Skip to main content
Log in

Ewing Tumour

Incidence, Prognosis and Treatment Options

  • Therapy In Practice
  • Published:
Paediatric Drugs Aims and scope Submit manuscript

Abstract

Ewing tumours, i.e. Ewing’s sarcoma and malignant peripheral neuroectodermal tumours, are the second most common primary malignant tumours of bone in childhood and adolescence, with an annual incidence rate in Caucasians of 3 per 1 million children <15 years of age. Histopathologically small blue round cell tumours, Ewing tumours show a typical chromosomal rearrangement in >95% of cases linking the EWS gene on chromosome 22ql2 to a member of the ETS transcription gene family, most commonly to Fli-1 on 1lq24. This fusion contributes to the malignant potential of Ewing tumour cells, indeed antisense oligonucleotides may prevent tumour growth in vitro.

After open biopsy, and histological and possibly molecular biological confirmation of the diagnosis, treatment consists of several months of multidrug cytostatic therapy and local therapy. Both surgery and radiotherapy may control local disease, but without consequent cytostatic chemotherapy all patients will eventually succumb to distant metastases. With the use of alkylating agents including doxorubicin, cyclophosphamide and/or ifosfamide, and other cytostatic drugs such as actinomycin D (dactinomycin), vincristine and etoposide, long-term survival can be achieved in >50% of patients with localised disease. Patients with clinically detectable metastases at diagnosis, patients not responding to therapy and patients with disease relapse have a significantly poorer prognosis. Maximum supportive care and local therapy managed by an experienced physician are required in all patients, and inclusion of high-risk patients in phase I and II studies is warranted. Hence, treatment of patients with Ewing tumours should be performed in experienced centres only and preferably within controlled clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Table I
Fig. 3

Similar content being viewed by others

References

  1. Ewing J. Diffuse endothelioma of bone. Proc NY Pathol Soc 1921; 21: 17–24

    Google Scholar 

  2. Askin FB, Rosai J, Sibley RK, et al. Malignant small cell tumor of the thoracopulmonary region in childhood: a distinctive clinicopathologic entity of uncertain histogenesis. Cancer 1979; 43: 2438–51

    PubMed  CAS  Google Scholar 

  3. Bolen JW, Thorning D. Peripheral neuroepithelioma: a light and electron microscopic study. Cancer 1980; 46: 2456–62

    PubMed  CAS  Google Scholar 

  4. Delattre O, Zucman J, Melot T, et al. The Ewing family of tumors: a subgroup of small-round-cell tumors defined by specific chimeric transcripts. N Engl J Med 1994; 331: 294–9

    PubMed  CAS  Google Scholar 

  5. Turc Carel C, Philip I, Berger MP, et al. Chromosomal translocation (11; 22) in cell lines of Ewing’s sarcoma [in French]. C R Seances Acad Sci III 1983; 296: 1101–3

    PubMed  CAS  Google Scholar 

  6. Aurias A, Rimbaut C, Buffe D, et al. Translocation of chromosome 22 in Ewing’s sarcoma [in French]. C R Seances Acad Sci III 1983; 296: 1105–7

    PubMed  CAS  Google Scholar 

  7. Seemayer TA, Vekemans M, de Chadarevian JP. Histological and cytogenetic findings in a malignant tumor of the chest wall and lung (Askin tumor). Virchows Arch A Pathol Anat Histopathol 1985; 408: 289–96

    PubMed  CAS  Google Scholar 

  8. Whang-Peng J, Triche TJ, Knutsen T, et al. Cytogenetic characterization of selected small round cell tumors of childhood. Cancer Genet Cytogenet 1986; 21: 185–208

    PubMed  CAS  Google Scholar 

  9. Kovar H, Dworzak M, Strehl S, et al. Overexpression of the pseudoautosomal gene MIC2 in Ewing’s sarcoma and peripheral primitive neuroectodermal tumor. Oncogene 1990; 5: 1067–70

    PubMed  CAS  Google Scholar 

  10. Ambros IM, Ambros PF, Strehl S, et al. MIC2 is a specific marker for Ewing’s sarcoma and peripheral primitive neuroectodermal tumors: evidence for a common histogenesis of Ewing’s sarcoma and peripheral primitive neuroectodermal tumors from MIC2 expression and specific chromosome aberration. Cancer 1991; 67: 1886–93

    PubMed  CAS  Google Scholar 

  11. Kovar H. Ewings sarcoma and peripheral primitive neuroectodermal tumors after their genetic union. Curr Opin Oncol 1998; 10: 334–42

    PubMed  CAS  Google Scholar 

  12. Jaffe N, Paed D, Traggis D, et al. Improved outlook for Ewing’s sarcoma with combination chemotherapy (vincristine, actinomycin D and cyclophosphamide) and radiation therapy. Cancer 1976; 38: 1925–30

    PubMed  CAS  Google Scholar 

  13. Elomaa I, Blomqvist CP, Saeter G, et al. Five-year results in Ewing’s sarcoma: the Scandinavian sarcoma group experience with the SSGIX protocol. Eur J Cancer 2000; 36: 875–80

    PubMed  CAS  Google Scholar 

  14. Rosito P, Mancini AF, Rondelli R, et al. Italian Cooperative Study for the treatment of children and young adults with localized Ewing sarcoma of bone: a preliminary report of 6 years of experience. Cancer 1999; 86: 421–8

