Skip to main content
Log in

Prediabetes in Children

Natural History, Diagnosis, and Preventive Strategies

  • Therapy In Practice
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

The clinical manifestation of type 1 diabetes mellitus is preceded by an asymptomatic prodromal period called prediabetes or preclinical diabetes. It may last from a few months to several years, during which the autoimmune destruction of the insulin-producing β-cells in the pancreas progresses. The genes on the human leukocyte antigen (HLA) and insulin gene region are major genetic determinants for genetic disease susceptibility, while dietary compounds and viral infections are the most likely environmental factors contributing to the etiopathogenesis. T cells are thought to be the effector cells for the β-cell destruction, and glutamic acid decarboxylase, insulinoma-associated protein 2 and insulin represent the three major autoantigens. Autoantibodies are early detectable markers of an ongoing disease process and are used to diagnose prediabetes. Among first-degree relatives of patients with type 1 diabetes, the risk for clinical disease can be graded from <5% in those with one or no antibodies to >90% in individuals who carry the HLA-DQB1*02/0302 risk genotype and are positive for multiple autoantibodies. β-Cell function may also be tested in autoantibody-positive individuals and low first-phase insulin response is highly predictive for rapid progression to the clinical disease. However, dynamic course and individual variation of the disease process complicates the disease prediction, and it is not known whether all individuals with signs of prediabetes will inevitably progress to clinical type 1 diabetes.

Until clinically applicable prevention for the condition exists, the screening for the risk markers of type 1 diabetes should actively be undertaken only in the context of research projects. Several major national and international multicenter studies are ongoing to test the potential of various agents (e.g. insulin and nicotinamide) or early elimination of dietary compounds (e.g. cow’s milk proteins) to delay or prevent the onset of clinical type 1 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1

Similar content being viewed by others

References

  1. White N. Diabetes mellitus in children. In: Rudolph AM, Hoffman JIE, Rudolph CD, editors. Rudolph’s pediatrics. 20th ed. Stamford (CT): Appleton & Lange, 1996: 1803–27

    Google Scholar 

  2. Onkamo P, Väänänen S, Karvonen M, et al. Worldwide increase in incidence of type I diabetes: the analysis of the data on published incidence trends. Diabetologia 1999; 42: 1395–403

    PubMed  CAS  Google Scholar 

  3. Eisenbarth GS. Type I diabetes mellitus: a chronic autoimmune disease. N Engl J Med 1986; 314: 1360–8

    PubMed  CAS  Google Scholar 

  4. Greenbaum CJ, Sears KL, Kahn SE, et al. Relationship of β-cell function and autoantibodies to progression and nonprogression of subclinical type 1 diabetes: follow-up of the Seattle Family Study. Diabetes 1999; 48: 170–5

    PubMed  CAS  Google Scholar 

  5. Gardner SG, Gale EAM, Williams AJK, et al. Progression to diabetes in relatives with islet autoantibodies: is it inevitable. Diabetes Care 1999; 22: 2049–54

    PubMed  CAS  Google Scholar 

  6. Tuomilehto J, Karvonen M, Pitkäniemi J, et al. Record-high incidence of Type I (insulin-dependent) diabetes mellitus in Finnish children. Diabetologia 1999; 42: 655–60

    PubMed  CAS  Google Scholar 

  7. Schatz DA, Bingley PJ. Update on major trials for the prevention of type 1 diabetes mellitus: the American Diabetes Prevention Trial (DPT-1) and the European Nicotinamide Diabetes Intervention Trial (ENDIT). J Pediatr Endocrinol Metab 2001; 14Suppl. 1: 619–22

    PubMed  Google Scholar 

  8. Gepts W. Pathological anatomy of human pancreas in juvenile diabetes mellitus. Diabetes 1965; 14: 619–33

    PubMed  CAS  Google Scholar 

  9. Singal DP, Blajchman MA. Histocompatibility (HL-A) antigens, lymphocytotoxic antibodies and tissue antibodies in patients with diabetes mellitus. Diabetes 1973; 22: 429–32

