American Journal of Clinical Dermatology

, Volume 6, Issue 4, pp 215–223 | Cite as

Role of Ceramides in Barrier Function of Healthy and Diseased Skin

  • Myeong Jun Choi
  • Howard I. MaibachEmail author
Review Article


Stratum corneum intercellular lipids play an important role in the regulation of skin water barrier homeostasis and water-holding capacity. Modification of intercellular lipid organization and composition may impair these properties. Patients with skin diseases such as atopic dermatitis, psoriasis, contact dermatitis, and some genetic disorders have diminished skin barrier function. Lipid composition in diseased skin is characterized by decreased levels of ceramide and altered ceramide profiles. To clarify mechanisms underlying ceramides as a causative factor of skin disease, investigators have examined the activity of enzymes in the stratum corneum on ceramide production and degradation. The activities of ceramidase, sphingomyelin deacylase, and glucosylceramide deacylase are increased in epidermal atopic dermatitis. Investigators have also compared the expression levels of sphingolipid activator protein in the epidermis of normal and diseased skin. A decreased level of prosaposin has been identified in both atopic dermatitis and psoriasis. These results indicate that decreased ceramide level is a major etiologic factor in skin diseases. Hence, topical skin lipid supplementation may provide opportunities for controlling ceramide deficiency and improving skin condition.


Atopic Dermatitis Ceramide Stratum Corneum Gauche Disease Atopic Dermatitis Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors have provided no information on sources of funding or on conflicts of interest directly relevant to the content of this review.