    PubMed  CAS  Google Scholar 

  15. Paulussen M, Ahrens S, Braun-Munzinger G, et al. EICESS 92 (European Intergroup Cooperative Ewing’s Sarcoma Study): preliminary results [in German]. Klin Pädiatr 1999; 211: 276–83

    PubMed  CAS  Google Scholar 

  16. Craft A, Cotterill S, Malcolm A, et al. Ifosfamide-containing chemotherapy in Ewing’s sarcoma. The Second United Kingdom Children’s Cancer Study Group and the Medical Research Council Ewing’s Tumor Study. J Clin Oncol 1998; 16: 3628–33

    PubMed  CAS  Google Scholar 

  17. Evans RG, Nesbit ME, Gehan EA, et al. Multimodal therapy for the management of localized Ewing’s sarcoma of pelvic and sacral bones: a report from the second intergroup study. J Clin Oncol 1991; 9: 1173–80

    PubMed  CAS  Google Scholar 

  18. Hense HW, Ahrens S, Paulussen M, et al. Descriptive epidemiology of Ewing’s tumor: analysis of German patients from (EI)CESS 1980–1997 [in German]. Klin Pädiatr 1999; 211: 271–5

    PubMed  CAS  Google Scholar 

  19. Cotterill SJ, Parker L, Malcolm AJ, et al. Incidence and survival for cancer in children and young adults in the north of England, 1968–1995: a report from the Northern Region Young Persons’ Malignant Disease Registry. Br J Cancer 2000; 83: 397–403

    PubMed  CAS  Google Scholar 

  20. Fraumeni Jr JF, Glass AG. Rarity of Ewing’s sarcoma among U.S. Negro children. Lancet 1970; I: 366–7

    Google Scholar 

  21. Schmidt D, Herrmann C, Jürgens H, et al. Malignant peripheral neuroectodermal tumor and its necessary distinction from Ewing’s sarcoma: a report from the Kiel Pediatric Tumor Registry. Cancer 1991; 68: 2251–9

    PubMed  CAS  Google Scholar 

  22. Triche TJ. Diagnosis of small round cell tumors of childhood. Bull Cancer Paris 1988; 75: 297–310

    PubMed  CAS  Google Scholar 

  23. Schmidt D, Harms D. Cooperative ewing’s sarcoma studies 81/86: pathologico-anatomic and immunohistochemical findings and differential diagnosis of Ewing sarcoma [in German]. Klin Pädiatr 1988; 200: 236–42

    PubMed  CAS  Google Scholar 

  24. Jaffe R, Santamaria M, Yunis EJ, et al. The neuroectodermal tumor of bone. Am J Surg Pathol 1984; 8: 885–98

    PubMed  CAS  Google Scholar 

  25. Schmidt D, Mackay B, Ayala AG. Ewing’s sarcoma with neuroblastoma-like features. Ultrastruct Pathol 1982; 3: 143–51

    PubMed  CAS  Google Scholar 

  26. Aurias A, Rimbaut C, Buffe D, et al. Translocation involving chromosome 22 in Ewing’s sarcoma: a cytogenetic study of four fresh tumors. Cancer Genet Cytogenet 1984; 12: 21–5

    PubMed  CAS  Google Scholar 

  27. Turc Carel C, Philip I, Berger MP, et al. Chromosome study of Ewing’s sarcoma (ES) cell lines: consistency of a reciprocal translocation t(11;22)(q24;ql2). Cancer Genet Cytogenet 1984; 12: 1–19

    PubMed  CAS  Google Scholar 

  28. Whang-Peng J, Triche TJ, Knutsen T, et al. Chromosome translocation in peripheral neuroepithelioma. N Engl J Med 1984; 311: 584–5

    PubMed  CAS  Google Scholar 

  29. Prieto F, Badia L, Montalar J, et al. Translocation (11;22) in Ewing’s sarcoma. Cancer Genet Cytogenet 1985; 17: 87–9

    PubMed  CAS  Google Scholar 

  30. Douglass EC, Valentine M, Green AA, et al. t(11; 22) and other chromosomal rearrangements in Ewing’s sarcoma. J Natl Cancer Inst 1986; 77: 1211–5

    PubMed  CAS  Google Scholar 

  31. de Alava E, Gerald WL. Molecular biology of the Ewing’s sarcoma/primitive neuroectodermal tumor family. J Clin Oncol 2000; 18: 204–13

    PubMed  Google Scholar 

  32. de Alava E, Panizo A, Antonescu CR, et al. Association of EWSFLI1 type 1 fusion with lower proliferative rate in Ewing’s sarcoma. Am J Pathol 2000; 156: 849–55

    PubMed  Google Scholar 

  33. Zoubek A, Dockhorn-Dworniczak B, Delattre O, et al. Does expression of different EWS chimeric transcripts define clinically distinct risk groups of Ewing tumor patients? J Clin Oncol 1996; 14: 1245–51

    PubMed  CAS  Google Scholar 

  34. Ginsberg JP, de Alava E, Ladanyi M, et al. EWS-FLIl and EWSERG gene fusions are associated with similar clinical phenotypes in Ewing’s sarcoma. J Clin Oncol 1999; 17: 1809–14

