American Journal of Clinical Dermatology

, Volume 4, Issue 11, pp 771–788 | Cite as

Role of Topical Emollients and Moisturizers in the Treatment of Dry Skin Barrier Disorders

  • Marie LodénEmail author
Review Article


Emollients and moisturizing creams are used to break the dry skin cycle and to maintain the smoothness of the skin. The term ‘moisturizer’ is often used synonymously with emollient, but moisturizers often contain humectants in order to hydrate the stratum corneum. Dryness is frequently linked to an impaired barrier function observed, for example, in atopic skin, psoriasis, ichthyosis, and contact dermatitis.

Dryness and skin barrier disorders are not a single entity, but are characterized by differences in chemistry and morphology in the epidermis. Large differences also exist between moisturizing creams. Moisturizers have multiple functions apart from moistening the skin. Similar to other actives, the efficacy is likely to depend on the dosage, where compliance is a great challenge faced in the management of skin diseases. Strong odor from ingredients and greasy compositions may be disagreeable to the patients. Furthermore, low pH and sensory reactions, from lactic acid and urea for example, may reduce patient acceptance. Once applied to the skin, the ingredients can stay on the surface, be absorbed into the skin, be metabolized, or disappear from the surface by evaporation, sloughing off, or by contact with other materials.

In addition to substances considered as actives, e.g. fats and humectants, moisturizers contain substances conventionally considered as excipients (e.g. emulsifiers, antioxidants, preservatives). Recent findings indicate that actives and excipients may have more pronounced effects in the skin than previously considered. Some formulations may deteriorate the skin condition, whereas others improve the clinical appearance and skin barrier function. For example, emulsifiers may weaken the barrier. On the other hand, petrolatum has an immediate barrier-repairing effect in delipidized stratum corneum. Moreover, one ceramide-dominant lipid mixture improved atopic dermatitis and decreased transepidermal water loss (TEWL) in an open-label study in children. In double-blind studies moisturizers with urea have been shown to reduce TEWL in atopic and ichthyotic patients. Urea also makes normal and atopic skin less susceptible against irritation to sodium laurilsulfate. Treatments improving the barrier function may reduce the likelihood of further aggravation of the disease.

In order to have optimum effect it is conceivable that moisturizers should be tailored with respect to the epidermal abnormality. New biochemical approaches and non-invasive instruments will increase our understanding of skin barrier disorders and facilitate optimum treatments. The chemistry and function of dry skin and moisturizers is a challenging subject for the practicing dermatologist, as well as for the chemist developing these agents in the pharmaceutical/cosmetic industry.


Atopic Dermatitis Stratum Corneum Lamellar Body Lanolin Skin Barrier Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Dr Lodén is employed by ACO Hud AB who supported the work. The author has provided no information on conflicts of interest directly relevant to the content of this review.


  1. 1.
    Lucky AW, Leach AD, Laskarzewski P, et al. Use of an emollient as a steroid-sparing agent in the treatment of mild to moderate atopic dermatitis in children. Pediatr Dermatol 1997; 14: 321–4PubMedCrossRefGoogle Scholar
  2. 2.
    Cork MJ. The role of Staphylococcus aureus in atopic eczema: treatment strategies. J Eur Acad Dermatol Venereol 1996; 7: S31–7CrossRefGoogle Scholar
  3. 3.
    Strange P, Skov L, Lisby S, et al. Staphylococal enterotoxin B applied on intact normal and intact atopic skin induces dermatitis. Arch Dermatol 1996; 132: 27–33PubMedCrossRefGoogle Scholar
  4. 4.
    Ashida Y, Ogo M, Denda M. Epidermal interleukin-1 alpha generation is amplified at low humidity: implications for the pathogenesis of inflammatory dermatoses. Br J Dermatol 2001; 144: 238–43PubMedCrossRefGoogle Scholar
  5. 5.
