synthase inhibition. Hypertension 2004; 43: 156–62

    Article  PubMed  CAS  Google Scholar 

  70. Ito K, Hirooka Y, Sagara Y, et al. Inhibition of Rho-kinase in the brainstem augments baroreflex control of heart rate in rats. Hypertension 2004; 44: 478–83

    Article  PubMed  CAS  Google Scholar 

  71. Sato M, Tani E, Fujikawa H, et al. Involvement of Rho-kinase-mediated phosphorylation of myosin light chain in enhancement of cerebral vasospasm. Circ Res 2000; 87: 195–200

    Article  PubMed  CAS  Google Scholar 

  72. Wickman G, Lan C, Vollrath B. Functional roles of the Rho/Rho-kinase pathway and protein kinase C in the regulation of cerebrovascular constriction mediated by hemoglobin: relevance to subarachnoid hemorrhage and Vasopressin. Circ Res 2003; 92: 809–16

    Article  PubMed  CAS  Google Scholar 

  73. Lan C, Das D, Wloskowicz A, et al. Endothelin-1 modulates hemoglobin-mediated signaling in cerebrovascular smooth muscle via RhoA/Rho-kinase and protein kinase C. Am J Physiol Heart Circ Physiol 2004; 286: H165–73

    Article  PubMed  CAS  Google Scholar 

  74. Kim I, Leinweber BD, Morgalla M, et al. Thin and thick filament regulation of contractility in experimental cerebral vasospasm. Neurosurgery 2000; 46: 440–7

    Article  PubMed  CAS  Google Scholar 

  75. Shibuya M, Suzuki Y, Sugita K, et al. Effect of AT877 on cerebral vasospasm after aneurysmal subarachnoid hemorrhage: results of a prospective, placebo controlled, double blind trial. J Neurosurg 1992; 76: 571–7

    Article  PubMed  CAS  Google Scholar 

  76. Nakashima S, Tabuchi K, Shimokawa S, et al. Combination therapy of fasudil hydrochloride and ozagrel sodium for cerebral vasospasm following aneurysmal subrachnoid hemorrhage. Neurol Med Chir 1998; 38: 805–11

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank all co-workers at the Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences.

This research was supported by grants-in-aid for scientific research from the Ministry of Education, Science, Sports, and Culture of Japan (A13307024, B12470158, and C13670921). The authors have provided no information on conflicts of interest directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshitaka Hirooka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirooka, Y., Shimokawa, H. Therapeutic Potential of Rho-Kinase Inhibitors in Cardiovascular Diseases. Am J Cardiovasc Drugs 5, 31–39 (2005). https://doi.org/10.2165/00129784-200505010-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129784-200505010-00005

Keywords

Navigation