Skip to main content
Log in

Hypercoagulability in Renal Transplant Recipients

Identifying Patients at Risk of Renal Allograft Thrombosis and Evaluating Strategies for Prevention

  • Leading Article
  • Published:
American Journal of Cardiovascular Drugs Aims and scope Submit manuscript

Abstract

Renal transplantation improves survival and quality of life for patients with end-stage renal disease (ESRD). Improvements in immunosuppressive therapy have reduced early allograft loss due to acute rejection to very low levels. Early allograft loss, due to acute thrombotic complications, remains a constant and proportionally increasing complication of renal transplantation. Identifying risk factor(s) for thrombosis amenable to preventive strategies has been elusive. Epidemiological studies have attempted to define risk in terms of modifiable (drugs, dialysis modality, surgical procedure) and non-modifiable (age, diabetes mellitus, vascular anomalies) factors, or identify changes in coagulation or fibrinolysis promoting a more thrombotic state. Most recently the evolution of thrombophilia research has established the potential for inherited hypercoagulability to predispose to acute allograft thrombosis. Inheritance of the factor V Leiden (FVL), prothrombin G20210A mutation, or the presence of antiphospholipid antibodies (APA) may increase the risk of renal allograft thrombosis approximately 3-fold in selected patients. Patients with ESRD due to systemic lupus erythematosus (SLE) appear at particularly high risk of thrombosis, especially if they have either APA or detectable β2-glycoprotein-1. Data for other hypercoagulable states such as hyperhomocystinemia or the C677T polymorphism of the methylenetetrahydrofolate reductase gene are deficient. Patients with APA, FVL, or prothrombin G20210A mutation also appear to have greater graft loss due to vascular rejection, possibly reflecting immunological injury upon the vascular wall exacerbated or induced by the prothrombotic state. While substantial in vitro data suggest cyclosporine is prothrombotic, an independent clinical association with allograft thrombosis is unproven. Interventions to reduce thrombotic risk including heparin, warfarin, and aspirin have been evaluated in both selected high-risk groups (heparin and warfarin) and unselected populations (heparin and aspirin). In unselected patients at low clinical risk, aspirin (75–150 mg/day) with or without a short period of unfractionated heparin (5000U twice a day for 5 days) appears to reduce the risk of renal allograft thrombosis significantly with a low risk of bleeding, especially when compared with low molecular weight heparins which risk accumulation in renal failure. In high-risk groups (identified thrombophilic risk factor, previous thrombosis, or SLE) longer period of heparin, with or without aspirin and maintenance with warfarin, should be considered. Re-transplantation following graft loss due to vascular thrombosis can be undertaken with a low risk of recurrence. Further prospective studies evaluating both putative risk factors and intervention strategies are required to determine whether routine clinical screening for thrombophilic factors is justified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III
Fig. 1

Similar content being viewed by others

References

  1. Suthanthiran M, Strom TB. Renal transplantation. N Engl J Med 1994; 331(6): 365–76

    PubMed  CAS  Google Scholar 

  2. Wolfe RA, Ashby VB, Milford EL, et al. Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. N Engl J Med 1999; 341: 1725–30

    PubMed  CAS  Google Scholar 

  3. ANZDATA Report 1994. Australia and New Zealand Dialysis and Transplant Registry. Editor: Disney APS, Adelaide (SA) Australia

  4. Parrott NR. Early graft loss: the Cinderella of transplantation. Nephrol Dial Transplant 1995; 10 Suppl. 1:32–5

    PubMed  Google Scholar 

  5. Ojo AO, Hanson JA, Wolfe RA, et al. Long-term survival in renal transplant recipients with graft function. Kidney Int 2000; 57: 307–13

    PubMed  CAS  Google Scholar 

  6. Matas AJ, Humar A, Gillingham KJ, et al. Five preventable causes of kidney graft loss in the 1990s: a single centre analysis. Kidney Int 2002; 62: 704–14

    PubMed  Google Scholar 

  7. Kasiske BL. Ischemic heart disease after renal transplantation. Kidney Int 2002; 61: 356–69

    PubMed  Google Scholar 

  8. Gray DWR. Vascular and lymphatic complications after renal transplantation. In: Morris PJ, editor. Kidney transplantation. 4th ed. Philadelphia: WB Saunders Company, 1994:314–29