    Morris-Jones R, Robertson SJ, Ross JS, et al. Dermatitis caused by physical irritants. Br J Dermatol 2002; 147: 270–5PubMedCrossRefGoogle Scholar
  6. 6.
    Ghadially R, Brown BE, Sequeira-Martin SM, et al. The aged epidermal permeability barrier: structural, functional, and lipid biochemical abnormalities in humans and a senescent murine model. J Clin Invest 1995; 95: 2281–90PubMedCrossRefGoogle Scholar
  7. 7.
    Garg A, Chren MM, Sands LP, et al. Psychological stress perturbs epidermal permeability barrier homeostasis: implications for the pathogenesis of stress-associated skin disorders. Arch Dermatol 2001; 137: 53–9PubMedGoogle Scholar
  8. 8.
    Proksch E, Feingold KR, Man MQ, et al. Barrier function regulates epidermal DNA synthesis. J Clin Invest 1991; 87: 1668–73PubMedCrossRefGoogle Scholar
  9. 9.
    Denda M, Wood LC, Emami S, et al. The epidermal hyperplasia associated with repeated barrier disruption by acetone treatment or tape stripping cannot be attributed to increased water loss. Arch Dermatol Res 1996; 288: 230–8PubMedCrossRefGoogle Scholar
  10. 10.
    Wood LC, Jackson SM, Elias PM, et al. Cutaneous barrier perturbation stimulates cytokine production in the epidermis of mice. J Clin Invest 1992; 90: 482–7PubMedCrossRefGoogle Scholar
  11. 11.
    Werner Y, Lindberg M. Transepidermal water loss in dry and clinically normal skin in patients with atopic dermatitis. Acta Derm Venereol 1985; 65: 102–5PubMedGoogle Scholar
  12. 12.
    Loden M, Olsson H, Axell T, et al. Friction, capacitance and transepidermal water loss (TEWL) in dry atopic and normal skin. Br J Dermatol 1992; 126: 137–41PubMedCrossRefGoogle Scholar
  13. 13.
    Thune P. Evaluation of the hydration and the water-holding capacity in atopic skin and so-called dry skin. Acta Derm Venereol Suppl (Stockh) 1989; 144: 133–5Google Scholar
  14. 14.
    Finlay AY, Nicholls S, King CS, et al. The ’dry’ non-eczematous skin associated with atopic eczema. Br J Dermatol 1980; 103: 249–56PubMedCrossRefGoogle Scholar
  15. 15.
    Ghadially R, Reed JT, Elias PM. Stratum corneum structure and function correlates with phenotype in psoriasis. J Invest Dermatol 1996; 107: 558–64PubMedCrossRefGoogle Scholar
  16. 16.
    Motta S, Monti M, Sesana S, et al. Abnormality of water barrier function in psoriasis. Arch Dermatol 1994; 130: 452–6PubMedCrossRefGoogle Scholar
  17. 17.
    Elias PM, Schmuth M, Uchida Y, et al. Basis for the permeability barrier abnormality in lamellar ichthyosis. Exp Dermatol 2002; 11: 248–56PubMedCrossRefGoogle Scholar
  18. 18.
    Lavrijsen AP, Oestmann E, Hermans J, et al. Barrier function parameters in various keratinization disorders: transepidermal water loss and vascular response to hexyl nicotinate. Br J Dermatol 1993; 129: 547–53PubMedCrossRefGoogle Scholar
  19. 19.
    Lavrijsen AP, Bouwstra JA, Gooris GS, et al. Reduced skin barrier function parallels abnormal stratum corneum lipid organization in patients with lamellar ichthyosis. J Invest Dermatol 1995; 105: 619–24PubMedCrossRefGoogle Scholar
  20. 20.
    Gånemo A, Virtanen M, Vahlquist A. Improved topical treatment of lamellar ichthyosis: a double blind study of four different cream formulations. Br J Dermatol 1999; 141: 1027–32CrossRefGoogle Scholar
  21. 21.