    PubMed  CAS  Google Scholar 

  10. Barbosa J, Chern MM, Reinsmoen N, et al. HLA-Dw antigens in unrelated juvenile, insulin-dependent diabetics. Tissue Antigens 1979; 14: 426–36

    PubMed  CAS  Google Scholar 

  11. Bottazzo GF, Florin-Christensen A, Doniach D. Islet-cell antibodies in diabetes mellitus with autoimmune polyendocrine deficiencies. Lancet 1974; II: 1279–82

    Google Scholar 

  12. Baekkeskov S, Nielsen JH, Marner B, et al. Autoantibodies in newly diagnosed diabetic children immunoprecipitate human pancreatic islet cell proteins. Nature 1982; 298: 167–9

    PubMed  CAS  Google Scholar 

  13. Naquet P, Ellis J, Tibensky D, et al. T cell autoreactivity to insulin in diabetic and related non-diabetic individuals. J Immunol 1988; 140: 2569–78

    PubMed  CAS  Google Scholar 

  14. Betterle C, Presotto F, Pedini B, et al. Islet cell and insulin autoantibodies in organ-specific autoimmune patients: their behaviour and predictive value for the development of type 1 (insulin-dependent) diabetes mellitus: a 10-year follow-up study. Diabetologia 1987; 30: 292–7

    PubMed  CAS  Google Scholar 

  15. Henquin JC, Carton F, Ongemba LN, et al. Improvement of mild hypoinsulinaemic diabetes in the rat by low non-toxic doses of vanadate. J Endocrinol 1994; 142: 555–61

    PubMed  CAS  Google Scholar 

  16. Ugazio G, Bosia S, Burdino E, et al. Amelioration of diabetes and cataract by Na3V04 plus U-83836E in streptozotocin treated rats. Res Commun Mol Pathol Pharmacol 1994; 85: 313–28

    PubMed  CAS  Google Scholar 

  17. Bosi E, Bottazzo GF, Secchi A, et al. Islet cell autoimmunity in type I diabetic patients after HLA-mismatched pancreas transplantation. Diabetes 1989; 38Suppl. 1: 82–4

    PubMed  Google Scholar 

  18. Brooks-Worrell BM, Peterson KP, Peterson CM, et al. Reactivation of type 1 diabetes in patients receiving human fetal pancreatic tissue transplants without immunosuppression. Transplantation 2000; 69: 166–72

    PubMed  CAS  Google Scholar 

  19. Owerbach D, Gabbay KH. The search for IDDM susceptibility genes: the next generation. Diabetes 1996; 45: 544–51

    PubMed  CAS  Google Scholar 

  20. Wassmuth R, Lernmark Å. The genetics of susceptibility to diabetes. Clin Immunol Immunopathol 1989; 53: 358–99

    PubMed  CAS  Google Scholar 

  21. Deschamps I, Khalil I. The role of DQ alpha-beta heterodimers in genetic susceptibility to insulin-dependent diabetes. Diabetes Metab Rev 1993; 9: 71–92

    PubMed  CAS  Google Scholar 

  22. Lernmark Å. Molecular biology of IDDM. Diabetologia 1994; 37Suppl. 2: S73–81

    PubMed  Google Scholar 

  23. Ilonen J, Reijonen H, Herva E, et al. Rapid HLA-DQB1 genotyping for four alleles in the assessment of risk for IDDM in the Finnish population. Diabetes Care 1996; 19: 795–800

    PubMed  CAS  Google Scholar 

  24. Veijola R, Reijonen H, Vähäsalo P, et al. HLA-DQB 1 defined genetic susceptibility, beta-cell autoimmunity and metabolic characteristics in familial and non-familial insulin-dependent diabetes mellitus. J Clin Invest 1996; 98: 2489–95

