Paediatric Drugs

, Volume 3, Issue 11, pp 817–858 | Cite as

Risks and Benefits of Nonsteroidal Anti-Inflammatory Drugs in Children

A Comparison with Paracetamol
Review Article

Abstract

Nonsteroidal anti-inflammatory drugs (NSAIDs) possess antipyretic, analgesic and anti-inflammatory effects. They are frequently used in children and have numerous therapeutic indications, the most common ones being fever, postoperative pain and inflammatory disorders, such as juvenile idiopathic arthritis (JIA) and Kawasaki disease. Their major mechanism of action is through inhibition of prostaglandin biosynthesis by blockade of cyclo-oxygenase (COX).

The disposition of most NSAIDs has been mainly studied in infants ≥2 years of age. Compared with adults, the volume of distribution and clearance of NSAIDs such as diclofenac, ibuprofen (infants aged between 3 months and 2.5 years), ketorolac and nimesulide were increased in children. The elimination ½-life was similar in children to that in adults. These pharmacokinetic differences might be clinically significant with the need for higher loading and/or maintenance doses in children.

Ibuprofen, acetylsalicylic acid (ASA) and acetaminophen are the most frequently used agents for fever reduction in children. Over the past 20 years, because of the association between ASA use and Reye’s syndrome, most of the interest has been directed toward ibuprofen and acetaminophen. In view of its comparable antipyretic efficacy, but superior tolerability profile, acetaminophen, when used appropriately with age-adapted formulations, should remain the firstline therapy in the treatment of childhood fever. At the moment, there is no scientific evidence to recommend simultaneous use of these two antipyretic drugs.

Most NSAIDs provide mild to moderate analgesia, with the exception of ketorolac which has a strong analgesic activity. The analgesic efficacy of ketorolac, ketoprofen, diclofenac and ibuprofen in the treatment of postoperative pain has been mainly studied following a single dose, in children of ≥1 year of age undergoing minor surgeries. In this setting, when used either alone or in adjunct to caudal or epidural anaesthesia, they were associated with an opioid-sparing effect and were well tolerated. With the exception of ketorolac use in children undergoing tonsillectomy, where controversy exists regarding the risk of postoperative haemorrhage, NSAIDs have not been associated with an increased risk of perioperative bleeding.

NSAIDs are the first-line therapy in JIA. They appear to be equally effective and tolerated, with the exception of ASA which is associated with more adverse effects. ASA has been used for many years in the treatment of Kawasaki disease and is part of the standard modality of treatment in combination with intravenous gammaglobulins. More recently, lung inflammation associated with cystic fibrosis (CF) has become a new target for NSAIDs. Despite promising preliminary results with ibuprofen, numerous questions need to be answered before this new strategy becomes part of the conventional treatment of patients with CF.

In summary, NSAIDs are effective in reducing fever, alleviating pain and reducing inflammation in children, with a good tolerance profile. Pharmacokinetic studies are needed to characterise the disposition of NSAIDs in very young infants in order to use them rationally. To date, no studies have been published on the disposition, tolerability and efficacy of specific COX-2 inhibitors in children. Further clinical experience with these agents in adults is warranted before undergoing trials with specific COX-2 inhibitors in children.