    Broberg A, Svensson Å, Borres MP, et al. Atopic dermatitis in 5–6-year-old Swedish children: cumulative incidence, point prevalence, and severity scoring. Allergy 2000; 55: 1025–9PubMedCrossRefGoogle Scholar
  22. 22.
    Larsen FS, Diepgen T, Svensson Å. The occurence of atopic dermatitis in North Europe: an international questionnaire study. J Am Acad Dermatol 1996; 34: 760–4CrossRefGoogle Scholar
  23. 23.
    Taieb A. Hypothesis: from epidermal barrier dysfunction to atopic disorders. Contact Dermatitis 1999; 41: 177–80PubMedCrossRefGoogle Scholar
  24. 24.
    Leveque JL, Grove GL, de Rigal J, et al. Biophysical characterization of dry facial skin. J Soc Cosmet Chem 1987; 82: 171–7Google Scholar
  25. 25.
    Linde YW. “Dry” skin in atopic dermatitis: a clinical study. Acta Derm Venereol (Stockh) 1989; 69: 311–4Google Scholar
  26. 26.
    Lodén M, Olsson H, Axell T, et al. Friction, capacitance and transepidermal water loss (TEWL) in dry atopic and normal skin. Br J Dermatol 1992; 126: 137–41PubMedCrossRefGoogle Scholar
  27. 27.
    Downing DT. Lipid and protein structures in the permeability barrier. In: Lodén M, Maibach HI, editors. Dry skin and moisturizers; chemistry and function. Boca Raton: CRC Press, 2000: 59–70Google Scholar
  28. 28.
    Blank IH. Factors which influence the water content of the stratum corneum. J Invest Dermatol 1952; 18: 433–40PubMedGoogle Scholar
  29. 29.
    Elias PM. Lipids and the epidermal permeability barrier. Arch Dermatol Res 1981; 270: 95–117PubMedCrossRefGoogle Scholar
  30. 30.
    Takenouchi M, Suzuki H, Tagami H. Hydration characteristics of pathologic stratum corneum-evaluation of bound water. J Invest Dermatol 1986; 87: 574–6PubMedCrossRefGoogle Scholar
  31. 31.
    Anderson RL, Cassidy JM, Hansen JR, et al. Hydration of stratum corneum. Biopolymers 1973; 12: 2789–802PubMedCrossRefGoogle Scholar
  32. 32.
    Blank IH. Further observations on factors which influence the water content of the stratum corneum. J Invest Dermatol 1953; 21: 259–71PubMedGoogle Scholar
  33. 33.
    Jacobi OK. Moisture regulation in the skin. Drug Cosmet Ind 1959; 84: 732–812Google Scholar
  34. 34.
    Laden K. Natural moisturization factors in skin. Am Perfum Cosmet 1967; 82: 77–9Google Scholar
  35. 35.
    Laden K, Spitzer R. Identification of a natural moisturizing agent in skin. J Soc Cosmet Chem 1967; 18: 351–60Google Scholar
  36. 36.
    Imokawa G, Kuno H, Kawai M. Stratum corneum lipids serve as a bound-water modulator. J Invest Dermatol 1991; 96: 845–51PubMedCrossRefGoogle Scholar
  37. 37.
    Middleton J. Development of a skin cream designed to reduce dry and flaky skin. J Soc Cosmet Chem 1974; 25: 519–34Google Scholar
  38. 38.
    Jokura Y, Ishikawa S, Tokuda H, et al. Molecular analysis of elastic properties of the stratum corneum by solid-state 13C-nuclear magnetic resonance spectroscopy. J Invest Dermatol 1995; 104 (5): 806–12PubMedCrossRefGoogle Scholar
  39. 39.
    Suzuki Y, Nomura J, Koyama J, et al. The role of proteases in stratum corneum: involvement in stratum corneum desquamation. Arch Dermatol Res 1994; 286: 249–53PubMedCrossRefGoogle Scholar
  40. 40.
    Rawlings AV, Harding C, Watkinson A, et al. The effect of glycerol and humidity on desmosome degradation in stratum corneum. Arch Dermatol Res 1995; 287: 457–64PubMedCrossRefGoogle Scholar
  41. 41.
