Skip to main content
Log in

Diabetes Insipidus in Children

Pathophysiology, Diagnosis and Management

  • Therapy In Practice
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

In diabetes insipidus, the amount of water ingested and the quantity and concentration of urine produced needs to be carefully regulated if fluid volume and osmolality are to be maintained within the normal range. One of the principal mechanisms controlling urine output is vasopressin which is released from the posterior pituitary gland and enhances water reabsorption from the renal collecting duct.

In diabetes insipidus, the excessive production of dilute urine, and the causes of this clinical picture can be divided into three main groups: the first is primary polydipsia where the amount of fluid ingested is inappropriately large; the second group is cranial diabetes insipidus where the production of vasopressin is abnormally low; and, the third group is nephrogenic diabetes insipidus where the kidney response to vasopressin is impaired. The history and examination may suggest an underlying explanation for diabetes insipidus but a range of baseline and more extensive investigations may be required before a diagnosis can be reached. These investigations are not without risk, and the results need to be interpreted carefully because children do not always segregate neatly into a particular diagnostic category on the basis of one test alone.

Children with cranial diabetes insipidus typically respond to arginine vasopressin or its manufactured analogue, desmopressin, with an increase in urine osmolality and an associated reduction in urine output. Such children usually require neuroimaging to look for evidence of evolving CNS pathology, such as an intracranial tumour. Vasopressin ‘replacement’ with desmopressin is the treatment of choice in patients with cranial diabetes insipidus although extreme caution is required when treating babies or small children because of the danger of fluid overload. Abnormal production of other pituitary hormones in children with CNS disease can also influence fluid balance.

Nephrogenic diabetes insipidus can be due to abnormal electrolyte concentrations, therefore these should be measured as part of the initial assessment. In a small number of children the defect is a primary abnormality of the vasopressin receptor or one of the water channel proteins (aquaporins) involved in water transport. The treatment of these patients is difficult and typically involves therapy with a diuretic such as chlorothiazide, as well as indomethacin. These agents enhance urine osmolality by their effect on circulating volume and renal solute and water handling. The fluid intake of most young children with primary polydipsia can be safely reduced to a more appropriate level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Table I
Table II
Table III
Table IV
Fig. 5
Fig. 6
Table V

Similar content being viewed by others

References

  1. Robertson GL, Shelton RL, Athar S. The osmoregulation of vasopressin. Kid Int 1976; 10: 25–37

    Article  CAS  Google Scholar 

  2. King LS, Agre P. Pathophysiology of the aquaporin water channels. Ann Rev Physiol 1996; 58: 619–48

    Article  CAS  Google Scholar 

  3. Engel A, Fujiyoshi Y, Agre P. The importance of aquaporin water channel protein structures. EMBO J 2000; 19: 800–6

    Article  PubMed  CAS  Google Scholar 

  4. Robertson GL. Disorders of water balance. In: Brook CGD, Hindmarsh PC, editors. Clinical pediatric endocrinology. Oxford: Blackwell Science, 2001: 193–221

    Google Scholar 

  5. Baylis PH, Cheetham T. Diabetes insipidus. Arch Dis Child 1998; 79: 84–9

    Article  PubMed  CAS  Google Scholar 

  6. Thompson CJ, Bland J, Burd J, et al. The osmotic thresholds for thirst and vasopressin release are similar in healthy man. Clin Sci 1986; 71: 651–6

    PubMed  CAS  Google Scholar 

  7. Oddie S, Richmond S, Coulthard M. Hypernatraemic dehydration and breast feeding: a population study. Arch Dis Child 2001; 85: 318–20

    Article  PubMed  CAS  Google Scholar 

  8. Chambers TL, Steel AE. Concentrated milk feeds and their relation to hypernatraemic dehydration in infants. Arch Dis Child 1975; 50: 610–5

    Article  PubMed  CAS  Google Scholar 

  9. Wang LC, Cohen ME, Duffner PK. Etiologies of central diabetes insipidus in children. Ped Neurol 1994; 11: 273–7

    Article  Google Scholar 

  10. Maghnie M, Cosi G, Genovse E, et al. Central diabetes insipidus in children and young adults. N Engl J Med 2000; 343: 998–1007

    Article  PubMed  CAS  Google Scholar 

  11. Masera N, Grant DB, Stanhope R, et al. Diabetes insipidus with impaired osmotic regulation in septo-optic dysplasia and agenesis of the corpus callosum. Arch Dis Child 1994; 70: 51–3

    Article  PubMed  CAS  Google Scholar 

  12. Lukezic M, Righini V, di Natale B, et al. Vasopressin and thirst in patients with posterior pituitary ectopia and hypopituitarism. Clin Endocrinol 2000; 53: 77–83

    Article  CAS  Google Scholar 

  13. Nanduri VR, Bareille P, Pritchard J, et al. Growth and endocrine disorders in multisystem Langerhans’ cell histiocytosis. Clin Endocrinol 2000; 53: 509–15