    PubMed  CAS  Google Scholar 

  35. Tanaka K, Iwakuma T, Harimaya K, et al. EWS-Fli1 antisense oligodeoxynucleotide inhibits proliferation of human Ewing’s sarcoma and primitive neuroectodermal tumor cells. J Clin Invest 1997; 99: 239–47

    PubMed  CAS  Google Scholar 

  36. Toretsky JA, Connell Y, Neckers L, et al. Inhibition of EWSFLI-1 fusion protein with antisense oligodeoxynucleotides. J Neurooncol 1997; 31: 9–16

    PubMed  CAS  Google Scholar 

  37. Ouchida M, Ohno T, Fujimura Y, et al. Loss of tumorigenicity of Ewing’s sarcoma cells expressing antisense RNA to EWSfusion transcripts. Oncogene 1995; 11: 1049–54

    PubMed  CAS  Google Scholar 

  38. Kovar H, Aryee DN, Jug G, et al. EWS/FLI-1 antagonists induce growth inhibition of Ewing tumor cells in vitro. Cell Growth Differ 1996; 7: 429–37

    PubMed  CAS  Google Scholar 

  39. Paulussen M, Ahrens S, Burdach S, et al. Primary metastatic (stage IV) Ewing tumor: survival analysis of 171 patients from the EICESS studies. Ann Oncol 1998; 9: 275–81

    PubMed  CAS  Google Scholar 

  40. Fizazi K, Dohollou N, Blay JY, et al. Ewing’s family of tumors in adults: multivariate analysis of survival and long-term results of multimodality therapy in 182 patients. J Clin Oncol 1998; 16: 3736–43

    PubMed  CAS  Google Scholar 

  41. Oberlin O, Patte C, Demeocq F, et al. The response to initial chemotherapy as a prognostic factor in localized Ewing’s sarcoma. Eur J Cancer Clin Oncol 1985; 21: 463–7

    PubMed  CAS  Google Scholar 

  42. Picci P, Rougraff BT, Bacci G, et al. Prognostic significance of histopathologic response to chemotherapy in nonmetastatic Ewing’s sarcoma of the extremities. J Clin Oncol 1993; 11: 1763–9

    PubMed  CAS  Google Scholar 

  43. Franzius C, Sciuk J, Daldrup-Link HE, et al. FDG-PET for detection of osseous metastases from malignant primary bone tumours: comparison with bone scintigraphy. Eur J Nucl Med 2000; 27: 1305–11

    PubMed  CAS  Google Scholar 

  44. Phillips RF, Higinbotham NL. The curability of Ewing’s endothelioma of bone in children. J Pediatr 1967; 70: 391–7

    PubMed  CAS  Google Scholar 

  45. Hustu HO, Holten C, James D, et al. Treatment of Ewing’s sarcoma with concurrent radiotherapy and chemotherapy. J Pediatr 1968; 73: 249–51

    PubMed  CAS  Google Scholar 

  46. Sutow WW, Vietti TJ, Fernbach DJ, et al. Evaluation of chemotherapy in children with metastatic Ewing’s sarcoma and osteogenic sarcoma. Cancer Chemother Rep 1971; 55: 67–78

    PubMed  CAS  Google Scholar 

  47. Rosen G, Wollner N, Tan C, et al. Proceedings: disease-free survival in children with Ewing’s sarcoma treated with radiation therapy and adjuvant four-drug sequential chemotherapy. Cancer 1974; 33: 384–93

    PubMed  CAS  Google Scholar 

  48. Gasparini M, Barni S, Lattuada A, et al. Ten years experience with Ewing’s sarcoma. Tumori 1977; 63: 77–90

    PubMed  CAS  Google Scholar 

  49. Cotterill SJ, Ahrens S, Paulussen M, et al. Prognostic factors in Ewing’s tumor of bone: analysis of 975 patients from the European Intergroup Cooperative Ewing’s Sarcoma Study Group. J Clin Oncol 2000; 18: 3108–14

    PubMed  CAS  Google Scholar 

  50. Pomeroy TC, Johnson RE. Combined modality therapy of Ewing’s sarcoma. Cancer 1975; 35: 36–47

    PubMed  CAS  Google Scholar 

  51. Cangir A, Morgan SK, Land VJ, et al. Combination chemotherapy with adramycin (NSC-123127) and dimethyl triazeno imidazole carboxamide (DTIC) (NSC-45388) in children with metastatic sold tumors. Med Pediatr Oncol 1976; 2: 183–90

    PubMed  CAS  Google Scholar 

  52. Smith MA, Ungerleider RS, Horowitz ME, et al. Influence of doxorubicin dose intensity on response and outcome for patients with osteogenic sarcoma and Ewing’s sarcoma. J Natl Cancer Inst 1991; 83: 1460–70

    PubMed  CAS  Google Scholar 

  53. Bryant BM, Jarman M, Ford HT, et al. Prevention of isophosphamide-induced urothelial toxicity with 2-mercaptoethane sulphonate sodium (mesnum) in patients with advanced carcinoma. Lancet 1980; II: 657–9

    Google Scholar 

  54. Scheulen ME, Niederle N, Bremer K, et al. Efficacy of ifosfamide in refractory malignant diseases and uroprotection by mesna: results of a clinical phase II-study with 151 patients. Cancer Treat Rev 1983; 10Suppl. A: 93–101

