Skip to main content
Log in

Pharmacokinetic Considerations in the Treatment of Childhood Epilepsy

  • Review Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Organogenesis throughout childhood affects almost every aspect of pediatric pharmacotherapy. The antiepileptic drugs (AEDs) are particularly impacted since most elimination rates are diminished for the first 6 months of infancy, but quickly attain and supersede adult values. When children enter a hypermetabolic stage, large doses of AEDs may be necessary to maintain effective serum concentrations. Medication noncompliance is frequently confused as hypermetabolism, since both present with low serum drug concentrations. Amazingly, noncompliance among children with chronic illness approaches a similar incidence to that reported in the adult population. It is obviously important to include this in the differential diagnosis of the etiology of subtherapeutic serum AED concentrations.

Maturational differences also affect gastrointestinal drug absorption. Intestinal transit time and absorptive surface area are both diminished in young children. Drug delivery systems suitable in adults may not deliver the total dosage in children. Differences in the composition of body compartments and protein binding can alter the volume of drug distribution and, consequently, serum concentrations.

In addition to pathophysiologic changes, there is evidence to suggest differences between a mature and immature brain. These differences include quantitative and qualitative responses to neurotransmitters. Hence, it is understandable why seizure semiology is different in children compared with adults. This constellation of factors contributes to the challenges of caring for children with epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Table II

Similar content being viewed by others

Notes

  1. The use of tradenames is for product identification purposes only and does not imply endorsement.

References

  1. Gottlieb A, Keydor I, Epstein HT. Rodent brain growth stages: an analytical review. Bio Neonate 1977; 32: 166–7

    Article  CAS  Google Scholar 

  2. Mares P, Trojan S. Ontogenetic development of isonicotine-hydrazide-induced seizures in rats. Brain Dev 1991; 13: 121–5

    Article  PubMed  CAS  Google Scholar 

  3. Velisek L, Kubova H, Pohl M, et al. Pentylenetetrazol-induced seizures in rats: an ontogenetic study. Naunyn Schmiedebergs Arch Pharmacol 1992; 346: 588–91

    Article  PubMed  CAS  Google Scholar 

  4. Zouhar A, Mares P, Liskova-Bernaskova K, et al. Motor and electrocorticographic epileptic activity induced by bicuculline in developing rats. Epilepsia 1989; 30: 501–10

    Article  PubMed  CAS  Google Scholar 

  5. Coyle JT, Enna SJ. Neurochemical aspects of the ontogenesis of GABAergic neurons in the rat brain. Brain Res 1976; 111: 119–33

    Article  PubMed  CAS  Google Scholar 

  6. Michelson HB, Lothman EW. An in vivo electrophysiologic study of the ontogeny of excitatory and inhibitory processes in rat hippocampus. Brain Res Dev Brain Res 1989; 46: 113–22

    Article  Google Scholar 

  7. Swann JW, Brady RJ. Penicillin-induced epileptogenesis in immature rats’ CA3 hippocampal pyramidal cells. Brain Res 1984; 12: 243–54

    Article  Google Scholar 

  8. Moshe SL, Garant DS. Substantia nigra GABA receptors can mediate anticonvulsant or proconvulsant effects. Epilepsy Res Suppl 1996; 12: 247–56

    PubMed  CAS  Google Scholar 

  9. Xu SG, Garant DS, Sperber EF, et al. The proconvulsant effect of nigral infusion of THIP on flurothyl-induced seizures in rat pups. Brain Res Dev Brain Res 1992; 68: 275–7

    Article  PubMed  CAS  Google Scholar 

  10. Moshe SL. Seizures in the developing brain. Neurology 1993; 43Suppl. 5: S3–7

    PubMed  CAS  Google Scholar 

  11. Veliskova J, Velisek L, Moshe SL. Age-specific effects of baclofen on pentylenetetrazol-induced seizures in developing rats. Epilepsia 1996; 37(8): 718–22

    Article  PubMed  CAS  Google Scholar 

  12. Lockman LA, Driel R, Zaske D, et al. Phenobarbital dosage for control of neonatal seizures. Neurology 1979; 29: 1445–9

    Article  PubMed  CAS  Google Scholar 

  13. Painter MJ, Pippenger C, MacDonald H, et al. Phenobarbital and diphenylhydantoin levels in neonates with seizures. J Pediatr 1978; 92: 315–9

    Article  PubMed  CAS  Google Scholar 

  14. Gal P, Toback J, Boer HR, et al. Efficacy of phenobarbital monotherapy in treatment of neonatal seizures in relationship to blood levels. Neurology 1982; 32: 1401–4