    Öhman H, Vahlquist A. The pH gradient over the stratum corneum differs in X-linked recessive and autosomal dominant ichthyosis: a clue to the molecular origin of the “acid skin mantle”? J Invest Dermatol 1998; 111: 674–7CrossRefGoogle Scholar
  42. 42.
    Lundström A, Egelrud T. Cell shedding from human plantar skin in vitro: evidence of its dependence on endogenous proteolysis. J Invest Dermatol 1988; 91: 340–3CrossRefGoogle Scholar
  43. 43.
    Sato J, Denda M, Nakanishi J, et al. Cholesterol sulfate inhibits proteases that are involved in desquamation of stratum corneum. J Invest Dermatol 1998; 111: 189–93PubMedCrossRefGoogle Scholar
  44. 44.
    Bouwstra JA, Gooris GS, Dubbelaar FE, et al. Cholesterol sulfate and calcium affect stratum corneum lipid organization over a wide temperature range. J Lipid Res 1999; 40: 2303–12PubMedGoogle Scholar
  45. 45.
    Bouwstra JA, Dubbelaar FE, Gooris GS, et al. The role of ceramide composition in the lipid organisation of the skin barrier. Biochim Biophys Acta 1999; 1419: 127–36PubMedCrossRefGoogle Scholar
  46. 46.
    Scheuplein RJ, Blank IH. Permeability of the skin. Physiol Rev 1971; 51: 702–47PubMedGoogle Scholar
  47. 47.
    Potts RO, Francoeur ML. The influence of stratum corneum morphology on water permeability. J Invest Dermatol 1991; 96: 495–9PubMedCrossRefGoogle Scholar
  48. 48.
    Rougier A, Lotte C, Corcuff P, et al. Relationship between skin permeability and corneocyte size according to anatomic site, age, and sex in man. J Soc Cosmet Chem 1988; 39: 15–26Google Scholar
  49. 49.
    Grove GL, Kligman AM. Corneocytes size as an indirect measure of epidermal proliferative activity. In: Marks R, Plewig G, editor. Stratum corneum. New York: Springer-Verlag, 1983: 191–4CrossRefGoogle Scholar
  50. 50.
    Blank IH, Moloney J, Emslie AG, et al. The diffusion of water across the stratum corneum as a function of its water content. J Invest Dermatol 1984; 82: 188–94PubMedCrossRefGoogle Scholar
  51. 51.
    Tiemessen HLGM, Bodde HM, Junginger HE. A silicone membrane sandwich method to measure drug transport through isolated human stratum corneum having a fixed water content. Int J Pharmacol 1989; 56: 87–94CrossRefGoogle Scholar
  52. 52.
    Van Hal DA, Jeremiasse E, Junginger HE, et al. Structure of fully hydrated human stratum corneum: a freeze-fracture electron microscopy study. J Invest Dermatol 1996; 106: 89–95PubMedCrossRefGoogle Scholar
  53. 53.
    Mak VHW, Potts RO, Guy RH. Does hydration affect intercellular lipid organization in the stratum corneum? Pharm Res 1991; 8: 1064–5PubMedCrossRefGoogle Scholar
  54. 54.
    Elias PM, Menon GK. Structural and lipid biochemical correlates of the epidermal permeability barrier. Adv Lipid Res 1991; 24: 1–26PubMedGoogle Scholar
  55. 55.
    White SH, Mirejovsky D, King GI. Structure of lamellar lipid domains and corneocyte envelopes of murine stratum corneum: an X-ray diffraction study. Biochemistry 1988; 27: 3725–32PubMedCrossRefGoogle Scholar
  56. 56.
    Bouwstra JA, Gooris GS, van der Spek JA, et al. The structure of human stratum corneum as determined by small angle X-ray scattering. J Invest Dermatol 1991; 96: 1006–14Google Scholar
  57. 57.