References

  1. 1.
    Vane JR, Botting RM. Mechanism of action of aspirin-like drugs. Semin Arthritis Rheum 1997; 26 (6 Suppl. 1): 2–10PubMedGoogle Scholar
  2. 2.
    Jones DA, Carlton DP, McIntyre TM, et al. Molecular cloning of human prostaglandin endoperoxide synthase type II and demonstration of expression in response to cytokines. J Biol Chem 1993; 268(12): 9049–54PubMedGoogle Scholar
  3. 3.
    Habib A, Creminon C, Frobert Y, et al. Demonstration of an inducible cyclooxygenase in human endothelial cells using antibodies raised against the carboxyl-terminal region of the cyclooxygenase-2. J Biol Chem 1993; 268(31): 23448–54PubMedGoogle Scholar
  4. 4.
    O’Sullivan MG, Huggins Jr EM, Meade EA, et al. Lipopolysaccharide induces prostaglandinh synthase-2 in alveolar macrophages. Biochem Biophys Res Commun 1992; 187(2): 1123–7PubMedGoogle Scholar
  5. 5.
    Crofford LJ. COX-1 and COX-2 tissue expression: implications and predictions. J. Rheumatol 1994; 24 Suppl. 49: 15–9Google Scholar
  6. 6.
    Smith WL, DeWitt DL. Biochemistry of prostaglandin endoperoxideh synthase-1 and synthase-2 and their differential susceptibility to nonsteroidal anti-inflammatory drugs. Semin Nephrol 1995; 15(3): 179–94PubMedGoogle Scholar
  7. 7.
    Siegle I, Klein T, Backman JT, et al. Expression of cyclooxygenase 1 and cyclooxygenase 2 in human synovial tissue: differential elevation of cyclooxygenase 2 in inflammatory joint diseases. Arthritis Rheum 1998; 41(1): 122–9PubMedGoogle Scholar
  8. 8.
    Gretzer B, Knorth H, Chantrain M, et al. Effects of diclofenac and L-745,337, a selective cyclooxygenase-2 inhibitor, on prostaglandin E2 formation in tissue from human colonic mucosa and chronic bursitis [abstract]. Gastroenterology 1998; 114: A139Google Scholar
  9. 9.
    Kaufmann WE, Worley PF, Pegg J, et al. COX-2, a synaptically induced enzyme, is expressed by excitatory neurons at post-synaptic sites in rat cerebral cortex. Proc Natl Acad Sci USA 1996; 93(6): 2317–21PubMedGoogle Scholar
  10. 10.
    Kaufmann WE, Andreasson KI, Isakson PC, et al. Cyclooxygenases and the central nervous system. Prostaglandins 1997; 54(3): 601–24PubMedGoogle Scholar
  11. 11.
    Sato T, Morita I, Sakaguchi K, et al. Involvement of cyclooxygenase-2 in bone loss induced by interleukin-1 beta. Adv Prostaglandin Thromboxane Leukot Res 1995; 23: 445–7PubMedGoogle Scholar
  12. 12.
    Onoe Y, Miyaura C, Kaminakayashiki T, et al. IL-13 and IL-4 inhibit bone resorption by suppressing cyclooxygenase-2-dependent prostaglandin synthesis in osteoblasts. J Immunol 1996; 156(2): 758–64PubMedGoogle Scholar
  13. 13.
    Wong WY, Richards JS. Induction of prostaglandin H synthase in rat preovulatory follicles by gonadotropin-releasing hormone. Endocrinology 1992; 130(6): 3512–21PubMedGoogle Scholar
  14. 14.
    Sirois J, Simmons DL, Richards JS. Hormonal regulation of messenger ribonucleic acid encoding a novel isoform of prostaglandin endoperoxide H synthase in rat preovulatory follicles: induction in vivo and in vitro. J Biol Chem 1992; 267(16): 11586–92PubMedGoogle Scholar
  15. 15.
    Chakraborty I, Das SK, Wang J, et al. Developmental expression of the cyclo-oxygenase-1 and cyclo-oxygenase-2 genes in the peri-implantation mouse uterus and their differential regulation by the blastocyst and ovarian steroids. J Mol Endocrinol 1996; 16(2): 107–22PubMedGoogle Scholar
  16. 16.
    Dinchuk JE, Car BD, Focht RJ, et al. Renal abnormalities and an altered inflammatory response in mice lacking cyclooxygenase II. Nature 1995; 378(6555): 406–9PubMedGoogle Scholar
  17. 17.
    Morham SG, Langenbach R, Loftin CD, et al. Prostaglandin synthase 2 gene disruption causes severe renal pathology in the mouse. Cell 1995; 83(3): 473–82PubMedGoogle Scholar
  18. 18.
    Harris RC, McKanna JA, Akai Y, et al. Cyclooxygenase-2 is associated with the macula densa of rat kidney and increases with salt restriction. J Clin Invest 1994; 94(6): 2504–10PubMedGoogle Scholar
  19. 19.
    Harding P, Sigmon DH, Alfie ME, et al. Cyclooxygenase-2 mediates increased renal renin content induced by low-sodium diet. Hypertension 1997; 29 (1 Pt 2): 297–302PubMedGoogle Scholar
  20. 20.
    Reuter BK, Asfaha S, Buret A, et al. Exacerbation of inflammation-associated colonic injury in rat through inhibition of cyclooxygenase-2. J Clin Invest 1996; 98(9): 2076–85PubMedGoogle Scholar
  21. 21.
    Crofford LJ, Oates JC, McCune WJ, et al. Thrombosis in patients with connective tissue diseases treated with specific cyclooxygenase 2 inhibitors: a report of four cases. Arthritis Rheum 2000; 43(8): 1891–6PubMedGoogle Scholar
  22. 22.
    Balasubramaniam J. Selective COX-2 inhibitors and nephrotoxicity. Am J Kidney Dis 2000; 36(3): 675–6PubMedGoogle Scholar
  23. 23.
    Fenner H. Differentiating among nonsteroidal antiinflammatory drugs by pharmacokinetic and pharmacodynamic profiles. Semin Arthritis Rheum 1997; 26 (6 Suppl. 1): 28–33PubMedGoogle Scholar
  24. 24.
    Mitchell JA, Akarasereenont P, Thiemermann C, et al. Selectivity of nonsteroidal antiinflammatory drugs as inhibitors of constitutive and inducible cyclooxygenase. Proc Natl Acad Sci USA 1993; 90(24): 11693–7PubMedGoogle Scholar
  25. 25.
    Vane JR, Botting RM. A better understanding of anti-inflammatory drugs based on isoforms of cyclooxygenase (COX-1 and COX-2). Adv Prostaglandin Thromboxane Leukot Res 1995; 23: 41–8PubMedGoogle Scholar
  26. 26.
    Dascombe MJ. The pharmacology of fever. Prog Neurobiol 1985; 25(4): 327–73PubMedGoogle Scholar
  27. 27.
    Cao C, Matsumura K, Yamagata K, et al. Endothelial cells of the rat brain vasculature express cyclooxygenase-2 mRNA in response to systemic interleukin-1 beta: a possible site of prostaglandin synthesis responsible for fever. Brain Res 1996; 733(2): 263–72PubMedGoogle Scholar
  28. 28.
    Ferreira SH. Peripheral analgesia: mechanism of the analgesic action of aspirin-like drugs and opiate-antagonists. Br J Clin Pharmacol 1980; 10 Suppl. 2: 237–245SGoogle Scholar
  29. 29.
    Ku EC, Lee W, Kothari HV, et al. Effect of diclofenac sodium on the arachidonic acid cascade. Am J Med 1986; 80(4B): 18–23PubMedGoogle Scholar
  30. 30.
    O’Neill LA, Lewis GP. Inhibitory effects of diclofenac and indomethacin on interleukin-1-induced changes in PGE2 release: a novel effect on free arachidonic acid levels in human synovial cells. Biochem Pharmacol 1989; 38(21): 3707–11PubMedGoogle Scholar
  31. 31.
    Abdel-Halim MS, Sjoquist B, Anggard E. Inhibition of prostaglandin synthesis in rat brain. Acta Pharmacol Toxicol (Copenh) 1978; 43(4): 266–72Google Scholar
  32. 32.
    Martini A, Bondiolotti GP, Sacerdote P, et al. Diclofenac increases beta-endorphin plasma concentrations. J Int Med Res 1984; 12(2): 92–5PubMedGoogle Scholar
  33. 33.
    Sacerdote P, Monza G, Mantegazza P, et al. Diclofenac and pirprofen modify pituitary and hypothalamic beta-endorphin concentrations. Pharmacol Res Commun 1985; 17(8): 679–84PubMedGoogle Scholar
  34. 34.
    Groppetti A, Braga PC, Biella G, et al. Effect of aspirin on serotonin and met-enkephalin in brain: correlation with the antinociceptive activity of the drug. Neuropharmacology 1988; 27(5): 499–505PubMedGoogle Scholar
  35. 35.
    McCormack K. Non-steroidal anti-inflammatory drugs and spinal nociceptive processing [published erratum appears in Pain 1995; 60 (3): 353]. Pain 1994; 59(1): 9–43PubMedGoogle Scholar
  36. 36.
    Bjorkman R. Central antinociceptive effects of non-steroidal anti-inflammatory drugs and paracetamol: experimental studies in the rat. Acta Anaesthesiol Scand Suppl 1995; 103: 1–44PubMedGoogle Scholar
  37. 37.
    Malmberg AB, Yaksh TL. Antinociception produced by spinal delivery of the S and R enantiomers of flurbiprofen in the formalin test [published erratum appears in Eur J Pharmacol 1994; 260 (2–3): 283]. Eur J Pharmacol 1994; 256(2): 205–9PubMedGoogle Scholar
  38. 38.
    Malmberg AB, Yaksh TL. Antinociceptive actions of spinal nonsteroidal anti-inflammatory agents on the formalin test in the rat. J Pharmacol Exp Ther 1992; 263(1): 136–46PubMedGoogle Scholar
  39. 39.
    Malmberg AB, Yaksh TL. Hyperalgesia mediated by spinal glutamate or substance P receptor blocked by spinal cyclooxygenase inhibition. Science 1992; 257(5074): 1276–9PubMedGoogle Scholar
  40. 40.
    Abramson S, Korchak H, Ludewig R, et al. Modes of action of aspirin-like drugs. Proc Natl Acad Sci USA 1985; 82(21): 7227–31PubMedGoogle Scholar
  41. 41.
    Abramson SB, Cherksey B, Gude D, et al. Nonsteroidal anti-inflammatory drugs exert differential effects on neutrophil function and plasma membrane viscosity: studies in human neutrophils and liposomes. Inflammation 1990; 14(1): 11–30PubMedGoogle Scholar
  42. 42.
    Raskin JB. Gastrointestinal effects of nonsteroidal anti-inflammatory therapy. Am J Med 1999; 106(5B): 3–12SGoogle Scholar
  43. 43.
    Whelton A. Nephrotoxicity of nonsteroidal anti-inflammatory drugs: physiologic foundations and clinical implications. Am J Med 1999; 106(5B): 13–24SGoogle Scholar
  44. 44.