    Article  PubMed  CAS  Google Scholar 

  15. Gilman JT, Gal P, Duchowny MS, et al. Rapid sequential phenobarbital treatment of neonatal seizures. Pediatrics 1989; 83: 674–8

    PubMed  CAS  Google Scholar 

  16. Houghton GW, Richens A, Toseland PA, et al. Brain concentrations of phenytoin, phenobarbitone and primidone in epileptic patients. Eur J Clin Pharmacol 1975; 9: 73–8

    Article  PubMed  CAS  Google Scholar 

  17. Onishi S, Yoshihi O, Nishimura Y, et al. Distribution of phenobarbital in serum, brain and other organs from pediatric patients. Dev Pharmacol Ther 1984; 7: 153–9

    PubMed  CAS  Google Scholar 

  18. Painter MJ, Pippenger CE, Wasterlein C, et al. Phenobarbital and phenytoin in neonatal seizures: metabolism and tissue distribution. Neurology 1981; 31: 1107–12

    Article  PubMed  CAS  Google Scholar 

  19. Sherwin AL, Eisen AA, Sokolowski CD. Anticonvulsant drugs in human epileptogenic brain. Arch Neurol 1973; 29: 73–7

    Article  PubMed  CAS  Google Scholar 

  20. Gilman JT, Gal P. Pharmacokinetic and pharmacodynamic data collection in children and neonates. Clin Pharmacokinet 1992; 23(1): 1–9

    Article  PubMed  CAS  Google Scholar 

  21. Gilman JT. Developmental principles of antiepileptic drug therapy. J Child Neurol 1994; 9Suppl. 1: S20–25

    Article  PubMed  Google Scholar 

  22. Gilman JT. Intractable childhood epilepsy: issues in pharmacotherapy. J Epilepsy 1990; 3Suppl. 1: 21–4

    Google Scholar 

  23. Gilman JT. Drug treatment: children. In: Oxbury J, Polkey C, Duchowny M, editors. Intractable focal epilepsy. New York: WB Saunders, 2000: 491–504

    Google Scholar 

  24. Radde IC. Mechanisms of drug absorption and their development. In: MacLeod SM, Radde ID, editors. Textbook of pediatric clinical pharmacology. Littleton (MA): PSG Publishing, 1985: 17–43

    Google Scholar 

  25. Agunod M, Yonaguchi N, Lopez R, et al. Correlative study of hydrochloric acid, pepsin and intrinsic factor secretion in newborns and infants. Am J Dig Dis 1969; 14: 400–14

    Article  PubMed  CAS  Google Scholar 

  26. Grand RJ, Watkins JB, Torti FM. Development of the human gastrointestinal tract: a review. Gastroenterology 1976; 70: 400–14

    Google Scholar 

  27. Leff RD, Fischer LJ, Roberts RJ. Phenytoin metabolism in infants following intravenous and oral administration. Dev Pharmacol Ther 1986; 9: 217–23

    PubMed  CAS  Google Scholar 

  28. Whelan HT, Hendeles L, Haberkern CM, et al. High intravenous phenytoin dosage requirement in a newborn infant. Neurology 1983; 33: 106–8

    Article  PubMed  CAS  Google Scholar 

  29. Morselli PL. Development of physiological variables important for drug kinetics. In: Morselli PL, Pippenger CE, Penry JK, editors. Antiepileptic drug therapy in pediatrics. New York: Raven Press, 1983: 1–12

    Google Scholar 

  30. Gilman JT, Duchowny MS, Resnick TJ, et al. Carbamazepine malabsorption: a case report. Pediatrics 1988; 82: 518–9

    PubMed  CAS  Google Scholar 

  31. Nelson JD, Shelton S, Kusmiesz HT, et al. Absorption of ampicillin and nalidixic acid by infants and children with acute shigellosis. Clin Pharmacol Ther 1972; 13: 879–86

    PubMed  CAS  Google Scholar 

  32. Heimann G. Enteral absorption and bioavailability in relation to age. Eur J Clin Pharmacol 1980; 18: 43–50

    Article  PubMed  CAS  Google Scholar 

  33. Friis-Hansen B. Body composition during growth: in vivo measurements and biochemical data correlated to differential anatomical growth. Pediatrics 1971; 47Suppl. 2: 264–74

    PubMed  CAS  Google Scholar 

  34. Kearns GL, Reed MD. Clinical pharmacokinetics in infants and children: a reappraisal. Clin Pharmacokinet 1989; 17Suppl. 1: 29–67

    Article  PubMed  Google Scholar 

  35. Radde IC. Drugs and protein binding. In: MacLeod SM, Radde IC, editors. Textbook of pediatric clinical pharmacology. Littleton (MA): PSG Publishing, 1985: 32–43