    Article  CAS  Google Scholar 

  14. Boykin J, DeTorrente A, Erickson A, et al. Role of plasma vasopressin in impaired water excretion of glucocorticoid deficiency. J Clin Invest 1978; 62: 738–44

    Article  PubMed  CAS  Google Scholar 

  15. Lindsay RS, Seckl JR, Padfield PL. The triple phase response: problems of water balance after pituitary surgery. Postgrad Med J 1995; 71: 439–41

    Article  PubMed  CAS  Google Scholar 

  16. Miller WL. Molecular genetics of familial central diabetes insipidus. J Clin Endocrinol Metab 1993; 77: 592–5

    Article  PubMed  CAS  Google Scholar 

  17. McLeod JF, Kovacs L, Gaskill MB, et al. Familial neurohypophyseal diabetes insipidus associated with a signal peptide mutation. J Clin Endocrinol Metab 1993; 77: 599A–G

    Article  PubMed  CAS  Google Scholar 

  18. Strom TM, Hortnagel K, Hofmann S, et al. Diabetes insipidus, diabetes mellitus, optic atrophy and deafness (DIDMOAD) caused by mutations in a novel gene (wolframin) coding for a predicted transmembrane protein. Hum Mol Genet 1998; 7: 2021–8

    Article  PubMed  CAS  Google Scholar 

  19. Bichet DG, Birnbaumer M, Lonergan M, et al. Nature and recurrence of AVPR2 mutations in X-linked nephrogenic diabetes insipidus. Am J Hum Genet 1994; 55: 278–86

    PubMed  CAS  Google Scholar 

  20. Morello JP, Bichet DG. Nephrogenic diabetes insipidus. Ann Rev Physiol 2001; 63: 607–30

    Article  CAS  Google Scholar 

  21. Deen PMT, Vedijk MAJ, Knoers NVAM, et al. Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine. Science 1994; 264: 92–5

    Article  PubMed  CAS  Google Scholar 

  22. Hochberg Z, Lieburg AV, Even L, et al. Autosomal recessive nephrogenic diabetes insipidus caused by an aquaporin-2 mutation. J Clin Endocrinol Metab 1997; 82: 686–9

    Article  PubMed  CAS  Google Scholar 

  23. Mulders SM, Bichet DG, Rijss JPL, et al. An aquaporin-2 water channel mutant which causes autosomal dominant nehprogenic diabetes insipidus is retained in the golgi complex. J Clin Invest 1998; 102: 57–66

    Article  PubMed  CAS  Google Scholar 

  24. Kuwahara M, Iwai K, Ooeda T, et al. Three families with autosomal dominant nephrogenic diabetes insipidus caused by aquaporin-2 mutations in the C-terminus. Am J Hum Genet 2001; 69: 738–48

    Article  PubMed  CAS  Google Scholar 

  25. Marr N, Bichet DG, Lonergan M, et al. Heteroligomerization of an aquaporin-2 mutant with wild-type aquaporin-2 and their misrouting to late endosomes/lysosomes explains dominant nephrogenic diabetes insipidus. Hum Mol Genet 2002; 11: 779–89

    Article  PubMed  CAS  Google Scholar 

  26. King LS, Choi M, Fernandez PC, et al. Defective urinary concentrating ability due to a complete deficiency of aquaporin-1. N Engl J Med 2001; 345: 175–9

    Article  PubMed  CAS  Google Scholar 

  27. Knoers N, Monnens HAL. Nephrogenic diabetes insipidus: clinical symptoms, pathogenesis, genetics and treatment. Pediatr Nephrol 1992; 6: 476–82

    Article  PubMed  CAS  Google Scholar 

  28. Nijenhuis M, van den Akker ELT, Zalm R, et al. Familial neurohypophysial diabetes insipidus in a large Dutch kindred: effect of the onset of diabetes on growth in children and cell biological defects of the mutant vasopressin prohormone. J Clin Endocrinol Metab 2001; 86: 3410–20

    Article  PubMed  CAS  Google Scholar 

  29. Richman RA, Post EM, Notman DN, et al. Simplifying the diagnosis of diabetes insipidus in children. Am J Dis Child 1981; 135: 839–41

    PubMed  CAS  Google Scholar 

  30. Dashe AM, Cramm RE, Crist CA, et al. A water deprivation test for the differential diagnosis of polyuria. JAMA 1963; 185: 699–703

    Article  PubMed  CAS  Google Scholar 

  31. Dunger DB, Seckl JR, Grant DB, et al. A short water deprivation test incorporating urinary arginine vasopressin estimations for the investigation of posterior pituitary function in children. Acta Endocrinologica 1988; 117: 13–8