    Schafer AI. Effects of nonsteroidal anti-inflammatory therapy on platelets. Am J Med 1999; 106(5B): 25–36SGoogle Scholar
  45. 45.
    Treluyer JM, Sultan E, Alexandre JA, et al. Pharmacokinetics of aspirin in African children with normal nutrition and malnutrition. Arch Fr Paediatr 1991; 48(5): 337–41Google Scholar
  46. 46.
    Wilson JT, Brown RD, Bocchini Jr JA, et al. Efficacy, disposition and pharmacodynamics of aspirin, acetaminophen and choline salicylate in young febrile children. Ther Drug Monit 1982; 4(2): 147–80PubMedGoogle Scholar
  47. 47.
    Korpela R, Olkkola KT. Pharmacokinetics of intravenous diclofenac sodium in children. Eur J Clin Pharmacol 1990; 38(3): 293–5PubMedGoogle Scholar
  48. 48.
    Haapasaari J, Wuolijoki E, Ylijoki H. Treatment of juvenile rheumatoid arthritis with diclofenac sodium. Scand J Rheumatol 1983; 12(4): 325–30PubMedGoogle Scholar
  49. 49.
    Ryhanen P, Adamski J, Puhakka K, et al. Postoperative pain relief in children: a comparison between caudal bupivacaine and intramuscular diclofenac sodium. Anaesthesia 1994; 49(1): 57–61PubMedGoogle Scholar
  50. 50.
    Boni JP, Korth-Bradley JM, Martin P, et al. Pharmacokinetics of etodolac in patients with stable juvenile rheumatoid arthritis. Clin Ther 1999; 21(10): 1715–24PubMedGoogle Scholar
  51. 51.
    Makela AL, Scheinin M, Iisalo E, et al. Pharmacokinetics of fenclofenac in children with juvenile rheumatoid arthritis. Eur J Clin Pharmacol 1983; 25(3): 381–8PubMedGoogle Scholar
  52. 52.
    Scaroni C, Mazzoni PL, D’Amico E, et al. Pharmacokinetics of oral and rectal flurbiprofen in children. Eur J Clin Pharmacol 1984; 27(3): 367–9PubMedGoogle Scholar
  53. 53.
    Brown RD, Wilson JT, Kearns GL, et al. Single-dose pharmacokinetics of ibuprofen and acetaminophen in febrile children. J Clin Pharmacol 1992; 32(3): 231–41PubMedGoogle Scholar
  54. 54.
    Kauffman RE, Nelson MV. Effect of age on ibuprofen pharmacokinetics and antipyretic response. J Paediatr 1992; 121(6): 969–73Google Scholar
  55. 55.
    Rey E, Pariente-Khayat A, Gouyet L, et al. Stereoselective disposition of ibuprofen enantiomers in infants. Br J Clin Pharmacol 1994; 38(4): 373–5PubMedGoogle Scholar
  56. 56.
    Walson PD, Galletta G, Braden NJ, et al. Ibuprofen, acetaminophen, and placebo treatment of febrile children. Clin Pharmacol Ther 1989; 46(1): 9–17PubMedGoogle Scholar
  57. 57.
    Nahata MC, Durrell DE, Powell DA, et al. Pharmacokinetics of ibuprofen in febrile children. Eur J Clin Pharmacol 1991; 40(4): 427–8PubMedGoogle Scholar
  58. 58.
    Makela AL, Lempiainen M, Ylijoki H. Ibuprofen levels in serum and synovial fluid. Scand J Rheumatol Suppl 1981; 39: 15–7PubMedGoogle Scholar
  59. 59.
    Kelley MT, Walson PD, Edge JH, et al. Pharmacokinetics and pharmacodynamics of ibuprofen isomers and acetaminophen in febrile children. Clin Pharmacol Ther 1992; 52(2): 181–9PubMedGoogle Scholar
  60. 60.
    Olkkola KT, Maunuksela EL, Korpela R. Pharmacokinetics of postoperative intravenous indomethacin in children. Pharmacol Toxicol 1989; 65(2): 157–60PubMedGoogle Scholar
  61. 61.
    Lempiainen M, Makela AL. Determination of ketoprofen by high-performance liquid chromatography from serum and urine: clinical application in children with juvenile rheumatoid arthritis. Int J Clin Pharmacol Res 1987; 7(4): 265–71PubMedGoogle Scholar
  62. 62.
    Kokki H, Le Liboux A, Jekunen A, et al. Pharmacokinetics of ketoprofen syrup in small children. J Clin Pharmacol 2000; 40(4): 354–9PubMedGoogle Scholar
  63. 63.
    Olkkola KT, Maunuksela EL. The pharmacokinetics of postoperative intravenous ketorolac tromethamine in children. Br J Clin Pharmacol 1991; 31(2): 182–4PubMedGoogle Scholar
  64. 64.
    Cohen DE, Siegal S, Davis L, et al. Pharmacokinetics of intravenous ketorolac in infants less than 1 year of age [abstract]. Anaesthesiology 1994; 81(3A): A1334Google Scholar
  65. 65.
    Kerr KA, Banner W, Pappas J, et al. A pharmacokinetic study comparing intermittent vs continuous infusion ketorolac in a paediatric intensive care unit (PICU) [abstract]. Crit Care Med 1994; 22(1): A182Google Scholar
  66. 66.
    Gonzalez-Martin G, Maggio L, Gonzalez-Sotomayor J, et al. Pharmacokinetics of ketorolac in children after abdominal surgery. Int J Clin Pharmacol Ther 1997; 35(4): 160–3PubMedGoogle Scholar
  67. 67.
    Kauffman RE, Lieh-Lai MW, Uy HG, et al. Enantiomer-selective pharmacokinetics and metabolism of ketorolac in children. Clin Pharmacol Ther 1999; 65(4): 382–8PubMedGoogle Scholar
  68. 68.
    Hamunen K, Maunuksela EL, Sarvela J, et al. Stereoselective pharmacokinetics of ketorolac in children, adolescents and adults. Acta Anaesthesiol Scand 1999; 43(10): 1041–6PubMedGoogle Scholar
  69. 69.
    Ansell BM, Hanna DB, Stoppard M. Naproxen absorption in children. Curr Med Res Opin 1975; 3(1): 46–50PubMedGoogle Scholar
  70. 70.
    Makela AL. Naproxen in the treatment of juvenile rheumatoid arthritis: metabolism, safety and efficacy. Scand J Rheumatol 1977; 6(4): 193–205PubMedGoogle Scholar
  71. 71.
    Kauffmann RE, Bolliger RO, Wan SH, et al. Pharmacokinetics and metabolism of naproxen in children. Dev Pharmacol Ther 1982; 5(3–4): 143–50PubMedGoogle Scholar
  72. 72.
    Walson PD, Kelley MT. Pharmacokinetics of naproxen tablets and naproxen suspension in febrile adults and children. Clinical Therapeutics 1991; 13 Suppl. A: 26–34Google Scholar
  73. 73.
    Wells TG, Mortensen ME, Dietrich A, et al. Comparison of the pharmacokinetics of naproxen tablets and suspension in children. J Clin Pharmacol 1994; 34(1): 30–3PubMedGoogle Scholar
  74. 74.
    Ugazio AG, Guarnaccia S, Berardi M, et al. Clinical and pharmacokinetic study of nimesulide in children. Drugs 1993; 46 Suppl. 1: 215–8PubMedGoogle Scholar
  75. 75.
    Scharli AF, Brulhart K, Monti T. Pharmacokinetics and therapeutic study with nimesulide suppositories in children with post-operative pain and inflammation. J Int Med Res 1990; 18(4): 315–21PubMedGoogle Scholar
  76. 76.
    Makela AL, Olkkola KT, Mattila MJ. Steady state pharmacokinetics of piroxicam in children with rheumatic diseases. Eur J Clin Pharmacol 1991; 41(1): 79–81PubMedGoogle Scholar
  77. 77.
    Bertin L, Rey E, Pons G, et al. Pharmacokinetics of tiaprofenic acid in children after a single oral dose. Eur J Clin Pharmacol 1991; 41(3): 251–3PubMedGoogle Scholar
  78. 78.
    Pariente-Khayat A, Dubois MC, Vauzelle-Kervroedan F, et al. Pharmacokinetics of tiaprofenic acid in infants after a single oral dose. Int J Clin Pharmacol Ther 1996; 34(8): 342–4PubMedGoogle Scholar
  79. 79.
    Niopas I, Georgarakis M, Sidi-Frangandrea V, et al. Pharmacokinetics of tolfenamic acid in paediatric patients after single oral dose. Eur J Drug Metab Pharmacokinet 1995; 20(4): 293–6PubMedGoogle Scholar
  80. 80.
    Bernareggi A. Clinical pharmacokinetics of nimesulide. Clin Pharmacokinet 1998; 35(4): 247–74PubMedGoogle Scholar
  81. 81.
    Makela AL, Yrjana T, Mattila M. Dosage of salicylates for children with juvenile rheumatoid arthritis: a prospective clinical trial with three different preparations of acetylsalicylic acid. Acta Paediatr Scand 1979; 68(3): 423–30PubMedGoogle Scholar
  82. 82.
    Famaey JP. Correlation plasma levels, NSAID and therapeutic response. Clin Rheumatol 1985; 4(2): 124–32PubMedGoogle Scholar
  83. 83.
    Laska EM, Sunshine A, Marrero I, et al. The correlation between blood levels of ibuprofen and clinical analgesic response. Clin Pharmacol Ther 1986; 40(1): 1–7PubMedGoogle Scholar
  84. 84.
    Konstan MW, Byard PJ, Hoppel CL, et al. Effect of high-dose ibuprofen in patients with cystic fibrosis. N Engl J Med 1995; 332(13): 848–54PubMedGoogle Scholar
  85. 85.
    Insel PA. Analgesic-antipyretic and antiinflammatory agents and drugs employed in the treatment of gout. In: Hardman JG, Limbird LE, editors. Goodman & Gilman’s the pharmacological basis of therapeutics. 9th ed. New York: McGraw-Hill, 1996: 617–58Google Scholar
  86. 86.
    Davies NM, Anderson KE. Clinical pharmacokinetics of diclofenac. Therapeutic insights and pitfalls. Clin Pharmacokinet 1997; 33(3): 184–213PubMedGoogle Scholar
  87. 87.
    Davies NM. Clinical pharmacokinetics of ibuprofen: the first 30 years. Clin Pharmacokinet 1998; 34(2): 101–54PubMedGoogle Scholar
  88. 88.
    Gillis JC, Brogden RN. Ketorolac: a reappraisal of its pharmacodynamic and pharmacokinetic properties and therapeutic use in pain management. Drugs 1997; 53(1): 139–88PubMedGoogle Scholar
  89. 89.
    Bernareggi A. Clinical pharmacokinetics of nimesulide. Clin Pharmacokinet 1998; 35(4): 247–74PubMedGoogle Scholar
  90. 90.
    Jamali F, Russell AS, Lehmann C, et al. Pharmacokinetics of tiaprofenic acid in healthy and arthritic subjects. J Pharm Sci 1985; 74(9): 953–6PubMedGoogle Scholar
  91. 91.
    Nilsen OG, Wessel-Aas T, Walseth F. Single dose pharmacokinetics of tiaprofenic acid: effects of food and severe renal insufficiency. Arzneimittel Forschung 1985; 35(5): 871–5PubMedGoogle Scholar
  92. 92.
    Darragh A, Gordon AJ, O’Byrne H, et al. Single-dose and steady-state pharmacokinetics of piroxicam in elderly vs young adults. Eur J Clin Pharmacol 1985; 28(3): 305–9PubMedGoogle Scholar