  1. 1.
    Bouwstra JA, Honeywell-Nguyen PL, Gooris GS, et al. Structure of the skin barrier and its modulation by vesicular formulations. Prog Lipid Res. 2003; 42: 1–36PubMedCrossRefGoogle Scholar
  2. 2.
    Imokawa G, Abe A, Jin K, et al. Decreased level of ceramides in stratum comeum of atopic dermatitis: an etiologic factor in atopic dry skin. J Invest Dermatol. 1991; 96: 523–6PubMedCrossRefGoogle Scholar
  3. 3.
    Paige DG, Morse-Fisher N, Harper JI. Quantification of stratum comeum ceramides and lipid envelope ceramides in the hereditary ichthyoses. Br J Dermalot. 1994; 131: 23–7CrossRefGoogle Scholar
  4. 4.
    Matsumoto M, Umemoto N, Sugiura H, et al. Difference in ceramide composition between “dry” and “normal” skin in patients with atopic dermatitis. Acta Derm Venereol. 1999; 79: 246–7PubMedCrossRefGoogle Scholar
  5. 5.
    Pilgram GS, Vissers DC, van der Meulen H, et al. Aberrant lipid organization in stratum corneum of patients with atopic dermatitis and lamellar ichthyosis. J Invest Dermatol. 2001; 117: 710–7PubMedCrossRefGoogle Scholar
  6. 6.
    Macheleidt O, Kaiser HW, Sandhoff K. Deficiency of epidermal protein-bound omega-hydroxyceramides in atopic dermatitis. J Invest Dermatol. 2002; 119: 166–73PubMedCrossRefGoogle Scholar
  7. 7.
    Geilen CC, Wieder T, Orfanos CE. Ceramide signalling: regulatory role in cell proliferation, differentiation and apoptosis in human epidermis. Arch Dermatol Res. 1997; 289 (10): 559–66PubMedCrossRefGoogle Scholar
  8. 8.
    Burek C, Roth J, Koch HG, et al. The role of ceramide in receptor and stress-induced apoptosis studied in acidic ceramidase-deficient Farber disease cells. Oncogene. 2001; 20: 6493–502PubMedCrossRefGoogle Scholar
  9. 9.
    Komatsu M, Takahashi T, Abe T, et al. Evidence for the association of ultraviolet-C and Hb2Ob2-induced apoptosis with acid sphingomyelinase activation. Biochim Biophys Acta. 2001; 1533: 47–54PubMedCrossRefGoogle Scholar
  10. 10.
    Separovic D, Mann KJ, Oleinick NL. Association of ceramide accumulation with photodynamic treatment-induced cell death. Photochem Photobiol 1998; 68: 101–9PubMedCrossRefGoogle Scholar
  11. 11.
    Pena LA, Fuks Z, Kolesnick R. Stress-induced apoptosis and the sphingomyelin pathway. Biochem Pharmacol. 1997; 53: 615–21PubMedCrossRefGoogle Scholar
  12. 12.
    Kolesnick R. The therapeutic potential of modulating the ceramide/sphingomyelin pathway. J Clin Invest. 2002; 110: 3–8PubMedGoogle Scholar
  13. 13.
    Ogretmen B, Hannun YA. Updates on functions of ceramides in chemotherapy-induced cell death and in multidrug resistance. Drug Resist Updat. 2001; 4: 368–77PubMedCrossRefGoogle Scholar
  14. 14.
    Claus R, Russwurm S, Meisner M, et al. Modulation of the ceramide level: a novel therapeutic concept?. Curr Drug Targets. 2000; 1: 185–205PubMedCrossRefGoogle Scholar
  15. 15.
    Lucci A, Han TY, Liu YY, et al. Multidrug resistance modulators and doxorubicin synergize to elevate ceramide levels and elicit apoptosis in drug-resistant cancer cells. Cancer. 1999; 86: 300–11PubMedCrossRefGoogle Scholar
  16. 16.
    Charles AG, Han TY, Liu YY, et al. Taxol-induced ceramide generation and apoptosis in human breast cancer cells. Cancer Chemother Pharmaco. 2001; 47: 444–50CrossRefGoogle Scholar
  17. 17.
    Holleran WM, Feingold KR, Man MQ, et al. Regulation of epidermal sphingolipid synthesis by permeability barrier function. J Lipid Res. 1991; 32 (7): 1151–8PubMedGoogle Scholar
  18. 18.
    Holleran WM, Takagi Y, Menon GK, et al. Permeability barrier requirements regulate epidermal β-glucocerebrosidase. J Lipid Res. 1995; 35: 905–12Google Scholar
  19. 19.
    Jensen JM, Schiitze S, Förl M, et al. Roles for tumor necrosis factor receptor p55 and sphingomyelinase in repairing the cutaneous permeability barrier. J Clin Invest. 1999; 104: 1761–70PubMedCrossRefGoogle Scholar
  20. 20.
    Higuchi K, Hara J, Okamoto R, et al. The skin of atopic dermatitis patients contains a novel enzyme, glucosylceramide sphingomyelin deacylase, which cleaves the N-acyl linkage of sphingomyelin and glucosylceramide. Biochem J. 2000; 350: 747–56PubMedCrossRefGoogle Scholar
  21. 21.
    Hara J, Higuchi K, Okamoto R, et al. High-expression of sphingomyelinase deacylase is an important determinant of ceramide deficiency leading to barrier disruption atopic dermatitis. J Invest Dermatol. 2000; 115: 406–13PubMedCrossRefGoogle Scholar
  22. 22.