    PubMed  CAS  Google Scholar 

  32. Koskimies O, Pylkkanen J, Vilska J. Water intoxication in infants caused by the urine concentration test with vasopressin analogue (DDAVP). Acta Paediatr Scand 1984; 73: 131–2

    Article  PubMed  CAS  Google Scholar 

  33. Kanno K, Sasaki S, Hirata Y, et al. Urinary excretion of aquaporin-2 in patients with diabetes insipidus. N Engl J Med 1995; 332: 1540–5

    Article  PubMed  CAS  Google Scholar 

  34. Baylis PH, Robertson GL. Plasma vasopressin response to hypertonic saline infusion to assess posterior pituitary function. J R Soc Med 1980; 73: 255–60

    PubMed  CAS  Google Scholar 

  35. Angelica M, Acerini CL, Cheetham TD, et al. Hypertonic saline test for the investigation of posterior pituitary function. Arch Dis Child 1998; 79: 431–4

    Article  Google Scholar 

  36. Baylis PH, Thompson CJ. Osmoregulation of vasopressin secretion and thirst in health and disease. Clin Endocrinol 1988; 29: 549–76

    Article  CAS  Google Scholar 

  37. Harris AS. Clinical experience with desmopressin: efficacy and safety in central diabetes insipidus and other conditions. J Pediatr 1989; 114: 711–8

    Article  PubMed  CAS  Google Scholar 

  38. Sato N, Ishizaka H, Yagi H, et al. Posterior lobe of the pituitary in diabetes insipidus: dynamic MR imaging. Radiology 1993; 186: 357–60

    PubMed  CAS  Google Scholar 

  39. Mootha SL, Barkovich AJ, Grumbach MM, et al. Idiopathic hypothalamic diabetes insipidus, pituitary stalk thickening, and the occult intracranial germinoma in children and adolescents. J Clin Endocrinol Metab 1997; 82: 1362–7

    Article  PubMed  CAS  Google Scholar 

  40. Leger J, Velasquez A, Garel C, et al. Thickened pituitary stalk on magnetic resonance imaging in children with central diabetes insipidus. J Clin Endocrinol Metab 1999; 84: 1954–60

    Article  PubMed  CAS  Google Scholar 

  41. Vavra I, Machova A, Holecek V, et al. Effects of a synthetic analogue of vasopressin in animals and in patients with diabetes insipidus. Lancet 1968; I: 948–52

    Article  CAS  Google Scholar 

  42. Kauli R, Galatzer A, Laron Z. Treatment of diabetes insipidus in children and adolescents. Front Horm Res 1985; 13: 304–13

    Google Scholar 

  43. Boulgourdjian EM, Martinez AS, Ropelato MG, et al. Oral desmopressin treatment of central diabetes insipidus in children. Acta Paediatr 1997; 86: 1261–2

    Article  PubMed  CAS  Google Scholar 

  44. Fjellestad-Paulson A, Laborde K, Czernichow P. Water balance hormones during long-term follow-up of oral DDAVP treatment in diabetes insipidus. Acta Paediatr 1993; 82: 752–7

    Article  Google Scholar 

  45. Stick SM, Betts PR. Oral desmopressin in neonatal diabetes insipidus. Arch Dis Child 1987; 62: 1177–8

    Article  PubMed  CAS  Google Scholar 

  46. Maghnie M, Genovese E, Lundin S, et al. Iatrogenic extrapontine myelinolysis in central diabetes insipidus: are cyclosporine and 1-desamino-8-D-arginine vasopressin harmful in association. J Clin Endocrinol Metab 1997; 82: 1749–51

    Article  PubMed  CAS  Google Scholar 

  47. Rizzo V, Albanese A, Stanhope R. Morbidity and mortality associated with vasopressin replacement therapy in children. J Ped Endocrinol 2001; 14: 861–7

    CAS  Google Scholar 

  48. Ball SG, Vaidja B, Baylis PH. Hypothalamic adipsic syndrome: diagnosis and management. Clin Endocrinol 1997; 47: 405–9

    Article  CAS  Google Scholar 

  49. Uyeki TM, Barry FL, Rosenthal SM, et al. Successful treatment with hydrochlorothiazide and amiloride in an infant with congenital nephrogenic diabetes insipidus. Pediatr Nephrol 1993; 7: 554–6

    Article  PubMed  CAS  Google Scholar 

  50. Kirchlechner V, Loller DY, Seidl R, et al. Treatment of nephrogenic diabetes insipidus with hydrochlorothiazide and amiloride. Arch Dis Child 1999; 80: 548–52

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

No sources of funding were used to assist in the preparation of this manuscript. The author has no conflicts of interest that are directly relevant to the content of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Cheetham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheetham, T., Baylis, P.H. Diabetes Insipidus in Children. Pediatr-Drugs 4, 785–796 (2002). https://doi.org/10.2165/00128072-200204120-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00128072-200204120-00003

Keywords

Navigation