    Google Scholar 

  9. Bakir N, Sluiter WJ, Ploeg RJ, et al. Primary renal graft thrombosis. Nephrol Dial Transplant 1996; 11: 140–7

    PubMed  CAS  Google Scholar 

  10. Ojo AO, Hanson JA, Wolfe RA, et al. Dialysis modality and the risk of allograft thrombosis in adult renal transplant recipients. Kidney Int 1999; 55: 1952–60

    PubMed  CAS  Google Scholar 

  11. Penny MJ, Nankivell BJ, Disney APS, et al. Renal graft thrombosis. Transplantation 1994; 58(5): 565–9

    PubMed  CAS  Google Scholar 

  12. Richardson AJ, Higgins RM, Jaskowski AJ, et al. Spontaneous rupture of renal allografts: the importance of renal vein thrombosis in the cyclosporine era. Br J Surg 1990; 77(5): 558–60

    PubMed  CAS  Google Scholar 

  13. Bertina RM, Rosendaal FR. Venous thrombosis-the interaction of genes and environment. N Engl J Med 1998; 338(25): 1840–1

    PubMed  CAS  Google Scholar 

  14. Humar A, Johnson EM, Gillingham KJ, et al. Venous thromboembolic complications after kidney and kidney-pancreas transplantation. Transplantation 1998; 65(2): 229–34

    PubMed  CAS  Google Scholar 

  15. Abramowicz D, Pradier O, Marchant A, et al. Induction of thromboses within renal allografts by high-dose prophylactic OKT3. Lancet 1992; 339: 777–8

    PubMed  CAS  Google Scholar 

  16. Broyer M, Gagnadoux MF, Sierro A, et al. Preventive treatment of vascular thrombosis after kidney transplantation in children with low molecular weight heparin. Transplant Proc 1991; 23(1): 1384–5

    PubMed  CAS  Google Scholar 

  17. Murphy BG, Hill CM, Middleton D, et al. Increased renal allograft thrombosis in CAPD patients. Nephrol Dial Transplant 1994; 9: 1166–9

    PubMed  CAS  Google Scholar 

  18. Van der Vliet JA, Barendregt WB, Hoitsma AJ, et al. Increased incidence of renal allograft thrombosis after continuous ambulatory peritoneal dialysis. Clin Transplant 1996; 10: 51–4

    PubMed  Google Scholar 

  19. Nachman RL. Thrombosis and atherogenesis: molecular connections. Blood 1992; 79(8): 1897–906

    PubMed  CAS  Google Scholar 

  20. Key NS. Scratching the surface: endothelium as a regulator of thrombosis, fibrinolysis and inflammation. J Lab Clin Med 1992; 120(2): 184–6

    PubMed  CAS  Google Scholar 

  21. Bombeli T, Mueller M, Haeberli A. Anticoagulant properties of the vascular endothelium. Thromb Haemost 1997; 77(3): 408–23

    PubMed  CAS  Google Scholar 

  22. Monroe DM, Hoffman M, Roberts HR. Platelets and thrombin generation. Arterioscler Thromb Vasc Biol 2002; 22: 1381–9

    PubMed  CAS  Google Scholar 

  23. Flier JS, Underhill LH. Molecular and cellular biology of blood coagulation. N Engl J Med 1992; 326(12): 800–6

    Google Scholar 

  24. Seligsohn U, Lubetsky A. Genetic susceptibility to venous thrombosis. N Engl J Med 2001; 344(16): 1222–31

    PubMed  CAS  Google Scholar 

  25. Rosenberg RD, Bauer KA. Prothrombin activation fragment Assay. Clin Chem 1993; 39(4): 559–60

    PubMed  CAS  Google Scholar 

  26. Bauer KA, Rosenberg RD. The pathophysiology of the prethrombotic state in humans: insights gained from studies using markers of hemostatic system activation. Blood 1987; 70(2): 343–50

    PubMed  CAS  Google Scholar 

  27. Mari B, Imbert V, Belhacene N, et al. Thrombin and thrombin resceptor agonist peptide induce early events of T-cell activation and synergize with TCR cross-linking for CD69 expression and Interleukin 2 production. J Biol Chem 1994; 269: 8517–23