    PubMed  Google Scholar 

  55. Pinkerton CR, Rogers H, James C, et al. A phase II study of ifosfamide in children with recurrent solid tumours. Cancer Chemother Pharmacol 1985; 15: 258–62

    PubMed  CAS  Google Scholar 

  56. Antman KH, Montella D, Rosenbaum C, et al. Phase II trial of ifosfamide with mesna in previously treated metastatic sarcoma. Cancer Treat Rep 1985; 69: 499–504

    PubMed  CAS  Google Scholar 

  57. Magrath I, Sandlund J, Raynor A, et al. A phase II study of ifosfamide in the treatment of recurrent sarcomas in young people. Cancer Chemother Pharmacol 1986; 18Suppl. 2: S25–8

    PubMed  Google Scholar 

  58. Miser JS, Kinsella TJ, Triche TJ, et al. Ifosfamide with mesna uroprotection and etoposide: an effective regimen in the treatment of recurrent sarcomas and other tumors of children and young adults. J Clin Oncol 1987; 5: 1191–8

    PubMed  CAS  Google Scholar 

  59. Jürgens H, Exner U, Gadner H, et al. Multidisciplinary treatment of primary Ewing’s sarcoma of bone: a 6-year experience of a European Cooperative Trial. Cancer 1988; 61: 23–32

    PubMed  Google Scholar 

  60. Antman K, Crowley J, Balcerzak SP, et al. An intergroup phase III randomized study of doxorubicin and dacarbazine with or without ifosfamide and mesna in advanced soft tissue and bone sarcomas. J Clin Oncol 1993; 11: 1276–85

    PubMed  CAS  Google Scholar 

  61. Ahrens S, Hoffmann C, Jabar S, et al. Evaluation of prognostic factors in a tumor volume adapted treatment strategy for localized Ewing’s sarcoma of bone: the CESS 86 experience. Med Pediatr Oncol 1999; 32: 186–95

    PubMed  CAS  Google Scholar 

  62. Zoubek A, Holzinger B, Mann G, et al. High-dose cyclophosphamide, adriamycin, and vincristine (HD-CAV) in children with recurrent solid tumor. Pediatr Hematol Oncol 1994; 11: 613–23

    PubMed  CAS  Google Scholar 

  63. Kushner BH, Meyers PA, Gerald WL, et al. Very high-dose short-term chemotherapy for poor-risk peripheral primitive neuroectodermal tumors, including Ewing’s sarcoma, in children and young adults. J Clin Oncol 1995; 13: 2796–804

    PubMed  CAS  Google Scholar 

  64. Jürgens H, Ahrens S, Fröhlich B, et al. European Intergroup Cooperative Ewing’s Sarcoma Study (EICESS92): first results [abstract]. Proc Am Soc Clin Oncol 2000; 19: 2286

    Google Scholar 

  65. Euro-E.W.I.N.G. Study Committee. EURO-E.W.I.N.G. 99 Study Manual: EUROpean Ewing Tumour Initiative of National Groups Ewing Tumour Studies 1999 [online]. Available from URL http://euro-ewing.uni-muenster.de [Accessed 2001 Oct 17]

  66. Jürgens H, Müschenisch M, Pearson A, et al. Activity of high-dose etoposide in recurrent Ewing’s sarcoma: results of a phase II study [abstract]. Proc Am Soc Clin Oncol 1990; 9: 313

    Google Scholar 

  67. Pratt CB, Douglass EC, Etcubanas EL, et al. Ifosfamide in pediatric malignant solid tumors. Cancer Chemother Pharmacol 1989; 24Suppl. 1: S24–7

    PubMed  Google Scholar 

  68. Meyer WH, Kun L, Marina N, et al. Ifosfamide plus etoposide in newly diagnosed Ewing’s sarcoma of bone. J Clin Oncol 1992; 10: 1737–42

    PubMed  CAS  Google Scholar 

  69. Sandoval C, Meyer WH, Parham DM, et al. Outcome in 43 children presenting with metastatic Ewing sarcoma: the St. Jude Children’s Research Hospital experience, 1962 to 1992. Med Pediatr Oncol 1996; 26: 180–5

    PubMed  CAS  Google Scholar 

  70. Wexler LH, DeLaney TF, Tsokos M, et al. Ifosfamide and etoposide plus vincristine, doxorubicin, and cyclophosphamide for newly diagnosed Ewing’s sarcoma family of tumors. Cancer 1996; 78: 901–11

    PubMed  CAS  Google Scholar 

  71. Marina NM, Pappo AS, Parham DM, et al. Chemotherapy dose-intensification for pediatric patients with Ewing’s family of tumors and desmoplastic small round-cell tumors: a feasibility study at St. Jude Children’s Research Hospital. J Clin Oncol 1999; 17: 180–90

    PubMed  CAS  Google Scholar 

  72. Nitschke R, Starling KA, Vats T, et al. Cis-diamminedichloro-platinum (NSC-119875) in childhood malignancies: a Southwest Oncology Group study. Med Pediatr Oncol 1978; 4: 127–32