    Google Scholar 

  36. Brinkschulte M, Breyer-Pfaff V. Increased binding of desmethyl-imipramine in plasma of phenobarbital-treated rats. Biochem Pharmacol 1982; 31: 1749–54

    Article  PubMed  CAS  Google Scholar 

  37. Tiula E, Neuvonen PJ. Antiepileptic drugs and alpha1-acid glycoprotein [letter]. N Engl J Med 1982; 3: 1148

    Google Scholar 

  38. Riva R, Contin M, Albani F, et al. High alpha1 -acid glycoprotein concentrations in serum of epileptic children being treated with carbamazepine. Clin Chem 1985; 31: 150–1

    PubMed  CAS  Google Scholar 

  39. Bruguerolle B, Jadot G, Bussiere H. Together, phenobarbital and carbamazepine lower alpha1-acid glycoprotein concentration in plasma of epileptic patients. Clin Chem 1984; 30: 590–1

    PubMed  CAS  Google Scholar 

  40. Zini R, Riant P, Barre J, et al. Disease-induced variations in plasma protein levels: implications for drug dosage regimen (part I). Clin Pharmacokinet 1990; 19: 147–59

    Article  PubMed  CAS  Google Scholar 

  41. Albani F, Riva R, Procaaccianti G, et al. Free fraction of valproic acid: in vitro time-dependent increase and correlation with free fatty acid concentration in human plasma and serum. Epilepsia 1983; 24: 65–73

    Article  PubMed  CAS  Google Scholar 

  42. Morton LD, Pellock JM, Maria BL, et al. Fosphenytoin safety and pharmacokinetics in children [abstract]. Epilepsia 1997; 38Suppl. 8: 194

    Google Scholar 

  43. Bach B, Hansen JM, Kampmann JP, et al. Disposition of antipyrine and phenytoin correlated with age and liver volume in man. Clin Pharmacokinet 1981; 6: 389–96

    Article  PubMed  CAS  Google Scholar 

  44. Gilman JT. Carbamazepine dosing for pediatric seizure disorders: the highs and lows. Ann Pharmacother 1991; 25: 1109–12

    CAS  Google Scholar 

  45. Battino D, Bossi L, Croci D, et al. Carbamazepine plasma levels in children and adults: influence of age, dose and associated therapy. Ther Drug Monit 1980; 2: 315–22

    PubMed  CAS  Google Scholar 

  46. Hall K, Otten N, Johnston B, et al. A multivariable analysis of factors governing the steady-state pharmacokinetics of valproic acid in 52 young epileptics. J Clin Pharmacol 1985; 25: 261–8

    PubMed  CAS  Google Scholar 

  47. Pynnonen S, Sillanpaa M, Frey H, et al. Carbamazepine and its 10,11-epoxide in children and adults with epilepsy. Eur J Clin Pharmacol 1977; 11: 129–33

    Article  PubMed  CAS  Google Scholar 

  48. Pippenger EC. Maturation of biotransformation rates. In: Morseli PL, Pippenger CE, Penry JK, editors. Antiepileptic drug therapy in pediatrics. New York: Raven Press, 1983: 333–8

    Google Scholar 

  49. Cramer JA. Optimizing long-term patient compliance. Neurology 1995; 45Suppl. 1: S25–28

    PubMed  CAS  Google Scholar 

  50. Virani A, Mailis A, Shapiro LE, et al. Drug interactions in human neuropathic pain pharmacotherapy. Pain 1997; 73: 3–13

    Article  PubMed  CAS  Google Scholar 

  51. Tatum WO, Gonzalez MA. Carbamazepine toxicity in an epileptic induced by clarithromycin. Hosp Pharm 1994; 29: 45–6

    Google Scholar 

  52. Wong YY, Ludden TM, Bell RD. Effect of erythromycin on carbamazepine kinetics. Clin Pharmacol Ther 1983; 33(4): 460–4

    Article  PubMed  CAS  Google Scholar 

  53. Bauer LA. Interference of oral phenytoin absorption by continuous nasogastric feedings. Neurology 1982; 32: 570–2

    Article  PubMed  CAS  Google Scholar 

  54. Krueger KA, Garnett WR, Comstock TJ, et al. Effect of two administration schedules of an enteral nutrient formula on phenytoin bioavailability. Epilepsia 1987; 28: 706–12

    Article  PubMed  CAS  Google Scholar 

  55. Zaccara G, Messori A, Moroni F. Clinical pharmacokinetics of valproic acid -1988. Clin Pharmacokinet 1988; 15: 367–89