  93. 93.
    Richardson CJ, Blocka KL, Ross SG, et al. Piroxicam and 5′-hydroxypiroxicam kinetics following multiple dose administration of piroxicam. Eur J Clin Pharmacol 1987; 32(1): 89–91PubMedGoogle Scholar
  94. 94.
    Geisslinger G, Schuster O, Stock KP, et al. Pharmacokinetics of S(+)- and R(−)-ibuprofen in volunteers and first clinical experience of S(+)-ibuprofen in rheumatoid arthritis. Eur J Clin Pharmacol 1990; 38(5): 493–7PubMedGoogle Scholar
  95. 95.
    Cox SR. Effect of route of administration on the chiral inversion of R(−)-ibuprofen [abstract]. Clin Pharmacol Ther 1988; 21: 146Google Scholar
  96. 96.
    Lee EJ, Williams K, Day R, et al. Stereoselective disposition of ibuprofen enantiomers in man. Br J Clin Pharmacol 1985; 19(5): 669–74PubMedGoogle Scholar
  97. 97.
    Borin MT, Cox SR, Hageman JM, et al. Serum concentrations of ibuprofen enantiomers following multiple dose administration of sustained release ibuprofen 800mg tablets or Motrin 400mg tablets. Pharm Res 1988; 10 Suppl.: 159SGoogle Scholar
  98. 98.
    Jamali F, Singh NN, Pasutto FM, et al. Pharmacokinetics of ibuprofen enantiomers in humans following oral administration of tablets with different absorption rates. Pharm Res 1988; 5(1): 40–3PubMedGoogle Scholar
  99. 99.
    Hayball PJ, Holman JW, Nation RL, et al. Marked enantioselective protein binding in humans of ketorolac in vitro: elucidation of enantiomer unbound fractions following facile synthesis and direct chiral HPLC resolution of tritium-labelled ketorolac. Chirality 1994; 6(8): 642–8PubMedGoogle Scholar
  100. 100.
    Wright CE, Antal EJ, Gillespie WR, et al. Ibuprofen and acetaminophen kinetics when taken concurrently. Clin Pharmacol Ther 1983; 34(5): 707–10PubMedGoogle Scholar
  101. 101.
    Levy G, Lampman T, Kamath BL, et al. Decreased serum salicylate concentrations in children with rheumatic fever treated with antacid. N Engl J Med 1975; 293(7): 323–5PubMedGoogle Scholar
  102. 102.
    Hopkins CS, Underhill S, Booker PD. Pharmacokinetics of paracetamol after cardiac surgery. Arch Dis Child 1990; 65(9): 971–6PubMedGoogle Scholar
  103. 103.
    Nahata MC, Powell DA, Durrell DE, et al. Acetaminophen accumulation in paediatric patients after repeated therapeutic doses. Eur J Clin Pharmacol 1984; 27(1): 57–9PubMedGoogle Scholar
  104. 104.
    al-Obaidy SS, McKiernan PJ, Li Wan Po A, et al. Metabolism of paracetamol in children with chronic liver disease. Eur J Clin Pharmacol 1996; 50(1–2): 69–76PubMedGoogle Scholar
  105. 105.
    Coulthard KP, Nielson HW, Schroder M, et al. Relative bioavailability and plasma paracetamol profiles of panadol suppositories in children. J Paediatr Child Health 1998; 34(5): 425–31PubMedGoogle Scholar
  106. 106.
    Anderson BJ, Woolard GA, Holford NH. Pharmacokinetics of rectal paracetamol after major surgery in children. Paediatr Anaesth 1995; 5(4): 237–42PubMedGoogle Scholar
  107. 107.
    Montgomery CJ, McCormack JP, Reichert CC, et al. Plasma concentrations after high-dose (45 mg.kg−1) rectal acetaminophen in children. Can J Anaesth 1995; 42(11): 982–6PubMedGoogle Scholar
  108. 108.
    Birmingham PK, Tobin MJ, Henthorn TK, et al. Twenty-four-hour pharmacokinetics of rectal acetaminophen in children: an old drug with new recommendations. Anaesthesiology 1997; 87(2): 244–52Google Scholar
  109. 109.
    Gaudreault P, Guay J, Nicol O, et al. Pharmacokinetics and clinical efficacy of intrarectal solution of acetaminophen. Can J Anaesth 1988; 35(2): 149–52PubMedGoogle Scholar
  110. 110.
    Autret E, Dutertre JP, Breteau M, et al. Pharmacokinetics of paracetamol in the neonate and infant after administration of propacetamol chlorhydrate. Dev Pharmacol Ther 1993; 20(3–4): 129–34PubMedGoogle Scholar
  111. 111.
    Rawlins MD, Henderson DB, Hijab AR. Pharmacokinetics of paracetamol (acetaminophen) after intravenous and oral administration. Eur J Clin Pharmacol 1977; 11(4): 283–6PubMedGoogle Scholar
  112. 112.
    Anderson BJ, Holford NH. Rectal paracetamol dosing regimens: determination by computer simulation. Paediatr Anaesth 1997; 7(6): 451–5PubMedGoogle Scholar
  113. 113.
    Miller RP, Roberts RJ, Fischer LJ. Acetaminophen elimination kinetics in neonates, children, and adults. Clin Pharmacol Ther 1976; 19(3): 284–94PubMedGoogle Scholar
  114. 114.
    Lauterburg BH, Vaishnav Y, Stillwell WG, et al. The effects of age and glutathione depletion on hepatic glutathione turnover in vivo determined by acetaminophen probe analysis. J Pharmacol Exp Ther 1980; 213(1): 54–8PubMedGoogle Scholar
  115. 115.
    Product information. Celebrex (celecoxib capsules). New York: GD Searle & Co., 1998Google Scholar
  116. 116.
    Product information. Vioxx (rofecoxib tablets and oral suspension). West Point(PA): Merck & Co. Inc., 1999Google Scholar
  117. 117.
    Turck D, Busch U, Heinzel G, et al. Clinical pharmacokinetics of meloxicam. Arzneimittel Forschung 1997; 47(3): 253–8PubMedGoogle Scholar
  118. 118.
    Gitlin JD, Colten HR. Molecular biology of the acute phase plasma proteins. In: Pick E, Landy M, editors. Lymphokines. San Diego (CA): Academic Press, 1987: 123–53Google Scholar
  119. 119.
    Bardare M, Cislaghi GU, Mandelli M, et al. Value of monitoring plasma salicylate levels in treating juvenile rheumatoid arthritis: observations in 42 cases. Arch Dis Child 1978; 53(5): 381–5PubMedGoogle Scholar
  120. 120.
    Koren G, Roifman C, Gelfand E, et al. Corticosteroids-salicylate interaction in a case of juvenile rheumatoid arthritis. Ther Drug Monit 1987; 9(2): 177–9PubMedGoogle Scholar
  121. 121.
    Dupuis LL, Koren G, Shore A, et al. Methotrexate-nonsteroidal antiinflammatory drug interaction in children with arthritis. J Rheumatol 1990; 17(11): 1469–73PubMedGoogle Scholar
  122. 122.
    Koren G, MacLeod SM. Difficulty in achieving therapeutic serum concentrations of salicylate in Kawasaki disease. J Paediatr 1984; 105(6): 991–5Google Scholar
  123. 123.
    Koren G. Salicylates in Kawasaki disease: a review of clinical pharmacokinetics and efficacy. Prog Clin Biol Res 1987; 250: 415–24PubMedGoogle Scholar
  124. 124.
    Koren G, Schaffer F, Silverman E, et al. Determinants of low serum concentrations of salicylates in patients with Kawasaki disease. J Paediatr 1988; 112(4): 663–7Google Scholar
  125. 125.
    Koren G, Silverman E, Sundel R, et al. Decreased protein binding of salicylates in Kawasaki disease. J Paediatr 1991; 118(3): 456–9Google Scholar
  126. 126.
    Konstan MW, Hoppel CL, Chai BL, et al. Ibuprofen in children with cystic fibrosis: pharmacokinetics and adverse effects. J Paediatr 1991; 118(6): 956–64Google Scholar
  127. 127.
    Rifai N, Sakamoto M, Law T, et al. Use of a rapid HPLC assay for determination of pharmacokinetic parameters of ibuprofen in patients with cystic fibrosis. Clin Chem 1996; 42(11): 1812–6PubMedGoogle Scholar
  128. 128.
    Murry DJ, Oermann CM, Ou CN, et al. Pharmacokinetics of ibuprofen in patients with cystic fibrosis. Pharmacotherapy 1999; 19(3): 340–5PubMedGoogle Scholar
  129. 129.
    Scott CS, Retsch-Bogart GZ, Kustra RP, et al. The pharmacokinetics of ibuprofen suspension, chewable tablets, and tablets in children with cystic fibrosis. J Paediatr 1999; 134(1): 58–63Google Scholar
  130. 130.
    Kearns GL, Mallory Jr GB, Crom WR, et al. Enhanced hepatic drug clearance in patients with cystic fibrosis. J Paediatr 1990; 117(6): 972–9Google Scholar
  131. 131.
    Kearns GL. Hepatic drug metabolism in cystic fibrosis: recent developments and future directions. Ann Pharmacother 1993; 27(1): 74–9PubMedGoogle Scholar
  132. 132.
    Hamalainen ML, Hoppu K, Valkeila E, et al. Ibuprofen or acetaminophen for the acute treatment of migraine in children: a double-blind, randomised, placebo-controlled, crossover study. Neurology 1997; 48(1): 103–7PubMedGoogle Scholar
  133. 133.
    Zhang WY, Li Wan Po A. Efficacy of minor analgesics in primary dysmenorrhoea: a systematic review. Br J Obstet Gynaecol 1998; 105(7): 780–9PubMedGoogle Scholar
  134. 134.
    Libber S, Harrison H, Spector D. Treatment of nephrogenic diabetes insipidus with prostaglandin synthesis inhibitors. J Paediatr 1986; 108(2): 305–11Google Scholar
  135. 135.
    Rosen GH, Klein-Schwartz W, Medani CR. Indomethacin for nephrogenic diabetes insipidus in a four-week-old infant. Clin Pharm 1986; 5(3): 254–6PubMedGoogle Scholar
  136. 136.
    Rascher W, Rosendahl W, Henrichs IA, et al. Congenital nephrogenic diabetes insipidus-vasopressin and prostaglandins in response to treatment with hydrochlorothiazide and indomethacin. Paediatr Nephrol 1987; 1(3): 485–90Google Scholar
  137. 137.
    Kaulitz R, Brodehl J. Long term course of 6 boys with congenital nephrogenic diabetes insipidus. Klin Padiatr 1989; 201(6): 425–30PubMedGoogle Scholar
  138. 138.
    Knoers N, Monnens LA. Amiloride-hydrochlorothiazide versus indomethacin-hydrochlorothiazide in the treatment of nephrogenic diabetes insipidus. J Paediatr 1990; 117(3): 499–502Google Scholar
  139. 139.