    PubMed  CAS  Google Scholar 

  73. Baum ES, Gaynon P, Greenberg L, et al. Phase II trial cisplatin in refractory childhood cancer: Children’s Cancer Study Group report. Cancer Treat Rep 1981; 65: 815–22

    PubMed  CAS  Google Scholar 

  74. Chan KW, Knowling M, Beauchamp CP. Perioperative chemotherapy for primary sarcoma of bone. Can J Surg 1989; 32: 43–6

    PubMed  CAS  Google Scholar 

  75. Nilbert M, Saeter G, Elomaa I, et al. Ewing’s sarcoma treatment in Scandinavia 1984–1990: ten-year results of the Scandinavian Sarcoma Group Protocol SSGIV. Acta Oncol 1998; 37: 375–8

    PubMed  CAS  Google Scholar 

  76. Jürgens H, Cserhati M, Göbel U, et al. The CESS 81 cooperative Ewing sarcoma study of the Society for Pediatric Oncology: an interim report [in German]. Klin Padiatr 1983; 195: 207–13

    PubMed  Google Scholar 

  77. Fizazi K, Zelek L. Is one cycle every three or four weeks’ obsolete: a critical review of dose-dense chemotherapy in solid neoplasms. Ann Oncol 2000; 11: 133–49

    PubMed  CAS  Google Scholar 

  78. Kushner BH, Kramer K, Cheung NK. Topotecan and high-dose cyclophosphamide: salvage therapy for pediatric solid tumors. Proc Am Soc Clin Oncol 1999; 18: 2176

    Google Scholar 

  79. Paulussen M, Fröhlich B, Braun-Munzinger G, et al. VIDE (VCR, IFO, DOX, ETO) induction therapy for Ewing tumors: a report on 44 consecutive courses in 7 patients [abstract]. Med Pediatr Oncol 1999; 33: 296

    Google Scholar 

  80. Womer RB, Daller RT, Fenton JG, et al. Granulocyte colony stimulating factor permits dose intensification by interval compression in the treatment of Ewing’s sarcomas and soft tissue sarcomas in children. Eur J Cancer 2000; 36: 87–94

    PubMed  CAS  Google Scholar 

  81. Felgenhauer J, Hawkins D, Pendergrass T, et al. Very intensive, short-term chemotherapy for children and adolescents with metastatic sarcomas. Med Pediatr Oncol 2000; 34: 29–38

    PubMed  CAS  Google Scholar 

  82. Rodriguez-Galindo C, Poquette CA, Marina NM, et al. Hematologic abnormalities and acute myeloid leukemia in children and adolescents administered intensified chemotherapy for the Ewing sarcoma family of tumors. J Pediatr Hematol Oncol 2000; 22: 321–9

    PubMed  CAS  Google Scholar 

  83. Burdach S, van Kaick B, Laws HJ, et al. Allogeneic and autologous stem-cell transplantation in advanced Ewing tumors: an update after long-term follow-up from two centers of the European Intergroup study EICESS. Stem-Cell Transplant Programs at Dusseldorf University Medical Center, Germany and St. Anna Kinderspital, Vienna, Austria. Ann Oncol 2000; 11: 1451–62

    PubMed  CAS  Google Scholar 

  84. Burdach S, Jürgens H, Peters C, et al. Myeloablative radiochemotherapy and hematopoietic stem-cell rescue in poor-prognosis Ewing’s sarcoma. J Clin Oncol 1993; 11: 1482–8

    PubMed  CAS  Google Scholar 

  85. Fröhlich B, Ahrens S, Burdach S, et al. High-dosage chemotherapy in primary metastasized and relapsed Ewing’s sarcoma [in German]. Klin Padiatr 1999; 211: 284–90

    PubMed  Google Scholar 

  86. Diaz MA, Vicent MG, Madero L. High-dose busulfan/melphalan as conditioning for autologous PBPC transplantation in pediatric patients with solid tumors. Bone Marrow Transplant 1999; 24: 1157–9

    PubMed  CAS  Google Scholar 

  87. Hawkins D, Barnett T, Bensinger W, et al. Busulfan, melphalan, and thiotepa with or without total marrow irradiation with hematopoietic stem cell rescue for poor-risk Ewing-Sarcoma-Family tumors. Med Pediatr Oncol 2000; 34: 328–37

    PubMed  CAS  Google Scholar 

  88. Pession A, Prete A, Locatelli F, et al. Phase I study of high-dose thiotepa with busulfan, etoposide, and autologous stem cell support in children with disseminated solid tumors. Med Pediatr Oncol 1999; 33: 450–4

    PubMed  CAS  Google Scholar 

  89. Ladenstein R, Hartmann O, Pinkerton CR. The role of mega-therapy with autologous bone marrow rescue in solid tumours of childhood. Ann Oncol 1993; 4Suppl. 1: 45–58

    PubMed  Google Scholar 

  90. Ladenstein R, Hartman O, Pinkerton CR, et al. A multivariate and matched pair analysis on high-risk Ewing tumor (ET) patients treated by megatherapy (MGT) and stem cell reinfusion (SCR) in Europe [abstract]. Proc Am Soc Clin Oncol 1999; 18: 2144

    Google Scholar 

  91. Kushner BH, Meyers PA. How effective is dose-intensive/myeloablative therapy against Ewing’s sarcoma/primitive neuroectodermal tumor metastatic to bone or bone marrow? The memorial Sloan-Kettering experience and a literature review. J Clin Oncol 2001; 19: 870–80