    Ishibashi M, Arikawa J, Okamoto R, et al. Abnormal expression of the novel epidermal enzyme, glucosylceramide deacylase, and the accumulation of its enzymatic reaction product, glucosylsphingosine, in the skin of patients with atopic dermatitis. Lab Invest. 2003; 83: 397–408PubMedGoogle Scholar
  23. 23.
    Wilkening G, Linke T, Sandhoff K. Lysosomal degradation on vesicular membrane surfaces. J Biol Chem. 1998; 273: 30271–8PubMedCrossRefGoogle Scholar
  24. 24.
    Tayama M, Soeda S, Kishimoto Y, et al. Effect of saposins on acid sphingomyelinase. Biochem J. 1993; 290: 401–4PubMedGoogle Scholar
  25. 25.
    Hammond SA, Tsonis C, Sellins K, et al. Transcutaneous immunization of domestic animals: opportunities and challenges. Adv Drug Deliv Rev. 2000; 43: 45–55PubMedCrossRefGoogle Scholar
  26. 26.
    Ponec M, Weerheim A, Lankhorst P, et al. New acylceramide in native and reconstructed epidermis. J Invest Dermatol. 2003; 120: 581–8PubMedCrossRefGoogle Scholar
  27. 27.
    Bouwstra JA, Gooris GS, Dubbelaar FER, et al. Phase behavior of stratum corneum lipid mixtures based on human ceramides: the role of natural and synthetic ceramide 1. J Invest Dermatol. 2002; 118: 606–17PubMedCrossRefGoogle Scholar
  28. 28.
    Bouwstra JA, Gooris GS, Dubbelaar FER, et al. Phase behavior of lipid mixtures based on human ceramides: coexistence of crystalline and lipid phases. J Lipid Res. 2001; 42: 1759–70PubMedGoogle Scholar
  29. 29.
    White SH, Mirejovsky D, King GI. Structure of lamellar lipid domains and corneocyte envelopes of murine stratum corneum: an x-ray diffraction study. Biochemistry. 1988; 27: 3725–32PubMedCrossRefGoogle Scholar
  30. 30.
    Bouwstra JA, Goods GS, van der Spek JA, et al. Structural investigations of human stratum comeum by small-angle x-ray scattering. J Invest Dermatol. 1991; 97: 1005–12PubMedCrossRefGoogle Scholar
  31. 31.
    Bouwstra JA, Goods GS, van der Spek JA, et al. The lipid and protein structure of mouse stratum comeum: a wide and small angle diffraction study. Biochim Biophys Acta. 1994; 1212: 183–92PubMedCrossRefGoogle Scholar
  32. 32.
    Pilgram GS, Engelsma-van Pelt AM, Bouwstra JA, et al. Electron diffraction provides new information on human stratum comeum lipid organization studied in relation to death and temperature. J Invest Dermatol. 1999; 113: 403–9PubMedCrossRefGoogle Scholar
  33. 33.
    Bouwstra JA, Honeywell-Nguyen PL. Skin structure and mode of vesicles. Adv Drug Deliv Rev. 2002; 54: s41–55PubMedCrossRefGoogle Scholar
  34. 34.
    Jin K, Higaki Y, Tagaki Y, et al. Analysis of beta-glucocerebrosidase and ceramidase activities in atopic and aged dry skin. Acta Derm Venereol. 1994; 74: 337–40PubMedGoogle Scholar
  35. 35.
    Imokawa G, Akasaki S, Hattori M, et al. Selective recovery of deranged water-holding properties by stratum lipids. J Invest Dermatol. 1986; 87: 758–61PubMedCrossRefGoogle Scholar
  36. 36.
    Di Nardo A, Wertz P, Giannetti A, et al. Ceramide and cholesterol composition of the skin of patients with atopic dermatitis. Acta Derm Venereol. 1998; 78: 27–30PubMedCrossRefGoogle Scholar
  37. 37.
    Murata Y, Ogata J, Higaki Y, et al. Abnormal expression of sphingomyelin acylase in atopic dermatitis: an etiologic factor for ceramide deficiency?. J Invest Dermatol. 1996; 106: 1242–9PubMedCrossRefGoogle Scholar
  38. 38.
    Yamamoto A, Serizawa S, Ito M, et al. Stratum comeum lipid abnormalities in atopic dermatitis. Arch Dermatol Res. 1991; 283: 219–23PubMedCrossRefGoogle Scholar
  39. 39.
    Ohnishi Y, Okino N, Ito M, et al. Ceramidase activity in bacterial skin flora as a possible cause of ceramide deficiency in atopic dermatitis. Clin Diagn Lab Immunol. 1999; 6: 101–4PubMedGoogle Scholar
  40. 40.
    Kusuda S, Chang-Yi C, Takahashi M, et al. Localization of sphingomyelinase in lesional skin of atopic dermatitis patients. J Invest Dermatol. 1998; 111: 733–8PubMedCrossRefGoogle Scholar
  41. 41.
    Chang-Yi C, Kusuda S, Seguchi T, et al. Decreased level of prosaposin in atopic skin. J Invest Dermatol. 1997; 109: 319–23CrossRefGoogle Scholar
  42. 42.
    Jensen JM, Folster-Holst R, Baranowsky A, et al. Impaired sphingomyelinase activity and epidermal differentiation in atopic dermatitis. J Invest Dermatol. 2004; 122 (6): 1423–31PubMedCrossRefGoogle Scholar
  43. 43.
    Arikawa J, Ishibashi M, Kawashima M, et al. Decreased levels of sphingosine, a natural antimicrobial agent, may be associated with vulnerability of the stratum comeum from patients with atopic dermatitis to colonization by Staphylococcus aureus. J Invest Dermatol. 2002; 119: 433–9PubMedCrossRefGoogle Scholar