    PubMed  CAS  Google Scholar 

  25. Baisch JM, Weeks T, Giles R, et al. Analysis of HLA-DQ genotypes and susceptibility in insulin-dependent diabetes mellitus. N Engl J Med 1990; 322: 1836–41

    PubMed  CAS  Google Scholar 

  26. Kulmala P, Savola K, Reijonen H, et al. Genetic markers, humoral autoimmunity, and prediction of type 1 diabetes in siblings of affected children. Diabetes 2000; 49: 48–58

    PubMed  CAS  Google Scholar 

  27. Sheehy MJ, Scharf SJ, Rowe JR, et al. A diabetes-susceptible HLA haplotype is best defined by a combination of HLA-DR and -DQ alleles. J Clin Invest 1989; 83: 830–5

    PubMed  CAS  Google Scholar 

  28. Nepom GT, Kwok WW. Molecular basis for HLA-DQ associations with IDDM. Diabetes 1998; 47: 1177–84

    PubMed  CAS  Google Scholar 

  29. Owerbach D, Gabbay KH. Localization of a type-I diabetes susceptibility locus to the variable tandem repeat region flanking the insulin gene. Diabetes 1993; 42: 1708–14

    PubMed  CAS  Google Scholar 

  30. Bennett ST, Lucassen AM, Gough SCL, et al. Susceptibility to human type 1 diabetes and IDDM2 is determined by tandem repeat variation at the insulin gene mini satellite locus. Nat Genet 1995; 9: 284–92

    PubMed  CAS  Google Scholar 

  31. Vafiadis P, Bennett ST, Todd JA, et al. Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat Genet 1997; 15: 289–92

    PubMed  CAS  Google Scholar 

  32. Petersen JS, Kyvik KO, Bingley PJ, et al. Population based study of prevalence of islet cell autoantibodies in monozygotic and dizygotic Danish twin pairs with insulin-dependent diabetes mellitus. BMJ 1997; 314: 1575–9

    PubMed  CAS  Google Scholar 

  33. Redondo MJ, Yu L, Hawa M, et al. Heterogeneity of type I diabetes: analysis of monozygotic twins in Great Britain and the United States. Diabetologia 2001; 44: 354–62

    PubMed  CAS  Google Scholar 

  34. Åkerblom HK, Vaarala O, Hyöty H, et al. Environmental factors in the etiology of type 1 diabetes. Am J Med Genet 2002; 115: 18–29

    PubMed  Google Scholar 

  35. Yoon J-W, Austin M, Onodera T, et al. Isolation of a virus from the pancreas of a child with diabetic ketoacidosis. N Engl J Med 1979; 300: 1173–9

    PubMed  CAS  Google Scholar 

  36. Clements GB, Galbraith DN, Taylor KW. Coxsackie B virus infection and onset of childhood diabetes. Lancet 1995; 346: 221–3

    PubMed  CAS  Google Scholar 

  37. King ML, Shaikh A, Bidwell D, et al. Coxsackie-B viras-specific IgM responses in children with insulin-dependent (juvenile-onset type I) diabetes mellitus. Lancet 1983; I: 1397–9

    Google Scholar 

  38. Varela-Calvino R, Ellis R, Sgarbi G, et al. Characterization of the T-cell response to coxsackievirus B4: evidence that effector memory cells predominate in patients with type 1 diabetes. Diabetes 2002; 51: 1745–53

    PubMed  CAS  Google Scholar 

  39. Lönnrot M, Korpela K, Knip M, et al. Enterovirus infection as a risk factor for beta-cell autoimmunity in a prospectively observed birth cohort: the Finnish Diabetes Prediction and Prevention Study. Diabetes 2000; 49: 1314–8

    PubMed  Google Scholar 

  40. Borch-Johnsen K, Mandrup-Poulsen T, Zachau-Christiansen B, et al. Relation between breast-feeding and incidence rates of insulin-dependent diabetes mellitus. Lancet 1984; II: 1083–6