    PubMed  CAS  Google Scholar 

  92. Scotlandi K, Baldini N, Cerisano V, et al. CD99 engagement: an effective therapeutic strategy for Ewing tumors. Cancer Res 2000; 60: 5134–42

    PubMed  CAS  Google Scholar 

  93. Sohn HW, Choi EY, Kim SH, et al. Engagement of CD99 induces apoptosis through a calcineurin-independent pathway in Ewing’s sarcoma cells. Am J Pathol 1998; 153: 1937–45

    PubMed  CAS  Google Scholar 

  94. Mackall C, Berzofsky J, Helman LJ. Targeting tumor specific translocations in sarcomas in pediatric patients for immunotherapy. Clin Orthop 2000; 2000: 25–31

    Google Scholar 

  95. Sanceau J, Hiscott J, Delattre O, et al. IFN-beta induces serine phosphorylation of Stat-1 in Ewing’s sarcoma cells and mediates apoptosis via induction of IRF-1 and activation of caspase-7. Oncogene 2000; 19: 3372–83

    PubMed  CAS  Google Scholar 

  96. Fulda S, Jeremias I, Pietsch T, et al. Betulinic acid: a new chemotherapeutic agent in the treatment of neuroectodermal tumors. Klin Padiatr 1999; 211: 319–22

    PubMed  CAS  Google Scholar 

  97. Fulda S, Debatin KM. Betulinic acid induces apoptosis through a direct effect on mitochondria in neuroectodermal tumors. Med Pediatr Oncol 2000; 35: 616–8

    PubMed  CAS  Google Scholar 

  98. Toretsky JA, Thakar M, Eskenazi AE, et al. Phosphoinositide 3-hydroxide kinase blockade enhances apoptosis in the Ewing’s sarcoma family of tumors. Cancer Res 1999; 59: 5745–50

    PubMed  CAS  Google Scholar 

  99. Kim JS, Pirnia F, Choi YH, et al. Lovastatin induces apoptosis in a primitive neuroectodermal tumor cell line in association with RB down-regulation and loss of the Gl checkpoint. Oncogene 2000; 19: 6082–90

    PubMed  CAS  Google Scholar 

  100. Girnita L, Wang M, Xie Y, et al. Inhibition of N-linked glycosylation down-regulates insulin-like growth factor-1 receptor at the cell surface and kills Ewing’s sarcoma cells: therapeutic implications. Anticancer Drug Des 2000; 15: 67–72

    PubMed  CAS  Google Scholar 

  101. Mitsiades N, Poulaki V, Leone A, et al. Fas-mediated apoptosis in Ewing’s sarcoma cell lines by metalloproteinase inhibitors. J Natl Cancer Inst 1999; 91: 1678–84

    PubMed  CAS  Google Scholar 

  102. Landuzzi L, De Giovanni C, Nicoletti G, et al. The metastatic ability of Ewing’s sarcoma cells is modulated by stem cell factor and by its receptor c-kit. Am J Pathol 2000; 157: 2123–31

    PubMed  CAS  Google Scholar 

  103. Sturla LM, Westwood G, Selby PJ, et al. Induction of cell death by basic fibroblast growth factor in Ewing’s sarcoma. Cancer Res 2000; 60: 6160–70

    PubMed  CAS  Google Scholar 

  104. Souid AK, Fahey RC, Dubowy RL, et al. WR-2721 (amifostine) infusion in patients with Ewing’s sarcoma receiving ifosfamide and cyclophosphamide with mesna: drug and thiol levels in plasma and blood cells. A Pediatric Oncology Group study. Cancer Chemother Pharmacol 1999; 44: 498–504

    PubMed  CAS  Google Scholar 

  105. Maschan AA, Kopossov PV, Protzenko OA, et al. A pilot trial of docetaxel in previously untreated children with solid tumors [abstract]. Proc Am Soc Clin Oncol 2000; 19: 2331

    Google Scholar 

  106. Hurwitz CA, Relling MV, Weitman SD, et al. Phase I trial of paclitaxel in children with refractory solid tumors. A Pediatric Oncology Group study. J Clin Oncol 1993; 11: 2324–9

    PubMed  CAS  Google Scholar 

  107. Blaney SM, Seibel NL, O’Brien M, et al. Phase I trial of docetaxel administered as a 1-hour infusion in children with refractory solid tumors: a collaborative pediatric branch. National Cancer Institute and Children’s Cancer Group trial. J Clin Oncol 1997; 15: 1538–43

    PubMed  CAS  Google Scholar 

  108. Deb J. Phase I trial with paclitaxel according to the Q4D regimen in pediatric recurrent solid tumors [abstract]. Proc Am Soc Clin Oncol 2000; 19: 2330

    Google Scholar 

  109. Martinez-Aguillo M, Perez-Calvo J, Villafranca AE, et al. Feasibility of sequential dose-intensive chemotherapy with STEM cell support in poor-prognosis Ewing’s sarcoma [abstract]. Proc Am Soc Clin Oncol 2000; 19: 2217