    PubMed  CAS  Google Scholar 

  28. Maruyama I, Shigeta K, Miyahara H, et al. Thrombin activates NK-kappa B through thrombin receptor and results in proliferation of vascular smooth muscle: role of thrombin in atherosclerosis and restenosis. Ann N Y Acad Sci 1997; 811: 429–36

    PubMed  CAS  Google Scholar 

  29. Dahlbäck B. The protein C anticoagulant system: inherited defects as basis for venous thrombosis. Thromb Res 1995; 77(1): 1–43

    PubMed  Google Scholar 

  30. Nachman RL, Silverstein R. Hypercoagulable states. Ann Intern Med 1993; 119: 819–27

    PubMed  CAS  Google Scholar 

  31. Booth NA, Bennett B. Fibrinolysis and thrombosis. Baillieres Clin Haematol 1994; 7(3): 559–71

    PubMed  CAS  Google Scholar 

  32. Schafer AI. Hypercoagulable states: molecular genetics to clinical practice. Lancet 1994; 344: 1739–42

    PubMed  CAS  Google Scholar 

  33. Federman DG, Kirsner RS. An update on hypercoagulable disorders. Arch Intern Med 2001; 161: 1051–6

    PubMed  CAS  Google Scholar 

  34. Laffan MA, Tuddenham EGD. Inherited thrombophilias. Q J Med 1997; 90: 375–8

    CAS  Google Scholar 

  35. Braddock M, Schwachtgen JL, Houston P, et al. Fluid shear stress modulation of gene expression in endothelial cells. J Biomech 1995; 28: 1515–28

    Google Scholar 

  36. Humphries SE, Panahloo A, Montgomery HE, et al. Gene-environment interaction in the determination of levels of haemostatic variables involved in thrombosis and fibrinolysis. Thromb Haemost 1997; 78(1): 457–61

    PubMed  CAS  Google Scholar 

  37. Kottke-Marchant K. Genetic polymorphisms associated with venous and arterial thrombosis. Arch Pathol Lab Med 2002; 126: 295–304

    PubMed  CAS  Google Scholar 

  38. Rosenberg RD, Aird WC. Vascular-bed-specific hemostasis and hypercoagulable states. N Engl J Med 1999; 340: 1555–64

    PubMed  CAS  Google Scholar 

  39. Irish AB. The factor V Leiden mutation and risk of renal vein thrombosis in patients with nephrotic syndrome. Nephrol Dial Transplant 1997; 12(9): 1680–3

    PubMed  CAS  Google Scholar 

  40. den Heijer M, Koster T, Blom HJ, et al. Hyperhomocysteinemia as a risk factor for deep-vein thrombosis. N Engl J Med 1996; 334: 759–62

    Google Scholar 

  41. Lockshin MD. Antiphospholipid Antibody. JAMA 1997; 227(19): 1549–51

    Google Scholar 

  42. Koester BH, Koveker GB, Potsch B, et al. Hereditary thrombophilia as a cause of recurrent transplant thromboses. Chirurg 1994; 64(10): 809–12

    Google Scholar 

  43. Morrissey PE, Ramirez PJ, Gohh RY, et al. Management of thrombophilia in renal transplant recipients. Am J Transplant 2002; 2(9): 872–6

    PubMed  Google Scholar 

  44. Dahlback B, Carlsson M, Svensson PJ. Familial thrombophilia due to a previously unrecognised mechanism characterised by poor anticoagulant response to activated protein C: prediction of a cofactor to activated protein C. Proc Natl Acad Sci U S A 1993; 90: 1004–8

    PubMed  CAS  Google Scholar 

  45. Bertina RM, Koeleman BP, Koster T, et al. Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 1994; 369: 64–7

    PubMed  CAS  Google Scholar 

  46. Rees DC, Cox M, Clegg JB. World distribution of factor V Leiden. Lancet 1995; 346: 1133–4

    PubMed  CAS  Google Scholar 

  47. Rosendaal FR, Koster T, Vandenbroucke JP, et al. High risk of thrombosis in patients homozygous for factor V Leiden (activated protein C resistance). Blood 1995; 85: 1504–8

    PubMed  CAS  Google Scholar 

  48. Ridker PM, Miletich JP, Stampfer MJ, et al. Factor V leiden and risks of recurrent idiopathic venous thromboembolism. Circulation 1995; 92(10): 2800–2