    Knutson K, Krill SL, Lambert WJ, et al. Physiochemical aspects of transdermal permeation. J Control Release 1987; 6: 59–74CrossRefGoogle Scholar
  58. 58.
    Forslind B. A domain mosaic model of the skin barrier. Acta Derm Venereol (Stockh) 1994; 74: 1–6Google Scholar
  59. 59.
    Holleran WM, Takagi Y, Menon GK, et al. Permeability barrier requirements regulate epidermal beta-glucocerebrosidase. J Lipid Res 1994; 35: 905–12PubMedGoogle Scholar
  60. 60.
    Holleran WM, Takagi Y, Menon GK, et al. Processing of epidermal glucosylceramides is required for optimal mammalian cutaneous permeability barrier function. J Clin Invest 1993; 91: 1656–64PubMedCrossRefGoogle Scholar
  61. 61.
    Holleran WM, Ginns EI, Menon GK, et al. Consequences of beta-glucocerebrosidase deficiency in epidermis: ultrastructure and permeability barrier alterations in Gaucher disease. J Clin Invest 1994; 93: 1756–64PubMedCrossRefGoogle Scholar
  62. 62.
    Man MQ, Feingold KR, Jain M, et al. Extracellular processing of phospholipids is required for permeability barrier homeostasis. J Lipid Res 1995; 36 (9): 1925–35Google Scholar
  63. 63.
    Mauro T, Holleran WM, Grayson S, et al. Barrier recovery is impeded at neutral pH, independent of ionic effects: implications for extracellular lipid processing. Arch Dermatol Res 1998; 290: 215–22PubMedCrossRefGoogle Scholar
  64. 64.
    Redoules D, Tarroux R, Assalit MF, et al. Characterisation and assy of five enzymatic activities in the stratum corneum using tape-strippings. Skin Pharmacol Appl Skin Physiol 1999; 12: 182–92PubMedCrossRefGoogle Scholar
  65. 65.
    Jensen JM, Schutze S, Forl M, et al. Roles for tumor necrosis factor receptor p55 and sphingomyelinase in repairing the cutaneous permeability barrier. J Clin Invest 1999; 104: 1761–70PubMedCrossRefGoogle Scholar
  66. 66.
    Forslind B. The skin barrier: analysis of physiologically important elements and trace elements. Acta Derm Venereol 2000; 208: 46–52CrossRefGoogle Scholar
  67. 67.
    Feingold KR, Elias PM. The environmental interface: regulation of permeability barrier homeostasis. In: Lodén M, Maibach HI, editor. Dry skin and moisturizers: chemistry and function. Boca Raton: CRC Press, 2000: 45–58Google Scholar
  68. 68.
    Mao-Qiang M, Mauro T, Bench G, et al. Calcium and potassium inhibit barrier recovery after disruption, independent of the type of insult in hairless mice. Exp Dermatol 1997; 6: 36–40PubMedCrossRefGoogle Scholar
  69. 69.
    Menon GK, Feingold KR, Elias PM. Lamellar body secretory response to barrier disruption. J Invest Dermatol 1992; 98: 279–89PubMedCrossRefGoogle Scholar
  70. 70.
    Serup J, Jemec GBE. Handbook of non-invasive methods and the skin. Boca Raton: CRC Press Inc, 1995Google Scholar
  71. 71.
    Dupuis D, Rougier A, Lotte C, et al. In vivo relationship between percutaneous absorption and transepidermal water loss according to anatomic site in man. J Soc Cosmet Chem 1986; 37: 351–7Google Scholar
  72. 72.
    Aalto-Korte K, Turpeinen M. Transepidermal water loss and absorption of hydrocortisone in widespread dermatitis. Br J Dermatol 1993; 128: 633–5PubMedCrossRefGoogle Scholar
  73. 73.
    Rogiers V. EEMCO guidance for the assessment of transepidermal water loss in cosmetic science. Skin Pharmacol Appl Skin Physiol 2001; 14: 117–28PubMedCrossRefGoogle Scholar
  74. 74.