  44. 44.
    Okamoto R, Arikawa J, Ishibashi M, et al. Sphingosylphosphorylcholine is upregulated in the stratum corneum of patients with atopic dermatitis. J Lipid Res. 2003; 44: 93–102PubMedCrossRefGoogle Scholar
  45. 45.
    Uchida Y, Hara M, Nishio M, et al. Epidermal sphingomyelins are precursors for selected stratum comeum ceramides. J Lipid Res. 2000; 41: 2071–82PubMedGoogle Scholar
  46. 46.
    Motta S, Monti M, Sesana S, et al. Abnormality of water barrier function in psoriasis: role of ceramide functions. Arch Dermatol. 1994; 130: 452–6PubMedCrossRefGoogle Scholar
  47. 47.
    Motta S, Sesana S, Monti M, et al. Interlamellar lipid difference between normal and psoriatic stratum corneum. Acta Derm Venereol Suppl. 1994; 186: 131–2Google Scholar
  48. 48.
    Motta S, Monti M, Sesana S, et al. Ceramide composition of the psoriatic scale. Biochim Biophys Acta. 1993; 1182: 147–51PubMedCrossRefGoogle Scholar
  49. 49.
    Alessandrini F, Stachowitz S, Ring J, et al. The level of prosaposin is decreased in the skin of patients with psoriasis vulgaris. J Invest Dermatol. 2001; 116: 394–400PubMedCrossRefGoogle Scholar
  50. 50.
    Sidransky E, Fartasch M, Lee RE, et al. Epidermal abnormalities may distinguish type 2 from type 1 and type 3 of Gaucher disease. Pediatr Res. 1996; 39: 134–41PubMedCrossRefGoogle Scholar
  51. 51.
    Holleran WM, Ginns EI, Menon GK, et al. Consequences of β-glucocerebrosidase deficiency in epidermis: ultrastructure and permeability barrier alterations in Gaucher disease. J Clin Invest. 1994; 93 (4): 1756–64PubMedCrossRefGoogle Scholar
  52. 52.
    Doering T, Proia RL, Sandhoff K. Accumulation of protein-bound epidermal glucosylceramides in β-glucocerebrosidase deficient type 2 Gaucher mice. FEBS Lett. 1999; 447: 167–70PubMedCrossRefGoogle Scholar
  53. 53.
    Orbisky E, Sidransky E, McKinney CE, et al. Glucosylsphingosine accumulation in mice and patients with type 2 Gaucher disease begins early in gestation. Pediatr Res. 2000; 48: 233–7CrossRefGoogle Scholar
  54. 54.
    Ida H, Rennert OM, Eto Y, et al. Cloning of a human acid sphingomyelinase cDNA with a new mutation that renders the enzyme inactive. J Biochem. 1993; 114: 15–20PubMedGoogle Scholar
  55. 55.
    Schmuth M, Man MQ, Weber F, et al. Permeability barrier disorder in Niemann-Pick disease: sphingomyelin-ceramide processing required for normal barrier homeostasis. J Invest Dermatol. 2000; 115: 459–66PubMedCrossRefGoogle Scholar
  56. 56.
    Muramatsu T, Sakai N, Yanagihara I, et al. Mutation analysis of the acid ceramidase gene in Japanese patients with Farber disease. J Inherit Metab Dis. 2002; 25: 585–92PubMedCrossRefGoogle Scholar
  57. 57.
    De Paepe K, Roseeuw D, Rogiers V. Repair of acetone-and sodium lauryl sulfate-damaged human skin barrier function using topically applied emulsions containing barrier lipids. J Fur Acad Dermatol Venereol. 2002; 16: 587–94CrossRefGoogle Scholar
  58. 58.
    Coderch L, De Pera M, Fonollosa J, et al. Efficacy of stratum comeum lipid supplementation on human skin. Contact Dermatitis. 2002; 47: 139–46PubMedCrossRefGoogle Scholar
  59. 59.
    Man MM, Feingold KR, Thomfeldt CR, et al. Optimization of physiological lipid mixtures for barrier repair. J Invest Dermatol. 1996; 106: 1096–101CrossRefGoogle Scholar
  60. 60.
    Berardesca E, Barbareschi M, Veraldi S, et al. Evaluation of efficiency of a skin lipid mixture in patients with irritant contact dermatitis, allergic contact dermatitis or atopic dermatitis: a multicenter study. Contact Dermatitis. 2001; 45: 280–5PubMedCrossRefGoogle Scholar
  61. 61.
    Kucharekova M, Schalkwijk J, van de Kerkhof PCM, et al. Effect of a lipid-rich emollient containing ceramide 3 in experimentally induced skin barrier dysfunction. Contact Dermatitis. 2002; 46: 331–8PubMedCrossRefGoogle Scholar
  62. 62.
    Chamlin SL, Kao J, Frieden IJ, et al. Ceramide-dominant barrier repair lipids alleviate childhood atopic dermatitis: changes in barrier function provide a sensitive indicator of disease activity. J Am Acad Dermatol. 2002; 47: 198–208PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2005

Authors and Affiliations

  1. 1.Department of Dermatology, School of MedicineUniversity of CaliforniaSan FranciscoUSA
  2. 2.Charmzone Research and Development CenterWon-Ju, Kangwon-doKorea

Personalised recommendations