Skip to main content
Log in

Variations in Serum Hemoglobin, Albumin, and Electrolytes in Patients Receiving Intravenous Immunoglobulin Therapy

A Real Clinical Threat?

  • Original Research Article
  • Published:
American Journal of Clinical Dermatology Aims and scope Submit manuscript

Abstract

Background and objective: Intravenous immunoglobulin (IVIg) is a solution of globulins containing antibodies derived from pooled human plasma of donors and used in the treatment of a number of immune deficiencies and autoimmune diseases. However, several investigators have reported biochemical alterations with use of IVIg. The objective of this study was to evaluate the effects of IVIg therapy on selected biochemical and hematologic parameters in patients with autoimmune mucocutaneous blistering diseases (AMBDs).

Methods: In this preliminary clinical study, ten patients with AMBDs (seven with pemphigus vulgaris and three with mucous membrane pemphigoid) received 133 cycles of IVIg for a total of 399 infusions. We evaluated the effects of IVIg therapy on serum hemoglobin (Hb), albumin, and electrolyte levels, including sodium (Na+), potassium (K+), chloride (Cl-) and calcium (Ca2+). Values of these parameters were measured 24 hours before, during, and 24 hours and 4 weeks after the 3-day infusion period.

Results: The observed variations in serum electrolyte levels were physiologically and clinically negligible. Furthermore, 24 hours after the last infusion, mean electrolyte values had spontaneously returned to normal levels without the need for additional supplementation: Na+ 137.59 ± 1.42 mmol/L (p = 0.6091 vs baseline); K+ 3.97 ± 0.5 mmol/L (p = 0.2689); Cl- 103.4 ± 2.69 mmol/L (p = 0.0388); and Ca2+ 9.07 ± 0.44 mg/dL (p = 0.5332). Conversely, significant variations in mean Hb and albumin levels were observed. When measured 24 hours after the last infusion, mild/moderate decreases in Hb (11.62 ± 2.12 g/dL; p = 0.009 vs baseline) and/or albumin (mean 3.14 ± 0.24 g/dL; p = 0.0016 vs baseline) were evident. Such changes may, albeit very rarely, be of sufficient clinical significance in individual patients as to necessitate additional treatment.

Conclusion: In patients receiving intravenous IVIg for AMBDs, electrolyte values should be monitored but do not represent a real clinical threat. Hemoglobin and albumin values may be altered sufficiently to require additional treatment but this is a very rare occurrence. These findings confirm and extend previous reports of the safety of IVIg therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Ballow M. Clinical and investigational considerations for the use of IGIV therapy. Am J Health Syst Pharm 2005; 62 (16 Suppl. 3): S12–8; quiz S19-21

    Article  PubMed  CAS  Google Scholar 

  2. Ahmed AR. Use of intravenous immunoglobulin therapy in autoimmune blistering diseases.Int Immunopharmacol 2006; 6: 557–78

    Article  PubMed  CAS  Google Scholar 

  3. Ahmed AR, Dahl MV, for the Consensus Development Group. Consensus statement on the use of intravenous immunoglobulin therapy in the treatment of autoimmune mucocutaneous blistering diseases. Arch Dermatol 2003; 139: 1051–9

    CAS  Google Scholar 

  4. Rutter A, Luger TA. Intravenous immunoglobulin: an emerging treatment for immune-mediated skin diseases. Curr Opin Investig Drugs 2002; 3: 713–9

    PubMed  CAS  Google Scholar 

  5. Jolles S. A review of high-dose intravenous immunoglobulin (hdIVIg) in the treatment of the autoimmune blistering disorders. Clin Exp Dermatol 2001; 26: 127–31

    Article  PubMed  CAS  Google Scholar 

  6. Harman KE, Black MM. High-dose intravenous immune globulin for the treatment of autoimmune blistering diseases: an evaluation of its use in 14 cases. Br J Dermatol 1999; 140: 865–74

    Article  PubMed  CAS  Google Scholar 

  7. Ahmed AR. Intravenous immunoglobulin therapy for patients with pemphigus vulgaris unresponsive to conventional immunosuppressive treatment. J Am Acad Dermatol 2001; 45: 679–90

    Article  PubMed  CAS  Google Scholar 

  8. Baum S, Scope A, Barzilai A,. The role of IVIg treatment in severe pemphigus vulgaris. J Eur Acad Dermatol Venereol 2006; 20: 548–52

    Article  PubMed  CAS  Google Scholar 

  9. Bystryn JC, Jiao D, Natow S. Treatment of pemphigus with intravenous immunoglobulin. J Am Acad Dermatol 2002; 47: 358–63

    Article  PubMed  Google Scholar 

  10. Ahmed AR, Sami N. Intravenous immunoglobulin therapy for patients with pemphigus foliaceus unresponsive to conventional therapy. J Am Acad Dermatol 2002; 46: 42–9