    Mackie FE, Hodson EM, Roy LP, et al. Neonatal Bartter syndrome: use of indomethacin in the newborn period and prevention of growth failure. Paediatr Nephrol 1996; 10(6): 756–8Google Scholar
  140. 140.
    Nakagawa Y, Toya K, Natsume H, et al. Long term follow-up of a girl with the neonatal form of Bartter’s syndrome. Endocr J 1997; 44(2): 275–81PubMedGoogle Scholar
  141. 141.
    Abdel-al YK, Badawi MH, Yaeesh SA, et al. Bartter’s syndrome in Arabic children: review of 13 cases. Paediatr Int 1999; 41(3): 299–303Google Scholar
  142. 142.
    Mourani CC, Sanjad SA, Akatcherian CY. Bartter syndrome in a neonate: early treatment with indomethacin. Paediatr Nephrol 2000; 14(2): 143–5Google Scholar
  143. 143.
    Giardiello FM, Hamilton SR, Krush AJ, et al. Treatment of colonic and rectal adenomas with sulindac in familial adenomatous polyposis. N Engl J Med 1993; 328(18): 1313–6PubMedGoogle Scholar
  144. 144.
    Nugent KP, Farmer KC, Spigelman AD, et al. Randomised controlled trial of the effect of sulindac on duodenal and rectal polyposis and cell proliferation in patients with familial adenomatous polyposis. Br J Surg 1993; 80(12): 1618–9PubMedGoogle Scholar
  145. 145.
    Starko KM, Ray CG, Dominguez LB, et al. Reye’s syndrome and salicylate use. Paediatrics 1980; 66(6): 859–64Google Scholar
  146. 146.
    Waldman RJ, Hall WN, McGee H, et al. Aspirin as a risk factor in Reye’s syndrome. JAMA 1982; 247(22): 3089–94PubMedGoogle Scholar
  147. 147.
    Halpin TJ, Holtzhauer FJ, Campbell RJ, et al. Reye’s syndrome and medication use. JAMA 1982; 248(6): 687–91PubMedGoogle Scholar
  148. 148.
    Hurwitz ES, Barrett MJ, Bregman D, et al. Public Health Service study of Reye’s syndrome and medications: report of the main study [published erratum appears in JAMA 1987; 257 (24): 3366]. JAMA 1987; 257(14): 1905–11PubMedGoogle Scholar
  149. 149.
    Pinsky PF, Hurwitz ES, Schonberger LB, et al. Reye’s syndrome and aspirin: evidence for a dose-response effect. JAMA 1988; 260(5): 657–61PubMedGoogle Scholar
  150. 150.
    Hall SM, Glickman M. Report from the British Paediatric Surveillance Unit. Arch Dis Child 1988; 63(9): 1117–8PubMedGoogle Scholar
  151. 151.
    Brown RD, Kearns GL, Wilson JT. Integrated pharmacokinetic-pharmacodynamic model for acetaminophen, ibuprofen, and placebo antipyresis in children. J Pharmacokinet Biopharm 1998; 26(5): 559–79PubMedGoogle Scholar
  152. 152.
    Rumack BH. Aspirin versus acetaminophen: a comparative view. Paediatrics 1978; 62 (5 Pt 2 Suppl.): 943–6Google Scholar
  153. 153.
    Sheth UK, Gupta K, Paul T, et al. Measurement of antipyretic activity of ibuprofen and paracetamol in children. J Clin Pharmacol 1980; 20(11–12): 672–5PubMedGoogle Scholar
  154. 154.
    Phadke MA, Paranjape PV, Joshi AS. Ibuprofen in children with infective disorders: antipyretic efficacy. Br J Clin Pract 1985; 39(11–12): 437–40PubMedGoogle Scholar
  155. 155.
    Amdekar YK, Desai RZ. Antipyretic activity of ibuprofen and paracetamol in children with pyrexia. Br J Clin Pract 1985; 39(4): 140–3PubMedGoogle Scholar
  156. 156.
    Sidler J, Frey B, Baerlocher K. A double-blind comparison of ibuprofen and paracetamol in juvenile pyrexia. Br J Clin Pract Suppl 1990; 70: 22–5PubMedGoogle Scholar
  157. 157.
    Wilson JT, Brown RD, Kearns GL, et al. Single-dose, placebo-controlled comparative study of ibuprofen and acetaminophen antipyresis in children. J Paediatr 1991; 119(5): 803–11Google Scholar
  158. 158.
    Walson PD, Galletta G, Chomilo F, et al. Comparison of multidose ibuprofen and acetaminophen therapy in febrile children. Am J Dis Child 1992; 146(5): 626–32PubMedGoogle Scholar
  159. 159.
    Kauffman RE, Sawyer LA, Scheinbaum ML. Antipyretic efficacy of ibuprofen vs acetaminophen. Am J Dis Child 1992; 146(5): 622–5PubMedGoogle Scholar
  160. 160.
    Van Esch A, Van Steensel-Moll HA, Steyerberg EW, et al. Antipyretic efficacy of ibuprofen and acetaminophen in children with febrile seizures. Arch Paediatr Adolesc Med 1995; 149(6): 632–7Google Scholar
  161. 161.
    Khubchandani RP, Ghatikar KN, Keny S, et al. Choice of antipyretic in children. J Assoc Physicians India 1995; 43(9): 614–6PubMedGoogle Scholar
  162. 162.
    McIntyre J, Hull D. Comparing efficacy and tolerability of ibuprofen and paracetamol in fever. Arch Dis Child 1996; 74(2): 164–7PubMedGoogle Scholar
  163. 163.
    Vauzelle-Kervroedan F, d’Athis P, Pariente-Khayat A, et al. Equivalent antipyretic activity of ibuprofen and paracetamol in febrile children. J Paediatr 1997; 131(5): 683–7Google Scholar
  164. 164.
    Autret E, Reboul-Marty J, Henry-Launois B, et al. Evaluation of ibuprofen versus aspirin and paracetamol on efficacy and comfort in children with fever. Eur J Clin Pharmacol 1997; 51(5): 367–71PubMedGoogle Scholar
  165. 165.
    Aksoylar S, Aksit S, Caglayan S, et al. Evaluation of sponging and antipyretic medication to reduce body temperature in febrile children. Acta Paediatr Jpn 1997; 39(2): 215–7PubMedGoogle Scholar
  166. 166.
    Autret E, Breart G, Jonville AP, et al. Comparative efficacy and tolerance of ibuprofen syrup and acetaminophen syrup in children with pyrexia associated with infectious diseases and treated with antibiotics. Eur J Clin Pharmacol 1994; 46(3): 197–201PubMedGoogle Scholar
  167. 167.
    Nwanyanwu OC, Ziba C, Kazembe PN. Paracetamol and ibuprofen for treatment of fever in Malawian children aged less than five years. Trans R Soc Trop Med Hyg 1999; 93(1): 84PubMedGoogle Scholar
  168. 168.
    Ulukol B, Koksal Y, Cin S. Assessment of the efficacy and safety of paracetamol, ibuprofen and nimesulide in children with upper respiratory tract infections. Eur J Clin Pharmacol 1999; 55(9): 615–8PubMedGoogle Scholar
  169. 169.
    Tarlin L, Landrigan P, Babineau R, et al. A comparison of the antipyretic effect of acetaminophen and aspirin: another approach to poison prevention. Am J Dis Child 1972; 124(6): 880–2PubMedGoogle Scholar
  170. 170.
    Colgan MT, Mintz AA. The comparative antipyretic effect of N-acetyl-p-aminophenol and acetylsalicylic acid. J Pediatr 1957; 50: 552–5PubMedGoogle Scholar
  171. 171.
    Eden AN, Kaufman A. Clinical comparison of three antipyretic agents. Am J Dis Child 1972; 124(6): 284–7Google Scholar
  172. 172.
    Steele RW, Young FS, Bass JW, et al. Oral antipyretic therapy: evaluation of aspirin-acetaminophen combination. Am J Dis Child 1972; 123(3): 204–6PubMedGoogle Scholar
  173. 173.
    Hunter J. Study of antipyretic therapy in current use. Arch Dis Child 1973; 48(4): 313–5PubMedGoogle Scholar
  174. 174.
    Yaffe SJ. Comparative efficacy of aspirin and acetaminophen in the reduction of fever in children. Arch Intern Med 1981; 141 (3 Spec. No.): 286–92PubMedGoogle Scholar
  175. 175.
    Kandoth PW, Joshi MK, Joshi VR, et al. Comparative evaluation of antipyretic activity of ibuprofen and aspirin in children with pyrexia of varied aetiology. J Int Med Res 1984; 12(5): 292–7PubMedGoogle Scholar
  176. 176.
    Heremans G, Dehaen F, Rom N, et al. A single-blind parallel group study investigating the antipyretic properties of ibuprofen syrup versus acetylsalicylic acid syrup in febrile children. Br J Clin Pract 1988; 42(6): 245–7PubMedGoogle Scholar
  177. 177.
    Duhamel JF, Guillot M, Brouard J, et al. Antipyretic effect of tiaprofenic acid in children: comparative study with paracetamol. Paediatrie 1993; 48(9): 655–9Google Scholar
  178. 178.
    Lesko SM, Mitchell AA. An assessment of the safety of paediatric ibuprofen: a practitioner-based randomised clinical trial. JAMA 1995; 273(12): 929–33PubMedGoogle Scholar
  179. 179.
    Lesko SM, Mitchell AA. The safety of acetaminophen and ibuprofen among children younger than two years old. Paediatrics 1999; 104(4): E39Google Scholar
  180. 180.
    Lesko SM, Mitchell AA. Paediatric ibuprofen and leukopenia [letter]. JAMA 1996; 275(13): 986PubMedGoogle Scholar
  181. 181.
    Lesko SM, Mitchell AA. Renal function after short-term ibuprofen use in infants and children. Paediatrics 1997; 100(6): 954–7Google Scholar
  182. 182.
    van Biljon G. Reversible renal failure associated with ibuprofen in a child: a case report. Sth Afr Med J 1989; 76(1): 34–5Google Scholar
  183. 183.
    Moghal NE, Hulton SA, Milford DV. Care in the use of ibuprofen as an antipyretic in children. Clin Nephrol 1998; 49(5): 293–5PubMedGoogle Scholar
  184. 184.
    Primack WA, Rahman SM, Pullman J. Acute renal failure associated with amoxicillin and ibuprofen in an 11-year-old boy [letter]. Paediatr Nephrol 1997; 11(1): 125–6Google Scholar
  185. 185.
    McIntire SC, Rubenstein RC, Gartner Jr JC, et al. Acute flank pain and reversible renal dysfunction associated with nonsteroidal anti-inflammatory drug use. Paediatrics 1993; 92(3): 459–60Google Scholar
  186. 186.
    Wattad A, Feehan T, Shepard FM, et al. A unique complication of nonsteroidal anti-inflammatory drug use [letter]. Paediatrics 1994; 93(4): 693Google Scholar
  187. 187.
    Sheiner PA, Mor E, Chodoff L, et al. Acute renal failure associated with the use of ibuprofen in two liver transplant recipients on FK506. Transplantation 1994; 57(7): 1132–3PubMedGoogle Scholar