    Google Scholar 

  41. Elliot RB, Martin JM. Dietary protein: a trigger of insulin-dependent diabetes in the BB rat. Diabetologia 1984; 26: 297–9

    CAS  Google Scholar 

  42. Scott FW, Norris JM, Kolb H. Milk and type 1 diabetes: examining the evidence and broadening the focus. Diabetes Care 1996; 19: 379–83

    PubMed  CAS  Google Scholar 

  43. Atkinson MA, Maclaren NK. The pathogenesis of insulin-dependent diabetes mellitus. N Engl J Med 1994; 331: 1428–36

    PubMed  CAS  Google Scholar 

  44. Gray DWR. Type 1 diabetes: the facts fit a deficient inhibitory signal given by MHC class II. Diabetes Metab Res Rev 1999; 15: 29–41

    PubMed  CAS  Google Scholar 

  45. Itoh N, Hanafusa T, Miyazaki A, et al. Mononuclear cell infiltration and its relation to the expression of major histocompatibility complex antigens and adhesion molecules in pancreas biopsy specimens from newly diagnosed insulin-dependent diabetes mellitus patients. J Clin Invest 1993; 92: 2313–22

    PubMed  CAS  Google Scholar 

  46. Solimena M. Vesicular autoantigens of type 1 diabetes. Diabetes Metab Rev 1998; 14: 227–40

    PubMed  CAS  Google Scholar 

  47. Erlander MG, Tobin AJ. The structural and functional heterogeneity of glutamic acid decarboxylase: a review. Neurochem Res 1991; 16: 215–26

    PubMed  CAS  Google Scholar 

  48. Erdö SL, Wolff JR. γ-Aminobutyric acid outside the mammalian brain. J Neurochem 1990; 54: 363–72

    PubMed  Google Scholar 

  49. Fischer EH, Charbonneau H, Tonks NK. Protein tyrosine phosphatases: a diverse family of intracellular and transmembrane enzymes. Science 1991; 253: 401–6

    PubMed  CAS  Google Scholar 

  50. Lan MS, Wasserfall CW, Maclaren NK, et al. IA-2, a transmembrane protein of the protein tyrosine phosphatase family, is a major autoantigen in insulin-dependent diabetes mellitus. Proc Natl Acad Sci U S A 1996; 93: 6367–70

    PubMed  CAS  Google Scholar 

  51. Solimena M, Dirkx RJ, Hermel JM, et al. ICA 512, an autoantigen of type 1 diabetes, is an intrinsic membrane protein of neurosecretory granules. EMBO J 1996; 15: 2102–14

    PubMed  CAS  Google Scholar 

  52. Notkins AL, Lan MS, Leslie RDG. IA-2 and IA-2b: the immune response in IDDM. Diabetes Metab Rev 1998; 14: 85–93

    PubMed  CAS  Google Scholar 

  53. Srikanta S, Ganda OP, Gleason RE, et al. Pre-type I diabetes: linear loss of beta cell response to intravenous glucose. Diabetes 1984; 33: 717–20

    PubMed  CAS  Google Scholar 

  54. Vardi P, Ziegler AG, Mathews JH, et al. Concentration of insulin autoantibodies at onset of type 1 diabetes: inverse log-linear correlation with age. Diabetes Care 1988; 11: 736–9

    PubMed  CAS  Google Scholar 

  55. Ziegler AG, Ziegler R, Vardi P, et al. Life-table analysis of progression to diabetes of anti-insulin autoantibody positive relatives of individuals with type I diabetes. Diabetes 1989; 38: 1320–5

    PubMed  CAS  Google Scholar 

  56. Eisenbarth GS, Gianani R, Yu L, et al. Dual-parameter model for prediction of type I diabetes mellitus. Proc Assoc Am Physicians 1998; 110: 126–35

    PubMed  CAS  Google Scholar 

  57. McCulloch DK, Klaff LJ, Kahn SE, et al. Nonprogression of subclinical β-cell dysfunction among first-degree relatives of IDDM patients: 5-yr follow-up of the Seattle family study. Diabetes 1990; 39: 549–56