    Article  PubMed  Google Scholar 

  11. Sami N, Bhol KC, Razzaque Ahmed A. Intravenous immunoglobulin therapy in patients with multiple mucosal involvement in mucous membrane pemphigoid. Clin Immunol 2002; 102: 59–67

    Article  PubMed  CAS  Google Scholar 

  12. Ahmed AR. Intravenous immunoglobulin therapy for patients with bullous pemphigoid unresponsive to conventional immunosuppressive treatment. J Am Acad Dermatol 2001; 45: 825–35

    Article  PubMed  CAS  Google Scholar 

  13. Gourgiotou K, Exadaktylou D, Aroni K,. Epidermolysis bullosa acquisita: treatment with intravenous immunoglobulins. J Eur Acad Dermatol Venereol 2002; 16: 77–80

    Article  PubMed  CAS  Google Scholar 

  14. Ahmed AR. Treatment of autoimmune mucocutaneous blistering diseases with intravenous immunoglobulin therapy. Expert Opin Investig Drugs 2004; 13: 1019–32

    Article  PubMed  CAS  Google Scholar 

  15. Weinberg MA, Insler MS, Campen RB. Mucocutaneous features of autoimmune blistering diseases. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1997; 84: 517–34

    Article  PubMed  CAS  Google Scholar 

  16. Hertl M, Eming R, Veldman C. T cell control in autoimmune bullous skin disorder. J Clin Invest 2006; 116: 1159–66

    Article  PubMed  CAS  Google Scholar 

  17. Yancey KB. The pathophysiology of autoimmune blistering diseases. J Clin Invest 2005; 115: 825–8

    PubMed  CAS  Google Scholar 

  18. Sitaru C, Zillikens D. Mechanism of blister induction by autoantibodies. Exp Dermatol 2005; 14: 861–75

    Article  PubMed  CAS  Google Scholar 

  19. Chan LS, Ahmed AR, Anhalt GJ, et al. The first international consensus on mucous membrane pemphigoid: definition, diagnostic criteria, pathogenic factors, medical treatment and prognostic indicators. Arch Dermatol 2002; 138: 370–9

    Article  PubMed  Google Scholar 

  20. Yu Z, Lennon VA. Mechanism of intravenous immune globulin therapy in antibody-mediated autoimmune diseases. N Engl J Med 1999; 340: 227–8

    Article  PubMed  CAS  Google Scholar 

  21. Jolles S, Sewell WAC, Misbah SA. Clinical uses of intravenous immunoglobulin. Clin Exp Immunol 2005; 142: 1–11

    Article  PubMed  CAS  Google Scholar 

  22. Li N, Zhao M, Hilario-Vargas J, et al. Complete FcRn dependence for intravenous Ig therapy in autoimmune skin blistering diseases. J Clin Invest 2005; 115: 3440–50

    Article  PubMed  CAS  Google Scholar 

  23. Akilesh S, Petkova S, Sproule TJ, et al. The MHC class I-like Fc receptor promotes humorally mediated autoimmune disease. J Clin Invest 2004; 113: 1328–33

    PubMed  CAS  Google Scholar 

  24. Mimouni D, Blank M, Ashkenazi L,. Protective effect of intravenous immunoglobulin (IVIG) in an experimental model of pemphigus vulgaris. Clin Exp Immunol 2005; 142: 426–32

    PubMed  CAS  Google Scholar 

  25. Arredondo J, Chernyavsky AI, Karaouni A,. Novel mechanisms of target cell death and survival and of therapeutic action of IVIg in pemphigus. Am J Pathol 2005; 167: 1531–44

    Article  PubMed  CAS  Google Scholar 

  26. Bystryn JC, Jiao D. IVIg selectively and rapidly decreases circulating pathogenic autoantibodies in pemphigus vulgaris. Autoimmunity 2006; 39: 601–7

    Article  PubMed  CAS  Google Scholar 

  27. Bystryn JC, Rudolph JL. IVIg treatment of pemphigus: how it works and how to use it. J Clin Invest 2005; 125: 1093–6

    CAS  Google Scholar 

  28. Boros P, Gondolesi G, Bromberg JS. High dose intravenous immunoglobulin treatment: mechanisms of action. Liver Transpl 2005; 11: 1469–80

    Article  PubMed  Google Scholar 

  29. Berlana D, Vidaller A, Jodar R,. Changes in biochemical, hematological and immunological profiles after low-dose intravenous immunoglobulin administration in patients with hypogammaglobulinemia. Trans Clin Biol 2005; 12: 433–40

    Article  Google Scholar 

  30. Knezevic-Maramica I, Kruskall MS. Intravenous immune globulins: an update for clinicians. Transfusion 2003; 43: 1460–80

    Article  PubMed  CAS  Google Scholar 

  31. Orbach H, Katz U, Sherer Y,. Intravenous immunoglobulin: adverse effects and safe administration. Clin Rev Allergy Immunol 2005; 29: 173–84