  188. 188.
    Kovesi TA, Swartz R, MacDonald N. Transient renal failure due to simultaneous ibuprofen and aminoglycoside therapy in children with cystic fibrosis [letter]. N Engl J Med 1998; 338(1): 65–6PubMedGoogle Scholar
  189. 189.
    Bernstein RF. Ibuprofen-related meningitis in mixed connective tissue disease. Ann Intern Med 1980; 92 (2 Pt 1): 206–7PubMedGoogle Scholar
  190. 190.
    Peck MG, Joyner PU. Ibuprofen-associated aseptic meningitis. Clin Pharm 1982; 1(6): 561–5PubMedGoogle Scholar
  191. 191.
    Perera DR, Seiffert AK, Greeley HM. Ibuprofen and meningoencephalitis [letter]. Ann Intern Med 1984; 100(4): 619PubMedGoogle Scholar
  192. 192.
    Katona BG, Wigley FM, Walters JK, et al. Aseptic meningitis from over-the-counter ibuprofen [letter]. Lancet 1988; I(8575–6): 59Google Scholar
  193. 193.
    Neutel CI, Pless RP. Ibuprofen use in children: a benefit or a risk [editorial]? Ann Epidemiol 1997; 7(7): 437–9PubMedGoogle Scholar
  194. 194.
    Zerr DM, Alexander ER, Duchin JS, et al. A case-control study of necrotizing fasciitis during primary varicella [see comments]. Paediatrics 1999; 103 (4 Pt 1): 783–90Google Scholar
  195. 195.
    Choo PW, Donahue JG, Platt R. Ibuprofen and skin and soft tissue superinfections in children with varicella. Ann Epidemiol 1997; 7(7): 440–5PubMedGoogle Scholar
  196. 196.
    Rivera-Penera T, Gugig R, Davis J, et al. Outcome of acetaminophen overdose in paediatric patients and factors contributing to hepatotoxicity. J Paediatr 1997; 130(2): 300–4Google Scholar
  197. 197.
    Heubi JE, Barbacci MB, Zimmerman HJ. Therapeutic misadventures with acetaminophen: hepatoxicity after multiple doses in children. J Paediatr 1998; 132(1): 22–7Google Scholar
  198. 198.
    Kearns GL, Leeder JS, Wasserman GS. Acetaminophen overdose with therapeutic intent. J Paediatr 1998; 132(1): 5–8Google Scholar
  199. 199.
    Reye RDK, Morgan G, Baral J. Encephalopathy and fatty degeneration of the viscera: a disease entity in childhood. Lancet 1963; II: 749–52Google Scholar
  200. 200.
    Belay ED, Bresee JS, Holman RC, et al. Reye’s syndrome in the United States from 1981 through 1997. N Engl J Med 1999; 340(18): 1377–82PubMedGoogle Scholar
  201. 201.
    Hall SM, Lynn R. Reye’s syndrome [letter]. N Engl J Med 1999; 341(11): 845–6PubMedGoogle Scholar
  202. 202.
    Forsyth BW, Horwitz RI, Acampora D, et al. New epidemiologic evidence confirming that bias does not explain the aspirin/Reye’s syndrome association. JAMA 1989; 261(17): 2517–24PubMedGoogle Scholar
  203. 203.
    Anand KJ, Hickey PR. Halothane-morphine compared with high-dose sufentanil for anaesthesia and postoperative analgesia in neonatal cardiac surgery. N Engl J Med 1992; 326(1): 1–9PubMedGoogle Scholar
  204. 204.
    Mather L, Mackie J. The incidence of postoperative pain in children. Pain 1983; 15(3): 271–82PubMedGoogle Scholar
  205. 205.
    Beyer JE, DeGood DE, Ashley LC, et al. Patterns of postoperative analgesic use with adults and children following cardiac surgery. Pain 1983; 17(1): 71–81PubMedGoogle Scholar
  206. 206.
    Cummings EA, Reid GJ, Finley GA, et al. prevalence and source of pain in pediatric inpatients. Pain 1996; 68(1): 25–31PubMedGoogle Scholar
  207. 207.
    Johnston CC, Abbott FV, Gray-Donald K, et al. A survey of pain in hospitalized patients aged 4–14 years. Clin J Pain 1992; 8(2): 154–63PubMedGoogle Scholar
  208. 208.
    Beyer JE, Denyes MJ, Villarruel AM. The creation, validation, and continuing development of the Oucher: a measure of pain intensity in children. J Pediatr Nurs 1992; 7(5): 335–46PubMedGoogle Scholar
  209. 209.
    McGrath PJ, Johnson G, Goodman JT, et al. CHEOPS: a behavioral scale for rating postoperative pain in children. Adv Pain Res Ther 1985; 9: 395–402Google Scholar
  210. 210.
    Maunuksela EL, Olkkola KT, Korpela R. Measurement of pain in children with self-reporting and behavioral assessment. Clin Pharmacol Ther 1987; 42(2): 137–41PubMedGoogle Scholar
  211. 211.
    Prego G, Moscovici R, Schwartz M. Postoperative analgesia in children after odontologic procedures: a comparaison of diclofenac versus ketorolac in the outpatient clinic [abstract]. Br J Anaesth 1994; 72 Suppl. 1: 95Google Scholar
  212. 212.
    Purday JP, Reichert CC, Merrick PM. Comparative effects of three doses of intravenous ketorolac or morphine on emesis and analgesia for restorative dental surgery in children. Can J Anaesth 1996; 43(3): 221–5PubMedGoogle Scholar
  213. 213.
    Watcha MF, Ramirez-Ruiz M, White PF, et al. Perioperative effects of oral ketorolac and acetaminophen in children undergoing bilateral myringotomy. Can J Anaesth 1992; 39(7): 649–54PubMedGoogle Scholar
  214. 214.
    Bean-Lijewski JD, Stinson JC. Acetaminophen or ketorolac for post myringotomy pain in children: a prospective, double-blinded comparison? Paediatr Anaesth 1997; 7(2): 131–7PubMedGoogle Scholar
  215. 215.
    Cohen IT, Latta K, Wiener ES. A study of ketorolac for intraoperative and postoperative analgesia for herniorrhaphy in children [abstract]. Anaesth Analg 1993; 76: S50Google Scholar
  216. 216.
    Brock BM, Custer MD, Bean-Lijewski JD. Ketorolac vs wound infiltration: a prospective comparison [abstract]. Anaesth Analg 1995; 80: S55Google Scholar
  217. 217.
    Splinter WM, Reid CW, Roberts DJ, et al. Reducing pain after inguinal hernia repair in children: caudal anaesthesia versus ketorolac tromethamine. Anaesthesiology 1997; 87(3): 542–6Google Scholar
  218. 218.
    Sutters KA, Levine JD, Dibble S, et al. Analgesic efficacy and safety of single-dose intramuscular ketorolac for postoperative pain management in children following tonsillectomy. Pain 1995; 61(1): 145–53PubMedGoogle Scholar
  219. 219.
    Gunter JB, Varughese AM, Harrington JF, et al. Recovery and complications after tonsillectomy in children: a comparison of ketorolac and morphine. Anaesth Analg 1995; 81(6): 1136–41Google Scholar
  220. 220.
    Rusy LM, Houck CS, Sullivan LJ, et al. A double-blind evaluation of ketorolac tromethamine versus acetaminophen in paediatric tonsillectomy: analgesia and bleeding. Anaesth Analg 1995; 80(2): 226–9Google Scholar
  221. 221.
    Romsing J, Ostergaard D, Walther-Larsen S, et al. Analgesic efficacy and safety of preoperative versus postoperative ketorolac in paediatric tonsillectomy. Acta Anaesthesiol Scand 1998; 42(7): 770–5PubMedGoogle Scholar
  222. 222.
    Munro HM, Riegger LQ, Reynolds PI, et al. Comparison of the analgesic and emetic properties of ketorolac and morphine for paediatric outpatient strabismus surgery. Br J Anaesth 1994; 72(6): 624–8PubMedGoogle Scholar
  223. 223.
    Mendel HG, Guarnieri KM, Sundt LM, et al. The effects of ketorolac and fentanyl on postoperative vomiting and analgesic requirements in children undergoing strabismus surgery. Anaesth Analg 1995; 80(6): 1129–33Google Scholar
  224. 224.
    Shende D, Das K. Comparative effects of intravenous ketorolac and pethidine on perioperative analgesia and postoperative nausea and vomiting (PONV) for paediatric strabismus surgery. Acta Anaesthesiol Scand 1999; 43(3): 265–9PubMedGoogle Scholar
  225. 225.
    Maunuksela EL, Kokki H, Bullingham RE. Comparison of intravenous ketorolac with morphine for postoperative pain in children. Clin Pharmacol Ther 1992; 52(4): 436–43PubMedGoogle Scholar
  226. 226.
    Ritcher RL, Valley RD, Bailley AG. A comparison of intraoperative ketorolac, morphine and saline on postoperative analgesia in the paediatric patient [abstract]. Anaesthesiology 1992; 77: A1161Google Scholar
  227. 227.
    Watcha MF, Jones MB, Lagueruela RG, et al. Comparison of ketorolac and morphine as adjuvants during paediatric surgery. Anaesthesiology 1992; 76(3): 368–72Google Scholar
  228. 228.
    Bean-Lijewski JD, Hunt RD. Effect of ketorolac on bleeding time and postoperative pain in children: a double-blind, placebo-controlled comparison with meperidine. J Clin Anaesth 1996; 8(1): 25–30Google Scholar
  229. 229.
    Sutters KA, Shaw BA, Gerardi JA, et al. Comparison of morphine patient-controlled analgesia with and without ketorolac for postoperative analgesia in paediatric orthopedic surgery. Am J Orthop 1999; 28(6): 351–8PubMedGoogle Scholar
  230. 230.
    Lieh-Lai MW, Kauffman RE, Uy HG, et al. A randomised comparison of ketorolac tromethamine and morphine for postoperative analgesia in critically ill children. Crit Care Med 1999; 27(12): 2786–91PubMedGoogle Scholar
  231. 231.
    Granados-Soto V, Lopez-Munoz FJ, Hong E, et al. Relationship between pharmacokinetics and the analgesic effect of ketorolac in the rat. J Pharmacol Exp Ther 1995; 272(1): 352–6PubMedGoogle Scholar
  232. 232.
    Mandema JW, Stanski DR. Population pharmacodynamic model for ketorolac analgesia. Clin Pharmacol Ther 1996; 60(6): 619–35PubMedGoogle Scholar
  233. 233.
    Vetter TR, Heiner EJ. Intravenous ketorolac as an adjuvant to paediatric patient-controlled analgesia with morphine. J Clin Anaesth 1994; 6(2): 110–3Google Scholar
  234. 234.