    Pinnagoda J, Tupker RA, Agner T, et al. Guidelines for transepidermal water loss (TEWL) measurement: a report from the Standardization Group of the European Society of Contact Dermatitis. Contact Dermatitis 1990; 22: 164–78PubMedCrossRefGoogle Scholar
  75. 75.
    Potts RO. Stratum corneum hydration: experimental techniques and interpretations of results. J Soc Cosmet Chem 1986; 37: 9–33Google Scholar
  76. 76.
    Morrison BM. ServoMed evaporimeter: precautions when evaluating the effect of skin care products on barrier function. J Soc Cosmet Chem 1992; 43: 161–7Google Scholar
  77. 77.
    Lodén M. The increase in skin hydration after application of emollients with different amounts of lipids. Acta Derm Venereol 1992; 72: 327–30PubMedGoogle Scholar
  78. 78.
    Kolbe L. Non-invasive methods for testing of the stratum corneum barrier function. In: Lodén M, Maibach HI, editor. Dry skin and moisturizers: chemistry and function. Boca Raton: CRC Press, 2000: 393–401Google Scholar
  79. 79.
    Barany E, Lindberg M, Lodén M. Unexpected skin barrier influence from nonionic emulsifiers. Int J Pharm 2000; 195: 189–95PubMedCrossRefGoogle Scholar
  80. 80.
    Kibbe AW. Handbook of pharmaceutical excipients. 3rd ed. Washington: American Pharmaceutical Association, Pharmaceutical Press, 2000Google Scholar
  81. 81.
    Yunginger JW, Calobrisi SD. Investigation of the allergenicity of a refined peanut oil-containing topical dermatologic agent in persons who are sensitive to peanuts. Cutis 2001; 68: 153–5PubMedGoogle Scholar
  82. 82.
    Rhodes LE. Essential fatty acids. In: Lodén M, Maibach HI, editors. Dry skin and moisturizers: chemistry and function. Boca Raton: CRC Press, 2000: 311–25Google Scholar
  83. 83.
    Wehr R, Krochmal L, Bagatell F, et al. A controlled two-center study of lactate 12% lotion and a petrolatum-based creme in patients with xerosis. Cutis 1986; 37: 205–9PubMedGoogle Scholar
  84. 84.
    Rosten M. The treatment of ichthyosis and hyperkeratotic conditions with urea. Aust J Derm 1970; 11: 142–4CrossRefGoogle Scholar
  85. 85.
    Swanbeck G, Rajka G. Antipruritic effect of urea solutions. Acta Derm Venereol (Stockh) 1970; 50: 225–7Google Scholar
  86. 86.
    Farber EM, South DA. Urea ointment in the nonsurgical avulsion of nail drystrophies. Cutis 1978; 22: 689–92PubMedGoogle Scholar
  87. 87.
    Lodén M, Andersson AC, Anderson C, et al. A double-blind study comparing the effect of glycerin and urea on dry, eczematous skin in atopic patients. Acta Derm Venereol 2002; 82: 45–7PubMedCrossRefGoogle Scholar
  88. 88.
    Froebe CL, Simion FA, Ohlmeyer H, et al. Prevention of stratum corneum lipid phase transitions in vitro by glycerol: an alternative mechanism for skin moisturization. J Soc Cosmet Chem 1990; 41: 51–65Google Scholar
  89. 89.
    Mattai J, Froebe CL, Rhein LD, et al. Prevention of model stratum corneum lipid phase transitions in vitro by cosmetic additives: differential scanning calometry, optical microscopy, and water evaporation studies. J Soc Cosmet Chem 1993; 44: 89–100Google Scholar
  90. 90.
    Rhodes LE, Diffey BL. Fluorescence spectroscopy: a rapid, noninvasive method for measurement of skin surface thickness of topical agents. Br J Dermatol 1997; 136: 12–7PubMedCrossRefGoogle Scholar
  91. 91.