    PubMed  CAS  Google Scholar 

  58. Knip M, Vähäsalo P, Karjalainen J, et al. Natural history of preclinical IDDM in high risk siblings. Diabetologia 1994; 37: 388–93

    PubMed  CAS  Google Scholar 

  59. Roll U, Christie MR, Füchtenbusch M, et al. Perinatal autoimmunity in offspring of diabetic parents. The German multicenter BABY-DIAB study: detection of humoral immune responses to islet antigens in early childhood. Diabetes 1996; 45: 967–73

    PubMed  Google Scholar 

  60. Yu L, Rewers M, Gianani R, et al. Antiislet autoantibodies usually develop sequentially rather than simultaneously. J Clin Endocrinol Metab 1996; 81: 4264–7

    PubMed  CAS  Google Scholar 

  61. Kimpimäki T, Kupila A, Hämäläinen A-M, et al. The first signs of beta-cell autoimmunity appear in infancy in genetically susceptible children from the general population: the Finnish Type 1 Diabetes Prediction and Prevention Study. J Clin Endocrinol Metab 2001; 86: 4782–8

    PubMed  Google Scholar 

  62. Savola K, Läärä E, Vähäsalo P, et al. Dynamie pattern of disease-associated autoantibodies in siblings of children with type 1 diabetes: a population-based study. Diabetes 2001; 50: 2625–32

    PubMed  CAS  Google Scholar 

  63. Ziegler A-G, Hummel M, Schenker M, et al. Autoantibody appearance and risk for development of childhood diabetes in offspring of parents with type 1 diabetes. Diabetes 1999; 48: 460–8

    PubMed  CAS  Google Scholar 

  64. Spencer KM, Tarn A, Dean BM, et al. Fluctuating islet cell autoimmunity in unaffected relatives of patients with insulin dependent diabetes. Lancet 1984; I: 746–66

    Google Scholar 

  65. Bonifacio E, Scirpoli M, Kredel K, et al. Early autoantibody responses in prediabetes are IgGl dominated and suggest antigen-specific regulation. J Immunol 1999; 163: 525–32

    PubMed  CAS  Google Scholar 

  66. Gorsuch AN, Spencer KM, Lister J, et al. Evidence for a long prediabetic period in type 1 (insulin-dependent) diabetes mellitus. Lancet 1981; II: 1363–5

    Google Scholar 

  67. Sabbah E, Savola K, Kulmala P, et al. Disease-associated autoantibodies and HLA-DQB1 genotypes in children with newly diagnosed insulin-dependent diabetes mellitus (IDDM). Clin Exp Immunol 1999; 116: 78–83

    PubMed  CAS  Google Scholar 

  68. Myers MA, Rabin DU, Rowley MJ. Pancreatic islet cell cytoplasmic antibody in diabetes is represented by antibodies to islet cell antigen 512 and glutamic acid decarboxylase. Diabetes 1995; 44: 1290–5

    PubMed  CAS  Google Scholar 

  69. Pugliese A, Gianani R, Moromisato R, et al. HLA-DQB1*0602 is associated with dominant protection from diabetes even among islet cell antibody-positive first-degree relatives of patients with IDDM. Diabetes 1995; 44: 608–13

    PubMed  CAS  Google Scholar 

  70. Bingley PJ, Williams AJK, Gale EAM. Optimized autoantibody-based risk assessment in family members: implications for future intervention trials. Diabetes Care 1999; 22: 1796–801

    PubMed  CAS  Google Scholar 

  71. Pastore MR, Bazzigaluppi E, Bonfanti R, et al. Two-step islet autoantibody screening for risk assessment of type 1 diabetes in relatives. Diabetes Care 1998; 21: 1445–50