    Google Scholar 

  110. Tubergen DG, Stewart CF, Pratt CB, et al. Phase I trial and pharmacokinetic (PK) and pharmacodynamics (PD) study of topotecan using a five-day course in children with refractory solid tumors. A Pediatric Oncology Group study. J Pediatr Hematol Oncol 1996; 18: 352–61

    PubMed  CAS  Google Scholar 

  111. Kushner BH, Kramer K, Meyers PA, et al. Pilot study of topotecan and high-dose cyclophosphamide for resistant pediatric solid tumors. Med Pediatr Oncol 2000; 35: 468–74

    PubMed  CAS  Google Scholar 

  112. Saylors 3rd RL, Stine KC, Sullivan J, et al. Cyclophosphamide plus topotecan in children with recurrent or refractory solid tumors: a Pediatric Oncology Group phase II study. J Clin Oncol 2001; 19(15): 3463–9

    PubMed  CAS  Google Scholar 

  113. Balis FM. Phase I study of doxorubicin HC1 liposome in pediatric patients with refractory solid tumors (NCI-99-C-0039D, LIPO-NCI-99-C-0039, NCI-99-C-0039) [online]. Available from URL: http://cancernet.ncinih.gov/ [Accessed 2001 Oct 17]

  114. Donaldson SS, Torrey M, Link MP, et al. A multidisciplinary study investigating radiotherapy in Ewing’s sarcoma: end results of POG #8346. Pediatric Oncology Group. Int J Radiat Oncol Biol Phys 1998; 42: 125–35

    PubMed  CAS  Google Scholar 

  115. Dunst J, Jurgens H, Sauer R, et al. Radiation therapy in Ewing’s sarcoma: an update of the CESS 86 trial. Int J Radiat Oncol Biol Phys 1995; 32: 919–30

    PubMed  CAS  Google Scholar 

  116. Dunst J, Hoffmann C, Ahrens S, et al. Surgery versus radiotherapy in Ewing’s sarcoma with good prognosis: analysis of the CESS-86 data [in German]. Strahlenther Onkol 1996; 172: 244–8

    PubMed  CAS  Google Scholar 

  117. Shankar AG, Pinkerton CR, Atra A, et al. Local therapy and other factors influencing site of relapse in patients with localised Ewing’s sarcoma. United Kingdom Children’s Cancer Study Group (UKCCSG). Eur J Cancer 1999; 35: 1698–704

    PubMed  CAS  Google Scholar 

  118. Merchant TE, Kushner BH, Sheldon JM, et al. Effect of low-dose radiation therapy when combined with surgical resection for Ewing sarcoma. Med Pediatr Oncol 1999; 33: 65–70

    PubMed  CAS  Google Scholar 

  119. Paulussen M, Ahrens S, Craft AW, et al. Ewing tumors with primary lung metastases: survival analysis of 114 (European intergroup) Ewing sarcoma studies patients. J Clin Oncol 1998; 16: 3044–52

    PubMed  CAS  Google Scholar 

  120. Wessalowski R, Jürgens H, Bodenstein H, et al. Results of treatment of primary metastatic Ewing sarcoma. A retrospective analysis of 48 patients [in German]. Klin PAdiatr 1988; 200: 253–60

    PubMed  CAS  Google Scholar 

  121. Miser J, Krailo M, Meyers P, et al. Metastatic Ewing’s sarcoma (ES) and primitive neuroectodermal tumor (PNET) of bone: failure of new regimens to improve outcome [abstract]. Proc Am Soc Clin Oncol 1996; 15: 467

    Google Scholar 

  122. Göbel V, Jürgens H, EtspUler G, et al. Prognostic significance of tumor volume in localized Ewing’s sarcoma of bone in children and adolescents. J Cancer Res Clin Oncol 1987; 113: 187–91

    PubMed  Google Scholar 

  123. Hayes FA, Thompson El, Meyer WH, et al. Therapy for localized Ewing’s sarcoma of bone. J Clin Oncol 1989; 7: 208–13

    PubMed  CAS  Google Scholar 

  124. Terrier P, Llombart BA, Contesso G. Small round blue cell tumors in bone: prognostic factors correlated to Ewing’s sarcoma and neuroectodermal tumors. Semin Diagn Pathol 1996; 13: 250–7

    PubMed  CAS  Google Scholar 

  125. Craft AW, Cotterill SJ, Bullimore JA, et al. Long-term results from the first UKCCSG Ewing’s Tumour Study (ET-1). United Kingdom Children’s Cancer Study Group (UKCCSG) and the Medical Research Council Bone Sarcoma Working Party. Eur J Cancer 1997; 33: 1061–9

    PubMed  CAS  Google Scholar 

  126. Zoubek A, Pfleiderer C, Salzer Kuntschik M, et al. Variability of EWS chimaeric transcripts in Ewing tumours: a comparison of clinical andmolecular data. Br J Cancer 1994; 70: 908–13

    PubMed  CAS  Google Scholar 

  127. De-Alava E, Kawai A, Healey JH, et al. EWS-Flil fusion transcript structure is an independent determinant of prognosis in Ewing’s sarcoma. J Clin Oncol 1998; 16: 1248–55

    PubMed  CAS  Google Scholar 

  128. Terrier P, Henry Amar M, Triche TJ, et al. Is neuro-ectodermal differentiation of Ewing’s sarcoma of bone associated with an unfavourable prognosis? Eur J Cancer 1995; 31A: 307–14