    PubMed  CAS  Google Scholar 

  49. Lindmarker P, Schulman S, Sten-Lindner M, et al. The risk of recurrent venous thromboembolism in carriers and non-carriers of the G1691A allele in the coagulation factor V gene and the G20210A allele in the prothrombin gene. Thromb Haemost 1999; 81: 684–9

    PubMed  CAS  Google Scholar 

  50. Margaglione M, D’Andrea G, Colaizzo D, et al. Coexistence of factor V leiden and factor II A20210 mutations and recurrent venous thromboembolism. Thromb Haemost 1999; 82: 1583–7

    PubMed  CAS  Google Scholar 

  51. Laffan M, Tuddenham E. Assessing thrombotic risk. BMJ 1998; 317: 520–3

    PubMed  CAS  Google Scholar 

  52. Ridker PM, Hennekens CH, Lindpainter K, et al. Mutation in the gene coding for coagulation factor V and the risk of myocardial infarction, stroke, and venous thrombosis in apparently healthy men. N Engl J Med 1995; 332: 912–7

    PubMed  CAS  Google Scholar 

  53. Fodinger M, Mannhalter C, Pabinger I, et al. Resistance to activated protein C (APC): mutation at ARG506 of coagulation factor V and vascular access thrombosis in hemodialysis patients. Nephrol Dial Transplant 1996; 11: 668–72

    PubMed  CAS  Google Scholar 

  54. Poort SR, Rosendaal FR, Reitsma PH, et al. A common genetic variationinthe3’-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood 1996; 88: 3698–703

    PubMed  CAS  Google Scholar 

  55. Margaglione M, Brancaccio V, Giuliani N, et al. Increased risk for venous thrombosis in carriers of the prothrombin G20210A gene variant. Ann Intern Med 1998; 129: 89–93

    PubMed  CAS  Google Scholar 

  56. Ridker PM, Hennekens CH, Miletich JP. G20210A mutation in prothrombin gene and risk of myocardial infarction, stroke, and venous thrombosis in a large cohort of US men. Circulation 1999; 99: 999–1004

    PubMed  CAS  Google Scholar 

  57. Kyrie PA, Mannhalter C, Beguin S, et al. Clinical studies and thrombin generation in patients homozygous or heterozygous for the G20210A mutation in the prothrombin gene. Arterioscler Thromb Vasc Biol 1998; 18: 1287–91

    Google Scholar 

  58. Martinelli I, Sacchi E, Landi G, et al. High risk of cerebral-vein thrombosis in carriers of a prothrombin-gene mutation and in users of oral contraceptives. N Engl J Med 1998; 338(25): 1793–7

    PubMed  CAS  Google Scholar 

  59. Juhan-Vague I, Roul C, Alessi M. Increased plasma plasminogen activator inhibitor-1 levels: a possible link between insulin resistance and atherothrombosis. Diabetologia 1991; 34: 457–62

    PubMed  CAS  Google Scholar 

  60. Riley RS, Friedline J, Rogers JS. Antiphopholipid antibodies: standardization and testing. Clin Lab Med 1997; 17(3): 395–430

    PubMed  CAS  Google Scholar 

  61. Wahl DG, De Maistre E, Guillemin F, et al. Antibodies against phospholipids and β2-glycoprotein 1 increase the risk of recurrent venous thromboembolism in patients without systemic lupus erythematosus. Q J Med 1998; 91: 125–30

    CAS  Google Scholar 

  62. Pierangeli SS, Espinola RG, Liu WX, et al. Thrombogenic effects of antiphospholipid antibodies are mediated by intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and P-selectin. Circ Res 2001; 88: 245–50

    PubMed  CAS  Google Scholar 

  63. Irish AB. Fibrinogen, dyslipidaemia and the acute phase response: associations with blood pressure and cardiovascular disease in patients with chronic renal disease. Atherosclerosis 1998; 137: 133–9

    PubMed  CAS  Google Scholar 

  64. Irish AB. Plasminogen activator inhibitor-1 activity in chronic renal disease and dialysis. Metabolism 1997; 46(1): 36–40

    PubMed  CAS  Google Scholar 

  65. Irish AB, Green FR. Factor VII coagulant activity (VIIc) and hypercoagulability in chronic renal disease and dialysis: relationship with dyslipidaemia, inflammation and factor VII genotype. Nephrol Dial Transplant 1998; 13: 679–84