    Gonzalez A, Smith DP. Minimising hospital length of stay in children undergoing ureteroneocystostomy. Urology 1998; 52(3): 501–4PubMedGoogle Scholar
  235. 235.
    Agrawal A, Gerson CR, Seligman I, et al. Postoperative haemorrhage after tonsillectomy: use of ketorolac tromethamine. Otolaryngol Head Neck Surg 1999; 120(3): 335–9PubMedGoogle Scholar
  236. 236.
    Eberson CP, Pacicca DM, Ehrlich MG. The role of ketorolac in decreasing length of stay and narcotic complications in the postoperative paediatric orthopaedic patient. J Paediatr Orthop 1999; 19(5): 688–92Google Scholar
  237. 237.
    Splinter WM, Rhine EJ, Roberts DW, et al. Preoperative ketorolac increases bleeding after tonsillectomy in children. Can J Anaesth 1996; 43(6): 560–3PubMedGoogle Scholar
  238. 238.
    Gallagher JE, Blauth J, Fornadley JA. Perioperative ketorolac tromethamine and postoperative haemorrhage in cases of tonsillectomy and adenoidectomy. Laryngoscope 1995; 105(6): 606–9PubMedGoogle Scholar
  239. 239.
    Judkins JH, Dray TG, Hubbell RN. Intraoperative ketorolac and posttonsillectomy bleeding. Arch Otolaryngol Head Neck Surg 1996; 122(9): 937–40PubMedGoogle Scholar
  240. 240.
    Strom BL, Berlin JA, Kinman JL. Risk of operative site bleeding with parenteral ketorolac [letter]. JAMA 1996; 276: 372Google Scholar
  241. 241.
    Strom BL, Berlin JA, Kinman JL. Parenteral ketorolac and the risk of gastrointestinal and operative site bleeding: a postmarketing surveillance study. JAMA 1996; 275: 376–82PubMedGoogle Scholar
  242. 242.
    Buck ML. Clinical experience with ketorolac in children. Ann Pharmacother 1994; 28(9): 1009–13PubMedGoogle Scholar
  243. 243.
    Houck CS, Wilder RT, McDermott JS, et al. Safety of intravenous ketorolac therapy in children and cost savings with a unit dosing system. J Paediatr 1996; 129(2): 292–6Google Scholar
  244. 244.
    Buck ML, Norwood VF. Ketorolac-induced acute renal failure in a previously healthy adolescent. Paediatrics 1996; 98 (2 Pt 1): 294–6Google Scholar
  245. 245.
    Forrest JB, Heitlinger EL, Revell S. Ketorolac for postoperative pain management in children. Drug Saf 1997; 16(5): 309–29PubMedGoogle Scholar
  246. 246.
    Nikanne E, Kokki H, Tuovinen K. IV perioperative ketoprofen in small children during adenoidectomy. Br J Anaesth 1997; 78(1): 24–7PubMedGoogle Scholar
  247. 247.
    Kokki H, Nikanne E, Tuovinen K. IV intraoperative ketoprofen in small children during adenoidectomy: a dose-finding study. Br J Anaesth 1998; 81(6): 870–4PubMedGoogle Scholar
  248. 248.
    Alam K, Takrouri MS. Analgesic effects of intra-muscular ketoprofen (Profenid) and pethidine for squint surgery in children. Middle East J Anaesthesiol 1999; 15(1): 31–8Google Scholar
  249. 249.
    Kokki H, Homan E, Tuovinen K, et al. Peroperative treatment with iv ketoprofen reduces pain and vomiting in children after strabismus surgery. Acta Anaesthesiol Scand 1999; 43(1): 13–8PubMedGoogle Scholar
  250. 250.
    Nikanne E, Kokki H, Tuovinen K. Comparison of perioperative ketoprofen 2.0mg kg-1 with 0.5mg kg-1 IV in small children during adenoidectomy. Br J Anaesth 1997; 79(5): 606–8PubMedGoogle Scholar
  251. 251.
    Kokki H, Tuovinen K, Hendolin H. The effect of intravenous ketoprofen on postoperative epidural sufentanil analgesia in children. Anaesth Analg 1999; 88(5): 1036–41Google Scholar
  252. 252.
    Kokki H, Tuovinen K, Hendolin H. Intravenous ketoprofen and epidural sufentanil analgesia in children after combined spinal-epidural anaesthesia. Acta Anaesthesiol Scand 1999; 43(7): 775–9PubMedGoogle Scholar
  253. 253.
    Orudis (R), ketoprofen. Prescribing information. Philadelphia (PA): Wyeth-AyerstCo., 1997Google Scholar
  254. 254.
    Littlejohn IH, Tarling MM, Flynn PJ, et al. Post-operative pain relief in children following extraction of carious deciduous teeth under general anaesthesia: a comparison of nalbuphine and diclofenac. Eur J Anaesthesiol 1996; 13(4): 359–63PubMedGoogle Scholar
  255. 255.
    Moores MA, Wandless JG, Fell D. Paediatric postoperative analgesia: a comparison of rectal diclofenac with caudal bupivacaine after inguinal herniotomy. Anaesthesia 1990; 45(2): 156–8PubMedGoogle Scholar
  256. 256.
    Gadiyar V, Gallagher TM, Crean PM, et al. The effect of a combination of rectal diclofenac and caudal bupivacaine on postoperative analgesia in children. Anaesthesia 1995; 50(9): 820–2PubMedGoogle Scholar
  257. 257.
    Baer GA, Rorarius MG, Kolehmainen S, et al. The effect of paracetamol or diclofenac administered before operation on postoperative pain and behaviour after adenoidectomy in small children. Anaesthesia 1992; 47(12): 1078–80PubMedGoogle Scholar
  258. 258.
    Watters CH, Patterson CC, Mathews HM, et al. Diclofenac sodium for post-tonsillectomy pain in children. Anaesthesia 1988; 43(8): 641–3PubMedGoogle Scholar
  259. 259.
    Bone ME, Fell D. A comparison of rectal diclofenac with intramuscular papaveretum or placebo for pain relief following tonsillectomy. Anaesthesia 1988; 43(4): 277–80PubMedGoogle Scholar
  260. 260.
    Romsing J, Ostergaard D, Drozdziewicz D, et al. Diclofenac or acetaminophen for analgesia in paediatric tonsillectomy outpatients. Acta Anaesthesiol Scand 2000; 44(3): 291–5PubMedGoogle Scholar
  261. 261.
    Swanepoel A, Semple P. Oral versus rectal diclofenac for postoperative tonsillectomy pain in children [letter]. Anaesthesia 1999; 54(3): 298–9PubMedGoogle Scholar
  262. 262.
    McGowan PR, May H, Molnar Z, et al. A comparison of three methods of analgesia in children having day case circumcision. Paediatr Anaesth 1998; 8(5): 403–7PubMedGoogle Scholar
  263. 263.
    Morton NS, O’Brien K. Analgesic efficacy of paracetamol and diclofenac in children receiving PCA morphine. Br J Anaesth 1999; 82(5): 715–7PubMedGoogle Scholar
  264. 264.
    Walmsley AJ. Peri-operative use of nonsteroidal anti-inflammatory drugs in children [letter]. Anaesthesia 1997; 52(11): 1120PubMedGoogle Scholar
  265. 265.
    Thiagarajan J, Bates S, Hitchcock M, et al. Blood loss following tonsillectomy in children: a blind comparison of diclofenac and papaveretum. Anaesthesia 1993; 48(2): 132–5PubMedGoogle Scholar
  266. 266.
    Moore PA, Acs G, Hargreaves JA. Postextraction pain relief in children: a clinical trial of liquid analgesics. Int J Clin Pharmacol Ther Toxicol 1985; 23(11): 573–7PubMedGoogle Scholar
  267. 267.
    McGaw T, Raborn W, Grace M. Analgesics in paediatric dental surgery: relative efficacy of aluminum ibuprofen suspension and acetaminophen elixir. ASDC J Dent Child 1987; 54(2): 106–9PubMedGoogle Scholar
  268. 268.
    Primosch RE, Nichols DL, Courts FJ. Comparison of preoperative ibuprofen, acetaminophen, and placebo administration on the parental report of postextraction pain in children. Paediatr Dent 1995; 17(3): 187–91Google Scholar
  269. 269.
    Bennie RE, Boehringer LA, McMahon S, et al. Postoperative analgesia with preoperative oral ibuprofen or acetaminophen in children undergoing myringotomy. Paediatr Anaesth 1997; 7(5): 399–403PubMedGoogle Scholar
  270. 270.
    Harley EH, Dattolo RA. Ibuprofen for tonsillectomy pain in children: efficacy and complications. Otolaryngol Head Neck Surg 1998; 119(5): 492–6PubMedGoogle Scholar
  271. 271.
    Maunuksela EL, Ryhanen P, Janhunen L. Efficacy of rectal ibuprofen in controlling postoperative pain in children. Can J Anaesth 1992; 39(3): 226–30PubMedGoogle Scholar
  272. 272.
    Kokki H, Hendolin H, Maunuksela EL, et al. Ibuprofen in the treatment of postoperative pain in small children: a randomised double-blind-placebo controlled parallel group study. Acta Anaesthesiol Scand 1994; 38(5): 467–72PubMedGoogle Scholar
  273. 273.
    St. Charles CS, Matt BH, Hamilton MM, et al. A comparison of ibuprofen versus acetaminophen with codeine in the young tonsillectomy patient. Otolaryngol Head Neck Surg 1997; 117(1): 76–82PubMedGoogle Scholar
  274. 274.
    Cassidy JT. Medical management of children with juvenile rheumatoid arthritis. Drugs 1999; 58(5): 831–50PubMedGoogle Scholar
  275. 275.
    Levinson JE, Baum J, Brewer Jr E, et al. Comparison of tolmetin sodium and aspirin in the treatment of juvenile rheumatoid arthritis. J Paediatr 1977; 91(5): 799–804Google Scholar
  276. 276.
    Bhettay E, Thomson AJ. Double-blind study of ketoprofen and indomethacin in juvenile chronic arthritis. Sth Afr Med J 1978; 54(7): 276–8Google Scholar
  277. 277.
    Brewer EJ, Giannini EH, Baum J, et al. Aspirin and fenoprofen (Nalfon) in the treatment of juvenile rheumatoid arthritis results of the double blind-trial: a segment II study. J Rheumatol 1982; 9(1): 123–8PubMedGoogle Scholar
  278. 278.
    Kvien TK, Hoyeraal HM, Sandstad B. Naproxen and acetylsalicylic acid in the treatment of pauciarticular and polyarticular juvenile rheumatoid arthritis: assessment of tolerance and efficacy in a single-centre 24-week double-blind parallel study. Scand J Rheumatol 1984; 13(4): 342–50PubMedGoogle Scholar
  279. 279.
    Williams PL, Ansell BM, Bell A, et al. Multicentre study of piroxicam versus naproxen in juvenile chronic arthritis, with special reference to problem areas in clinical trials of nonsteroidal anti-inflammatory drugs in childhood. Br J Rheumatol 1986; 25(1): 67–71PubMedGoogle Scholar