    PubMed  CAS  Google Scholar 

  72. Jaeger C, Hatziagelaki E, Stroedter A, et al. The Giessen-Bad Oyenhausen family study: improved prediction of type I diabetes in a low incidence population of relatives using combinations of islet autoantibodies in a dual step model. Exp Clin Endocrinol Diabetes 1999; 107: 496–505

    PubMed  CAS  Google Scholar 

  73. Krischer JP, Cuthbertson DD, Yu L, et al. Screening strategies for the identification of multiple antibody-positive relatives of individuals with type 1 diabetes. J Clin Endocrinol Metab 2003; 88: 103–8

    PubMed  CAS  Google Scholar 

  74. Bingley PJ, Bonifacio E, Ziegler A-G, et al. Proposed guidelines on screening for risk of type 1 diabetes. Diabetes Care 2001; 24: 398

    PubMed  CAS  Google Scholar 

  75. Kulmala P, Savola K, Petersen JS, et al. Prediction of insulin-dependent diabetes mellitus in siblings of children with diabetes: a population based study. J Clin Invest 1998; 101: 327–36

    PubMed  CAS  Google Scholar 

  76. Vardi P, Crisa L, Jackson RA. Predictive value of intravenous glucose tolerance test insulin secretion less than or greater than the first percentile in islet cell antibody positive relatives of type 1 (insulin-dependent) diabetic patients. Diabetologia 1991; 34: 93–102

    PubMed  CAS  Google Scholar 

  77. Bingley PJ. Interactions of age, islet cell antibodies, insulin autoantibodies, and first-phase insulin response in predicting risk of progression to IDDM in ICA+relatives: the ICARUS data set. Islet Cell Antibody Register Users Study. Diabetes 1996; 45: 1720–8

    PubMed  CAS  Google Scholar 

  78. Kimpimäki T, Knip M. Disease associated autoantibodies as predictive markers of type 1 diabetes mellitus in siblings of affected children. J Pediatr Endocrinol Metab 2001; 14: 575–87

    PubMed  Google Scholar 

  79. Greenbaum CJ, Cuthbertson D, Krischer JP, et al. Type I diabetes manifested solely by 2-h oral glucose tolerance test criteria. Diabetes 2001; 50: 470–6

    PubMed  CAS  Google Scholar 

  80. Kulmala P, Rahko J, Savola K, et al. Beta-cell autoimmunity, genetic susceptibility, and progression to type 1 diabetes in unaffected schoolchildren. Diabetes Care 2001; 24: 171–3

    PubMed  CAS  Google Scholar 

  81. LaGasse JM, Brantley MS, Leech NJ, et al. Successful prospective prediction of type 1 diabetes in schoolchildren through multiple defined autoantibodies. Diabetes Care 2002; 25: 505–11

    PubMed  Google Scholar 

  82. Bingley PJ, Bonifacio E, Williams AJK, et al. Prediction of IDDM in the general population: strategies based on combinations of autoantibody markers. Diabetes 1997; 46: 1701–10

    PubMed  CAS  Google Scholar 

  83. Kupila A, Muona P, Simell T, et al. Feasibility of genetic and immunological prediction of type I diabetes in a population-based birth cohort. Diabetologia 2001; 44: 290–7

    PubMed  CAS  Google Scholar 

  84. Robles DT, Eisenbarth GS, Wang T, et al. Millennium award recipient contribution: Identification of children with early onset and high incidence of anti-islet autoantibodies. Clin Immunol 2002; 102: 217–24

    PubMed  CAS  Google Scholar 

  85. Hahl J, Simell T, Ilonen J, et al. Costs of predicting IDDM. Diabetologia 1998; 41: 79–85

    PubMed  CAS  Google Scholar 

  86. Johnson SB. Screening programs to identify children at risk for diabetes mellitus: psychological impact on children and parents. J Pediatr Endocrinol Metab 2001; 14Suppl. 1: 653–9