    PubMed  CAS  Google Scholar 

  66. Tomura S, Nakamura Y, Doi M, et al. Fibrinogen, coagulation factor VU, tissue plasminogen activator, plasminogen activator inhibitor-1, and lipids as cardiovascular risk factors in chronic haemodialysis and continuous ambulatory peritoneal dialysis patients. Am J Kidney Dis 1996; 27(6): 848–54

    PubMed  CAS  Google Scholar 

  67. Vaziri ND, Gonzales EC, Wang J, et al. Blood coagulation, fibrinolytic, and inhibitory proteins in end-stage renal disease: effect of hemodialysis. Am J Kidney Dis 1994; 23(6): 828–35

    PubMed  CAS  Google Scholar 

  68. Walkowiak B, Pawlowska Z, Michalak E, et al. Expression of fibrinogen receptors on platelets of uremic patients is correlated with the content of GPIIb and plasma level of creatinine. Thromb Haemost 1994; 71(2): 164–8

    PubMed  CAS  Google Scholar 

  69. Diaz-Ricart M, Estebanell E, Cases A, et al. Abnormal platelet cytoskeleton assembly in hemodialyzed patients results in deficient tyrosine phosphorylation signaling. Kidney Int 2000; 57(5): 1905–14

    PubMed  CAS  Google Scholar 

  70. Baker LRI, Tucker B, Kovacs IB. Enhanced in vitro hemostasis and reduced thrombolysis in cyclosporinee-treated renal transplant recipients. Transplantation 1990; 49(5): 905–9

    PubMed  CAS  Google Scholar 

  71. Garcia-Maldonaldo M, Kaufman CE, Comp PC. Decrease in endothelial cell-dependent Protein C activation induced by thrombomodulin by treatment with cyclosporinee. Transplantation 1991; 51(3): 701–5

    Google Scholar 

  72. Brunkwall J, Bergqvist D, Almer L-O, et al. Tissue plasminogen activator, its fast acting plasma inhibitor and Protein C after renal transplantation. Thromb Res 1995; 77(1): 105–11

    PubMed  CAS  Google Scholar 

  73. Koppensteiner R, Derfler K, Ehringer H. Blood rheology after renal transplantation. Nephron 1996; 74: 328–32

    PubMed  CAS  Google Scholar 

  74. Irish AB, Green FR. Environmental and genetic determinants of the hypercoagulable state and cardiovascular disease in renal transplant recipients. Nephrol Dial Transplant 1997; 12: 167–73

    PubMed  CAS  Google Scholar 

  75. Allen RD, Michie CA, Murie JA, et al. Deep venous thrombosis after renal transplantation. Surg Gynecol Obstet 1987; 164: 137–42

    PubMed  CAS  Google Scholar 

  76. Wang Y, Turner N, An SF, et al. Gene expression of plasmimogen activator inhibitor 1 in transplant kidneys complicated by renal vein thrombosis: a combined study by in-situ hybridization and immunohistochemistry. Nephrol Dial Transplant 1994; 9: 296–303

    PubMed  CAS  Google Scholar 

  77. Vanrenterghem Y, Roels L, Lerut T, et al. Thromboembolic complications and haemostatic changes in cyclosporine-treated cadaveric kidney allograft recipients. Lancet 1985; I: 999–1002

    Google Scholar 

  78. Carlsen E, Prydz H. Enhancement of procoagulant activity in stimulated mononuclear blood cells and monocytes by cyclosporinee. Transplantation 1987; 43(4): 543–8

    CAS  Google Scholar 

  79. Fishman SJ, Wylonis LJ, Glickman JD, et al. cyclosporine A augments human platelet sensitivity to aggregating agents by increasing fibrinogen receptor availability. J Surg Res 1991; 51: 93–8

    PubMed  CAS  Google Scholar 

  80. Bombeli T, Müller M, Werner Straub P, et al. cyclosporinee-induced detachment of vascular endothelial cells initiates the extrinsic coagulation system in plasma and whole blood. J Lab Clin Med 1996; 127: 621–34

    PubMed  CAS  Google Scholar 

  81. Rigotti P, Flechner SM, Van Buren CT, et al. Increased incidence of renal allograft thrombosis under cyclosporinee immunosuppression. Int Surg 1986; 71(1): 38–41