    PubMed  CAS  Google Scholar 

  129. Schubert H, Ahrens S, Hoffmann C, et al. Neural differentiation and prognosis in Ewing tumors: the (EI)CESS experience [abstract]. Med Pediatr Oncol 1997; 29: 347

    Google Scholar 

  130. Verrill MW, Judson IR, Harmer CL, et al. Ewing’s sarcoma and primitive neuroectodermal tumor in adults: are they different from Ewing’s sarcoma and primitive neuroectodermal tumor in children? J Clin Oncol 1997; 15: 2611–21

    PubMed  CAS  Google Scholar 

  131. Bacci G, Ferrari S, Bertoni F, et al. Prognostic factors in nonmetastatic Ewing’s sarcoma of bone treated with adjuvant chemotherapy: analysis of 359 patients at the Istituto Ortopedico Rizzoli. J Clin Oncol 2000; 18: 4–11

    PubMed  CAS  Google Scholar 

  132. Aeschlimann C, Cerny T, Kupfer A. Inhibition of (mono)amine oxidase activity and prevention of ifosfamide encephalopathy by methylene blue. Drug Metab Dispos 1996; 24: 1336–9

    PubMed  CAS  Google Scholar 

  133. Pelgrims J, De Vos F, Van den BJ, et al. Methylene blue in the treatment and prevention of ifosfamide-induced encephalopathy: report of 12 cases and a review of the literature. Br J Cancer 2000; 82: 291–4

    PubMed  CAS  Google Scholar 

  134. Rossi R. Nephrotoxicity of ifosfamide: moving towards understanding the molecular mechanisms [editorial]. Nephrol Dial Transplant 1997; 12: 1091–2

    PubMed  CAS  Google Scholar 

  135. Rossi R, Godde A, Kleinebrand A, et al. Unilateral nephrectomy and cisplatin as risk factors of ifosfamide-induced nephrotoxicity: analysis of 120patients. J Clin Oncol 1994; 12(1): 159–65

    PubMed  CAS  Google Scholar 

  136. Steinherz LJ, Steinherz PG, Tan CT, et al. Cardiac toxicity 4 to 20 years after completing anthracycline therapy. JAMA 1991; 266(12): 1672–7

    PubMed  CAS  Google Scholar 

  137. Bielack SS, Erttmann R, Kempf-Bielack B, et al. Impact of scheduling on toxicity and clinical efficacy of doxorubicin: what do we know in the mid-nineties? Eur J Cancer 1996; 32A(10): 1652–60

    PubMed  CAS  Google Scholar 

  138. Agarwala S, Kumar R, Bhatnagar V, et al. High incidence of adriamycin cardiotoxicity in children even at low cumulative doses: role of radionuclide cardiac angiography. J Pediatr Surg 2000; 35: 1786–9

    PubMed  CAS  Google Scholar 

  139. Herman EH, Zhang J, Chadwick DP, et al. Comparison of the protective effects of amifostine and dexrazoxane against the toxicity of doxorubicin in spontaneously hypertensive rats. Cancer Chemother Pharmacol 2000; 45: 329–34

    PubMed  CAS  Google Scholar 

  140. Craft AW, Cotterill SJ, Bullimore JA, et al. Long-term results from the first UKCCSG Ewing’s Tumour Study (ET-1). United Kingdom Children’s Cancer Study Group (UKCCSG) and the Medical Research Council Bone Sarcoma Working Party. Eur J Cancer 1997; 33(7): 1061–9

    PubMed  CAS  Google Scholar 

  141. Miser J, Krailo M, Smith M, et al. Secondary leukemia (SL) or myelodysplastic syndrome (MDS) following therapy for Ewing’s sarcoma [abstract]. Proc Am Soc Clin Oncol 1997; 16: 518a

    Google Scholar 

  142. Smith MA, Rubinstein L, Ungerleider RS. Therapy-related acute myeloid leukemia following treatment with epipodophyllotoxins: estimating the risks. Med Pediatr Oncol 1994; 23: 86–98

    PubMed  CAS  Google Scholar 

  143. Smith LM, Cox RS, Donaldson SS. Second cancers in longterm survivors of Ewing’s sarcoma. Clin Orthop 1992; 274: 275–81

    PubMed  Google Scholar 

  144. Kushner BH, Heller G, Cheung NK, et al. High risk of leukemia after short-term dose-intensive chemotherapy in young patients with solid tumors. J Clin Oncol 1998; 16: 3016–20

    PubMed  CAS  Google Scholar 

  145. Dunst J, Ahrens S, Paulussen M, et al. Second malignancies after treatment for Ewing’s sarcoma: a report of the CESS-studies. Int J Radiat Oncol Biol Phys 1998; 42: 379–84

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded in part by grants Deutsch Krebshilfe DKH M33/87 Jii1, DKH M43/92 Jii2, DKH 70-2551 Jii3, and EU BIOMED grants MH1-CT92-1341 and BMH4-983956

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Paulussen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paulussen, M., Fröhlich, B. & Jürgens, H. Ewing Tumour. Paediatr Drugs 3, 899–913 (2001). https://doi.org/10.2165/00128072-200103120-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00128072-200103120-00003

Keywords

Navigation