    Article  PubMed  CAS  Google Scholar 

  56. Maly MM, Gidal BE, Rutecki P, et al. Effect of lamotrigine on carbamazepine epoxide/carbamazepine serum-concentration ratios [letter]. Epilepsia 1997; 38Suppl. 8: 101

    Google Scholar 

  57. Gilman JT. Perspectives on AED interactions. In: Pellock JM, editor. Pediatric epilepsy diagnosis and therapy. 2nd ed. Baltimore (MD): Williams and Wilkins, 2000: 555–8

    Google Scholar 

  58. Scarpa P, Carassini B. Partial epilepsy in childhood: clinical and EEG study of 261 cases. Epilepsia 1982; 23: 333–41

    Article  PubMed  CAS  Google Scholar 

  59. Resnick TJ. Criteria for surgical evaluation in children with uncontrolled seizures. J Epilepsy 1990; 3Suppl. 1: 35–40

    Google Scholar 

  60. Ramsay ER, Wilder BJ, Berger JR, et al. A double-blind study comparing carbamazepine with phenytoin as initial seizure therapy in adults. Neurology 1983; 33: 904–10

    Article  PubMed  CAS  Google Scholar 

  61. Mattson RH, Cramer JA, Collins JF, et al. Comparison of carbamazepine, phenobarbital, phenytoin and primidone impartial and secondarily generalized tonic-clonic seizures. N Engl J Med 1985; 313: 145–51

    Article  PubMed  CAS  Google Scholar 

  62. Mattson RH, Cramer JA, Collins JF, et al. A comparison of valproate with carbamazepine for the treatment of complex partial seizures and secondarily generalized tonic-clonic seizures in adults. N Engl J Med 1992; 327: 765–71

    Article  PubMed  CAS  Google Scholar 

  63. Chen C, Casale EJ, Duncan B, et al. Pharmacokinetics of lamotrigine in children in the absence of other antiepileptic drugs. Pharmacotherapy 1999; 19: 437–41

    Article  PubMed  Google Scholar 

  64. Battino D, Estienne M, Avanzini G. Clinical pharmacokinetics of antiepileptic drugs in pediatric patients (part II). Clin Pharmacokinet 1995; 29: 341–69

    Article  PubMed  CAS  Google Scholar 

  65. Battino D, Estienne M, Avanzini G. Clinical pharmacokinetics of antiepileptic drugs in pediatric patients (part I). Clin Pharmacokinet 1995; 29: 257–88

    Article  PubMed  CAS  Google Scholar 

  66. Oilman JT, Duchowny M. Childhood epilepsy: current therapeutic recommendations. CNS Drugs 1994; 1: 180–92

    Article  Google Scholar 

  67. Tennison MB, Greenwood RS, Miles MV. Methsuximide for intractable childhood seizures. Pediatrics 1991; 87: 186–9

    PubMed  CAS  Google Scholar 

  68. Shields WD, Lake JL, Chugani HT. Amantadine in the treatment of refractory epilepsy in childhood: an open trial in 10 patients. Neurology 1985; 35: 579–81

    Article  PubMed  CAS  Google Scholar 

  69. Tada H, Morooka K, Arimoto K, et al. Clinical effects of allopurinol on intractable epilepsy. Epilepsia 1991; 32(2): 279–83

    Article  PubMed  CAS  Google Scholar 

  70. Woody RC. Bromide therapy for pediatric seizure disorder intractable to other antiepileptic drugs. J Child Neurol 1990; 5: 65–7

    Article  PubMed  CAS  Google Scholar 

  71. Craig N, Gurbani SG, Miller L, et al. Ketogenic diet: evaluation of its efficacy in children with intractable epilepsy [abstract]. Epilepsia 1997; 38Suppl. 8: 197

    Google Scholar 

  72. Kinsman SL, Vining EPG, Quaskey SA, et al. Efficacy of the ketogenic diet for intractable seizure disorders: review of 58 cases. Epilepsia 1992; 33(6): 1132–6

    Article  PubMed  CAS  Google Scholar 

  73. Schmidt D. Reduction of two-drug therapy in intractable epilepsy. Epilepsia 1983; 24: 368–76

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this manuscript. The author has no conflicts of interest that are directly relevant to the content of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamie T. Gilman.

Additional information

At the time of preparation of this manuscript, Dr Gilman was affiliated to the Department of Neuroscience, Miami Children’s Hospital, Miami. Florida, USA

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilman, J.T., Duchowny, M. & Campo, A.E. Pharmacokinetic Considerations in the Treatment of Childhood Epilepsy. Pediatr-Drugs 5, 267–277 (2003). https://doi.org/10.2165/00128072-200305040-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00128072-200305040-00005

Keywords

Navigation