    PubMed  CAS  Google Scholar 

  82. Jones RM, Murie JA, Ting A, et al. Renal vascular thrombosis of cadaveric renal allografts in patients receiving cyclosporinee, azathioprine and prednisone triple therapy. Clin Transplant 1988; 2: 124–8

    Google Scholar 

  83. Gruber SA, Chavers B, Payne WD, et al. Allograft renal vascular thrombosis-lack of increase with cyclosporinee immunosuppression. Transplantation 1989; 47(3): 475–8

    PubMed  CAS  Google Scholar 

  84. Hohage H, Arlt M, Bruckner D, et al. Effects of cyclosporine A and FK 506 on lipid metabolism and fibrinogen in kidney transplant recipients. Clin Transplant 1997; 11: 225–30

    PubMed  CAS  Google Scholar 

  85. Irish AB, Green FR, Gray DW, et al. The factor V Leiden (R506Q) mutation and risk of thrombosis in renal transplant recipients. Transplantation 1997; 64(4): 604–7

    PubMed  CAS  Google Scholar 

  86. Fischereder M, Gohring P, Schneeberger HS, et al. Early loss of renal transplants in patients with thrombophilia. Transplantation 1998; 65(7): 936–9

    PubMed  CAS  Google Scholar 

  87. Heidenreich S, Dercken C, August C, et al. High rate of acute rejections in renal allograft recipients with thrombophilic risk factors. J Am Soc Nephrol 1998; 9: 1309–13

    PubMed  CAS  Google Scholar 

  88. Ekberg H, Svensson PJ, Simanaitis M, et al. Factor V R506Q mutation (Activated Protein C Resistance) is an additional risk factor for early renal graft loss associated with acute vascular rejection. Transplantation 2000; 69(8): 1577–81

    PubMed  CAS  Google Scholar 

  89. Oh J, Schaefer F, Veldman A, et al. Heterozygous prothrombin gene mutation: a new risk factor for early renal allograft thrombosis. Transplantation 1999; 68(4): 575–8

    PubMed  CAS  Google Scholar 

  90. Fischereder M, Schneeberger H, Lohse P, et al. Increased rate of renal transplant failure in patients with the G20210A mutation of the prothrombin gene. Am J Kidney Dis 2001; 38(5): 1061–4

    PubMed  CAS  Google Scholar 

  91. Heidenreich S, Junker R, Wolters H, et al. Outcome of kidney transplantation in patients with inherited thrombophilia: data of a prospective study. J Am Soc Nephrol 2003; 14: 234–9

    PubMed  Google Scholar 

  92. Pherwani AD, Winter PC, McNamee PT, et al. Is screening for factor V leiden and prothrombin G20210A mutations in renal transplantation worthwhile? Results of a large single-centre U.K. study. Transplantation 2003; 76: 603–5

    PubMed  CAS  Google Scholar 

  93. Wagenknecht DR, Becker DG, Lefor WM, et al. Antiphospholipid antibodies are a risk factor for early renal allograft failure. Transplantation 1999; 68(2): 241–6

    PubMed  CAS  Google Scholar 

  94. Wüthrich RP, Cicvara-Muzar S, Booy C, et al. Heterozygosity for the factor V leiden (G1691 A) mutation predisposes renal transplant recipients to thrombotic complications and graft loss. Transplantation 2001; 72(3): 549–50

    PubMed  Google Scholar 

  95. Robertson AJ, Nargund V, Gray DWR, et al. Low dose aspirin as prophylaxis against renal-vein threombosis in renal-transplant recipients. Nephrol Dial Transplant 2000; 15: 1865–8

    PubMed  CAS  Google Scholar 

  96. Murphy GJ, Taha R, Windmill DC, et al. Influence of aspirin on early allograft thrombosis and chronic allograft nephropathy following renal transplantation. Br J Surg 2001; 88: 261–6

    PubMed  CAS  Google Scholar 

  97. Friedman GS, Meier-Kreische H-U, Kaplan B, et al. Hypercoagulable states in renal transplant candidtaes: impact of anticoagulation upon incidence of renal allograft thrombosis. Transplantation 2001; 72(6): 1073–8

    PubMed  CAS  Google Scholar 

  98. Green FR. Genetic predisposition to thrombosis in renal transplant recipients: the factor V Q506 (Leiden) allele. Transplantation 2000; 69: 1547–8