    Article  PubMed  CAS  Google Scholar 

  32. Lee KY, Han JW, Lee JS,.Alteration of biochemical profiles after high-dose intravenous immunoglobulin administration in Kawasaki disease. Acta Paediatr 2002; 91: 164–7

    Article  PubMed  CAS  Google Scholar 

  33. Ng SK. Intravenous immunoglobulin infusion causing pseudohyponatremia. Lupus 1999; 8: 488–90

    Article  PubMed  CAS  Google Scholar 

  34. Nguyen MK, Rastogi A, Kurtz I.True hyponatremia secondary to intravenous immunoglobulin. Clin Exp Nephrol 2006; 10: 124–6

    Article  PubMed  Google Scholar 

  35. Steinberger BA, Ford SM, Coleman TA. Intravenous immunoglobulin therapy results in post-infusional hyperproteinemia, increased serum viscosity, and pseudohyponatremia. Am J Hematol 2003; 73: 97–100

    Article  PubMed  Google Scholar 

  36. Kessary-Shoham H, Levy Y, Shoenfeld Y,. In vivo administration of intravenous immunoglobulin (IVIg) can lead to enhanced erythrocyte sequestration. J Autoimm 1999; 13: 129–35

    Article  CAS  Google Scholar 

  37. Shoham-Kessary H, Naot Y, Gershon H. Immune complex-like moieties in immunoglobulin for intravenous use (IVIg) bind complement and enhance phagocytosis of human erythrocytes. Clin Exp Immunol 1998; 113: 77–84

    Article  PubMed  CAS  Google Scholar 

  38. Katz U, Shoenfeld Y. Review: intravenous immunoglobulin therapy and thromboembolic complications. Lupus 2005; 14: 802–8

    Article  PubMed  CAS  Google Scholar 

  39. Paran D, Herishanu Y, Elkayam O,. Venous and arterial thrombosis following administration of intravenous immunoglobulins. Blood Coagul Fibrinolysis 2005; 16: 313–8

    Article  PubMed  CAS  Google Scholar 

  40. Gelfand EW. Differences between IGIV products: impact on clinical outcome. Int Immunopharmacol 2006; 6: 592–9

    Article  PubMed  CAS  Google Scholar 

  41. Mckay LI, Cidlowsky JA. Corticosteroids. In: Holland JF, Frei E III, editors. Cancer medicine. 5th ed. London: BC Decker, 2000: 730–43

    Google Scholar 

  42. Gaffney K, Scott DG. Azathioprine and cyclophosphamide in the treatment of rheumatoid arthritis. Br J Rheumatol 1998; 37: 824–36

    Article  PubMed  CAS  Google Scholar 

  43. Oren RM. Hyponatremia in congestive heart failure. Am J Cardiol 2005; 95 Suppl.: 2–7B

    Article  Google Scholar 

  44. Anderson CL, Chaudhury C, Kim J,. Perspective: FcRn transports albumin. Relevance to immunology and medicine. Trends Immunol 2006; 27: 343–8

    CAS  Google Scholar 

  45. Chaudhury C, Mehnaz S, Robinson JM,. The major histocompatibility complex-related Fc receptor for IgG (FcRn) binds albumin and prolongs its lifespan. J Exp Med 2003; 197: 315–22

    Article  PubMed  CAS  Google Scholar 

  46. Israel EJ, Wilsker DF, Hayes KC,. Increased clearance of IgG in mice that lack beta 2-microglobulin: possible protective role of FcRn. Immunology 1996; 89: 573–8

    Article  PubMed  CAS  Google Scholar 

  47. Katz U, Achiron A, Sherer Y,. Safety of intravenous immunoglobulin (IVIG) therapy. Autoimmun Rev 2007; 6: 257–9

    Article  PubMed  CAS  Google Scholar 

  48. Mahieu AC, Sisti AM, Joekes S,. Pharmacovigilance study of a regional intravenous immunoglobulin (II): evaluation and comparison of an improved pharmaceutical form. Allergol Immunopathol (Madr) 2006; 34: 242–7

    Article  CAS  Google Scholar 

  49. Katz U, Kishner I, Magalashvili D,. Long term safety of IVIg therapy in multiple sclerosis: 10 years experience. Autoimmunity 2006; 39: 513–7

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

No sources of funding were used to assist in the preparation of this study. The authors have no conflicts of interest that are directly relevant to the content of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele D. Mignogna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mignogna, M.D., Fortuna, G., Ruoppo, E. et al. Variations in Serum Hemoglobin, Albumin, and Electrolytes in Patients Receiving Intravenous Immunoglobulin Therapy. AM J Clin Dermatol 8, 291–299 (2007). https://doi.org/10.2165/00128071-200708050-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00128071-200708050-00004

Keywords

Navigation