    PubMed  Google Scholar 

  87. Roth R. Psychological and ethical aspects of prevention trials. J Pediatr Endocrinol Metab 2001; 14Suppl. 1: 669–74

    PubMed  Google Scholar 

  88. Galatzer A, Green E, Ofan R, et al. Psychological impact of islet cell antibody screening. J Pediatr Endocrinol Metab 2001; 14Suppl. 1: 675–9

    PubMed  Google Scholar 

  89. Yu MS, Norris JM, Mitchell CM, et al. Impact on maternal parenting stress of receipt of genetic information regarding risk of diabetes in newborn infants. Am J Med Genet 1999; 86: 219–26

    PubMed  CAS  Google Scholar 

  90. Ludvigsson J, Gustafsson-Stolt U, Liss PE, et al. Mothers of children in ABIS, a population-based screening for prediabetes, experience few ethical conflicts and have a positive attitude. Ann N Y Acad Sci 2002; 958: 376–81

    PubMed  Google Scholar 

  91. Reddy S, Stefanovic N, Karanam M. Prevention of autoimmune diabetes by oral administration of syngeneic pancreatic extract to young NOD mice. Pancreas 2000; 20: 55–60

    PubMed  CAS  Google Scholar 

  92. Åkerblom HK, Savilahti E, Saukkonen T, et al. The case for elimination of cow’s milk in early infancy in the prevention of type 1 diabetes: the Finnish experience. Diabetes Metab Rev 1993; 9: 269–78

    PubMed  Google Scholar 

  93. Pozzilli P. Prevention of insulin-dependent diabetes mellitus 1998. Diabetes Metab Rev 1998; 14: 69–84

    PubMed  CAS  Google Scholar 

  94. Kolb H. Immune intervention in type 1 diabetes mellitus: current clinical and experimental approaches. Exp Clin Endocrinol 1994; 102: 269–72

    PubMed  CAS  Google Scholar 

  95. Gale EAM. Theory and practice of nicotinamine trials in pre-type 1 diabetes. J Pediatr Endocrinol Metab 1996; 9: 375–9

    PubMed  CAS  Google Scholar 

  96. Gale E. Prevention of type 1 diabetes: results of the ENDIT trial [oral presentation]. 38th European Association for the Study of Diabetes Meeting; 2002 Sep 1–5; Budapest

  97. DPT-1 Study Group. The Diabetes Prevention Trial-Type 1 Diabetes (DPT-1): implementation of screening and staging of relatives. Transplant Proc 1995; 27: 3377

    Google Scholar 

  98. Diabetes Prevention Trial-Type 1 Diabetes Study Group. Effects of insulin in relatives of patients with type 1 diabetes mellitus. N Engl J Med 2002; 346: 1685–91

    Google Scholar 

  99. Honeyman M, Wasserfall C, Nerup J, et al. Prediction and prevention of IDDM. Diabetologia 1997; 40: B58–61

    PubMed  Google Scholar 

  100. Raz I, Elias D, Avron A, et al. Beta-cell function in new-onset type 1 diabetes and immunomodulation with a heat-shock protein peptide (DiaPep277): a randomised, double-blind, phase II trial. Lancet 2001; 358: 1749–53

    PubMed  CAS  Google Scholar 

  101. Elias D, Cohen IR. Peptide therapy for diabetes in NOD mice. Lancet 1994; 343: 704–6

    PubMed  CAS  Google Scholar 

  102. Herold KC, Hagopian W, Auger JA, et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N Engl J Med 2002; 346: 1740–2

    Google Scholar 

  103. Roep BO, Atkinson MA, van Endert PM, et al. Autoreactive T cell responses in insulin-dependent (type 1) diabetes mellitus. J Autoimmun 1999; 13: 267–82

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this manuscript. The author has no conflicts of interest that are directly relevant to the content of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petri Kulmala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulmala, P. Prediabetes in Children. Pediatr-Drugs 5, 211–221 (2003). https://doi.org/10.2165/00128072-200305040-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00128072-200305040-00001

Keywords

Navigation