    PubMed  CAS  Google Scholar 

  99. Murphy B. Genetic polymorphisms and transplantation. Am J Kidney Dis 2001; 38(5): 1115–8

    PubMed  CAS  Google Scholar 

  100. Knight RJ, Schanzer H, Rand JH, et al. Renal allograft thrombosis associated with the antiphospholipid antibody syndrome. Transplantation 1995; 60(6): 614–5

    PubMed  CAS  Google Scholar 

  101. Ducloux D, Pellet E, Fournier V, et al. Prevalence and clinical significance of antiphospholipid antibodies in renal transplant recipients. Transplantation 1999; 67(1): 90–3

    PubMed  CAS  Google Scholar 

  102. Manns BM, Burgess ED, Parsons HG, et al. Hyperhomocysteinaemia, anticardiolipin antibody status, and risk of vascular access thrombosis in hemodialysis patients. Kidney Int 1999; 55(1): 315–20

    PubMed  CAS  Google Scholar 

  103. Sitter T, Schiffl H. Anticardiolipid antibodies in patients on regular haemodialysis: an epiphenomenon? Nephron 1993; 64(4): 655–6

    PubMed  CAS  Google Scholar 

  104. Vaidya S, Sellers R, Kimball P, et al. Frequency, potential risk and therapeutic interventions in end-stage renal disease patients with antiphospholipid antibody syndrome. Transplantation 2000; 69(7): 1348–52

    PubMed  CAS  Google Scholar 

  105. Radharkrishnan J, Williams GS, Appel GB, et al. Renal transplantation in anticardiolipin antibody positive lupus erythematosus patients. Am J Kidney Dis 1994; 23: 286–9

    Google Scholar 

  106. Stone JH, Amend WJ, Criswell LA. Antiphopholipid antibody syndrome in renal transplantation: occurrence of clinical events in 96 consecutive patients with systemic lupus erythematosus. Am J Kidney Dis 1999; 34: 1040–7

    PubMed  CAS  Google Scholar 

  107. Clagett GP, Anderson FA, Geerts W, et al. Prevention of venous thromboembolism. Chest 1998; 114: 531S–60S

    PubMed  CAS  Google Scholar 

  108. Ubhi CS, Lam FT, Mavor AID, et al. Subcutaneous heparin therapy for cyclosporinee-immunosuppressed renal allograft recipients. Transplantation 1989; 48(5): 886–7

    PubMed  CAS  Google Scholar 

  109. Alkhunaizi AM, Olyaei AJ, Barry JM, et al. Efficacy and safety of low molecular weight heparin in renal transplantation. Transplantation 1998; 66(4): 533–4

    PubMed  CAS  Google Scholar 

  110. Evans SM, Giddings JC, Muraki T, et al. Expression of von Willebrand factor, Pselectin (CD62P) and thrombomodulin in human endothelial cells in culture modulated by cyclosporine A. Clin Lab Haematol 1997; 19: 115–22

    PubMed  CAS  Google Scholar 

  111. PEP Trial Collaborative Group. Prevention of pulmonary embolism and deep vein thrombosis with low dose aspirin: Pulmonary Embolism Prevention (PEP) trial. Lancet 2000; 355: 1295–302

    Google Scholar 

  112. Shullo MA, Rose ML, Vivas C, et al. Hemorrhagic complications of enoxaparin and aspirin in patients with kidney transplants. Pharmacotherapy 2002; 22(2): 184–7

    PubMed  CAS  Google Scholar 

  113. Gerlach AT, Pickworth KK, Seth SK, et al. Enoxaparin and bleeding complications: a review in patients with and without renal insufficiency. Pharmacotherapy 2000; 20: 771–5

    PubMed  CAS  Google Scholar 

  114. Humar A, Key N, Ramcharan T, et al. Kidney retransplants after initial graft loss to vascular thrombosis. Clin Transplant 2001; 15: 6–10

    PubMed  CAS  Google Scholar 

  115. Fenton JW. Thrombin and antithrombotics. Semin Thromb Hemost 1998; 24(2): 87–91

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this manuscript. The author has no conflicts of interest that are directly relevant to the content of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashley Irish.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irish, A. Hypercoagulability in Renal Transplant Recipients. Am J Cardiovasc Drugs 4, 139–149 (2004). https://doi.org/10.2165/00129784-200404030-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129784-200404030-00001

Keywords

Navigation