  280. 280.
    Bhettay E. Double-blind study of sulindac and aspirin in juvenile chronic arthritis. Sth Afr Med J 1986; 70(12): 724–6Google Scholar
  281. 281.
    Garcia-Morteo O, Maldonado-Cocco JA, Cuttica R, et al. Piroxicam in juvenile rheumatoid arthritis. Eur J Rheumatol Inflamm 1987; 8(1): 49–53PubMedGoogle Scholar
  282. 282.
    Leak AM, Richter MR, Clemens LE, et al. A crossover study of naproxen, diclofenac and tolmetin in seronegative juvenile chronic arthritis. Clin Exp Rheumatol 1988; 6(2): 157–60PubMedGoogle Scholar
  283. 283.
    Giannini EH, Brewer EJ, Miller ML, et al. Ibuprofen suspension in the treatment of juvenile rheumatoid arthritis. Paediatric Rheumatology Collaborative Study Group. J Paediatr 1990; 117(4): 645–52Google Scholar
  284. 284.
    Jacobs JS. Sudden death in arthritic children receiving large doses of indomethacin. JAMA 1967; 199(12): 932–4PubMedGoogle Scholar
  285. 285.
    Siegel DM. Juvenile arthritis. Clin Immunother 1996; 6(3): 180–91Google Scholar
  286. 286.
    Lovell DJ, Giannini EH, Brewer Jr EJ. Time course of response to nonsteroidal antiinflammatory drugs in juvenile rheumatoid arthritis. Arthritis Rheum 1984; 27(12): 1433–7PubMedGoogle Scholar
  287. 287.
    Nicholls A, Hazleman B, Todd RM, et al. Long term evaluation of naproxen suspension in juvenile chronic arthritis. Curr Med Res Opin 1982; 8(3): 204–7PubMedGoogle Scholar
  288. 288.
    Laxer RM, Silverman ED, St.-Cyr C, et al. A six-month open safety assessment of a naproxen suspension formulation in the therapy of juvenile rheumatoid arthritis. Clin Ther 1988; 10(4): 381–7PubMedGoogle Scholar
  289. 289.
    Steans A, Manners PJ, Robinson IG. A multicentre, long term evaluation of the safety and efficacy of ibuprofen syrup in children with juvenile chronic arthritis. Br J Clin Pract 1990; 44(5): 172–5PubMedGoogle Scholar
  290. 290.
    Minisola G, Dardano B, Calderazzo L, et al. Clinical efficacy of sodium diclofenac in chronic juvenile polyarthritis. Paediatr Med Chir 1990; 12(2): 169–73Google Scholar
  291. 291.
    Flato B, Vinje O, Forre O. Toxicity of antirheumatic and antiinflammatory drugs in children. Clin Rheumatol 1998; 17(6): 505–10PubMedGoogle Scholar
  292. 292.
    Keenan GF, Giannini EH, Athreya BH. Clinically significant gastropathy associated with nonsteroidal antiinflammatory drug use in children with juvenile rheumatoid arthritis. J Rheumatol 1995; 22(6): 1149–51PubMedGoogle Scholar
  293. 293.
    Hermaszewski R, Hayllar J, Woo P. Gastro-duodenal damage due to non-steroidal anti-inflammatory drugs in children. Br J Rheumatol 1993; 32(1): 69–72PubMedGoogle Scholar
  294. 294.
    Mulberg AE, Linz C, Bern E, et al. Identification of nonsteroidal antiinflammatory drug-induced gastroduodenal injury in children with juvenile rheumatoid arthritis. J Paediatr 1993; 122(4): 647–9Google Scholar
  295. 295.
    Len C, Hilario MO, Kawakami E, et al. Gastroduodenal lesions in children with juvenile rheumatoid arthritis. Hepatogastroenterology 1999; 46(26): 991–6PubMedGoogle Scholar
  296. 296.
    Szer IS, Goldenstein-Schainberg C, Kurtin PS. Paucity of renal complications associated with nonsteroidal antiinflammatory drugs in children with chronic arthritis. J Paediatr 1991; 119(5): 815–7Google Scholar
  297. 297.
    Ray PE, Rigolizzo D, Wara DR, et al. Naproxen nephrotoxicity in a 2-year-old child. Am J Dis Child 1988; 142(5): 524–5PubMedGoogle Scholar
  298. 298.
    Laxer RM, Silverman ED, Balfe JW, et al. Naproxen-associated renal failure in a child with arthritis and inflammatory bowel disease. Paediatrics 1987; 80(6): 904–8Google Scholar
  299. 299.
    Wortmann DW, Kelsch RC, Kuhns L, et al. Renal papillary necrosis in juvenile rheumatoid arthritis. J Paediatr 1980; 97(1): 37–40Google Scholar
  300. 300.
    Mitchell H, Muirden KD, Kincaid-Smith P. Indamethacin-induced renal papillary necrosis in juvenile chronic arthritis [letter]. Lancet 1982; II(8297): 558–9Google Scholar
  301. 301.
    Allen RC, Petty RE, Lirenman DS, et al. Renal papillary necrosis in children with chronic arthritis. Am J Dis Child 1986; 140(1): 20–2PubMedGoogle Scholar
  302. 302.
    Levy ML, Barron KS, Eichenfield A, et al. Naproxen-induced pseudoporphyria: a distinctive photodermatitis. J Paediatr 1990; 117(4): 660–4Google Scholar
  303. 303.
    Allen R, Rogers M, Humphrey I. Naproxen induced pseudoporphyria in juvenile chronic arthritis. J Rheumatol 1991; 18(6): 893–6PubMedGoogle Scholar
  304. 304.
    Lang BA, Finlayson LA. Naproxen-induced pseudoporphyria in patients with juvenile rheumatoid arthritis. J Paediatr 1994; 124(4): 639–42Google Scholar
  305. 305.
    Wallace CA, Farrow D, Sherry DD. Increased risk of facial scars in children taking nonsteroidal antiinflammatory drugs. J Paediatr 1994; 125 (5 Pt 1): 819–22Google Scholar
  306. 306.
    Girschick HJ, Hamm H, Ganser G, et al. Naproxen-induced pseudoporphyria: appearance of new skin lesions after discontinuation of treatment. Scand J Rheumatol 1995; 24(2): 108–11PubMedGoogle Scholar
  307. 307.
    Mehta S, Lang B. Long term followup of naproxen-induced pseudoporphyria in juvenile rheumatoid arthritis. Arthritis Rheum 1999; 42(10): 2252–4PubMedGoogle Scholar
  308. 308.
    Athreya BH, Moser G, Cecil HS, et al. Aspirin-induced hepatotoxicity in juvenile rheumatoid arthritis: a prospective study. Arthritis Rheum 1975; 18(4): 347–52PubMedGoogle Scholar
  309. 309.
    Doughty RA, Giesecke L, Athreya B. Salicylate therapy in juvenile rheumatoid arthritis: dose, serum level, and toxicity. Am J Dis Child 1980; 134(5): 461–3PubMedGoogle Scholar
  310. 310.
    Hadchouel M, Prieur AM, Griscelli C. Acute haemorrhagic, hepatic, and neurologic manifestations in juvenile rheumatoid arthritis: possible relationship to drugs or infection. J Paediatr 1985; 106(4): 561–6Google Scholar
  311. 311.
    Everson GW, Krenzelok EP. Chronic salicylism in a patient with juvenile rheumatoid arthritis. Clin Pharm 1986; 5(4): 334–41PubMedGoogle Scholar
  312. 312.
    Remington PL, Shabino CL, McGee H, et al. Reye syndrome and juvenile rheumatoid arthritis in Michigan. Am J Dis Child 1985; 139(9): 870–2PubMedGoogle Scholar
  313. 313.
    Rennebohm RM, Heubi JE, Daugherty CC, et al. Reye syndrome in children receiving salicylate therapy for connective tissue disease. J Paediatr 1985; 107(6): 877–80Google Scholar
  314. 314.
    Sullivan KM, Remington PL, Hurwitz ES, et al. Reye’s syndrome among patients with juvenile rheumatoid arthritis [letter]. JAMA 1988; 260(23): 3434–5PubMedGoogle Scholar
  315. 315.
    Onouchi Z, Kawasaki T. Overview of pharmacological treatment of Kawasaki disease. Drugs 1999; 58(5): 813–22PubMedGoogle Scholar
  316. 316.
    Konstan MW. Treatment of airway inflammation in cystic fibrosis. Curr Opin Pulm Med 1996; 2(6): 452–6PubMedGoogle Scholar
  317. 317.
    Auerbach HS, Williams M, Kirkpatrick JA, et al. Alternate-day prednisone reduces morbidity and improves pulmonary function in cystic fibrosis. Lancet 1985; II(8457): 686–8Google Scholar
  318. 318.
    Rosenstein BJ, Eigen H. Risks of alternate-day prednisone in patients with cystic fibrosis. Paediatrics 1991; 87(2): 245–6Google Scholar
  319. 319.
    Konstan MW, Vargo KM, Davis PB. Ibuprofen attenuates the inflammatory response to pseudomonas aeruginosa in a rat model of chronic pulmonary infection: implications for antiinflammatory therapy in cystic fibrosis. Am Rev Respir Dis 1990; 141(1): 186–92PubMedGoogle Scholar
  320. 320.
    Bell EA, Grothe R, Zivkovich V, et al. Pyloric channel stricture secondary to high-dose ibuprofen therapy in a patient with cystic fibrosis. Ann Pharmacother 1999; 33(6): 693–6PubMedGoogle Scholar
  321. 321.
    Questions and answers — ibuprofen: information for cystic fibrosis physicians. Bethesda (MD): Cystic Fibrosis Foundation, 1995Google Scholar
  322. 322.
    Bertin L, Pons G, d’Athis P, et al. Randomised, double-blind, multicenter, controlled trial of ibuprofen versus acetaminophen (paracetamol) and placebo for treatment of symptoms of tonsillitis and pharyngitis in children. J Paediatr 1991; 119(5): 811–4Google Scholar
  323. 323.
    Schachtel BP, Thoden WR. A placebo-controlled model for assaying systemic analgesics in children. Clin Pharmacol Ther 1993; 53(5): 593–601PubMedGoogle Scholar
  324. 324.
    Benarrosh C. Multicenter double blind study of tiaprofenic acid versus placebo in tonsillitis and pharyngitis in children. Arch Fr Paediatr 1989; 46(7): 541–6Google Scholar
  325. 325.
    Salzberg R, Giambonini S, Maurizio M, et al. A double-blind comparison of nimesulide and mefenamic acid in the treatment of acute upper respiratory tract infections in children. Drugs 1993; 46 Suppl. 1: 208–11PubMedGoogle Scholar

Copyright information

© Adis International Limited 2001

Authors and Affiliations

  1. 1.Service of Pharmacology, Pediatrics and PharmacogeneticsHospital Robert DebréParis, 48France

Personalised recommendations