    Johnson R, Nusbaum BP, Horwitz SN, et al. Transfer of topically applied tetracycline in various vehicles. Arch Dermatol 1983; 119: 660–3PubMedCrossRefGoogle Scholar
  92. 92.
    Schlagel CA, Sanborn EC. The weights of topical preparations required for total and partial body inunction. J Invest Dermatol 1964; 42: 253–6PubMedGoogle Scholar
  93. 93.
    Lynfield YL, Schechter BA. Choosing and using a vehicle. J Am Acad Dermatol 1984; 10: 56–9PubMedCrossRefGoogle Scholar
  94. 94.
    Ivens UI, Steinkjer B, Serup J, et al. Ointment is evenly spread on the skin, in contrast to creams and solutions. Br J Dermatol 2001; 145: 264–7PubMedCrossRefGoogle Scholar
  95. 95.
    Nicholls S, King CS, Marks R. Short term effects of emollients and a bath oil on the stratum corneum. J Soc Cosmet Chem 1978; 29: 617–24Google Scholar
  96. 96.
    Garber CA, Nightingale CT. Characterizing cosmetic effects and skin morphology by scanning electron microscopy. J Soc Cosmet Chem 1976; 27: 509–31Google Scholar
  97. 97.
    Lodén M, Olsson H, Skare L, et al. Instrumental and sensory evaluation of the frictional response of the skin following a single application of five moisturizing creams. J Soc Cosmet Chem 1992; 43: 13–20Google Scholar
  98. 98.
    Ghadially R, Halkier-Sorensen L, Elias PM. Effects of petrolatum on stratum corneum structure and function. J Am Acad Dermatol 1992; 26: 387–96PubMedCrossRefGoogle Scholar
  99. 99.
    Moloney SJ. The in-vitro percutaneous absorption of glycerol trioleate through hairless mouse skin. J Pharm Pharmacol 1988; 40: 819–21PubMedCrossRefGoogle Scholar
  100. 100.
    Wertz PW, Downing DT. Metabolism of topically applied fatty acid methyl esters in BALB/C mouse epidermis. J Dermatol Sci 1990; 1: 33–8PubMedCrossRefGoogle Scholar
  101. 101.
    Dewsbury CE, Graham P, Darley CR. Topical eicosapentaenoic acid (EPA) in the treatment of psoriasis [letter]. Br J Dermatol 1989; 120: 581PubMedCrossRefGoogle Scholar
  102. 102.
    Escobar SO, Achenbach R, Innantuono R, et al. Topical fish oil in psoriasis: a controlled and blind study. Clin Exp Dermatol 1992; 17: 159–62PubMedCrossRefGoogle Scholar
  103. 103.
    Tollesson A, Frithz A. Borage oil, an effective new treatment for infantile seborrhoeic dermatitis [letter]. Br J Dermatol 1993; 129: 95PubMedCrossRefGoogle Scholar
  104. 104.
    Tollesson A, Frithz A. Transepidermal water loss and water content in the stratum corneum in infantile seborrhoeic dermatitis. Acta Derm Venereol 1993; 73: 18–20PubMedGoogle Scholar
  105. 105.
    Mao-Qiang M, Brown BE, Wu-Pong S, et al. Exogenous nonphysiologic vs physiologic lipids: divergent mechanisms for correction of permeability barrier dysfunction. Arch Dermatol 1995; 131: 809–16PubMedCrossRefGoogle Scholar
  106. 106.
    Conti A, Rogers J, Verdejo P, et al. Seasonal influences on stratum corneum ceramide 1 and the influence of topical essential fatty acids. Int J Cosm Sci 1996; 18: 1–12CrossRefGoogle Scholar
  107. 107.
    Thornfeldt C. Critical and optimal molar ratios of key lipids. In: Lodén M, Maibach HI, editors. Dry skin and moisturizers: chemistry and function. Boca Raton: CRC Press, 2000: 337–47Google Scholar
  108. 108.
    Man MQ, Feingold KR, Elias PM. Exogenous lipids influence permeability barrier recovery in acetone-treated murine skin. Arch Dermatol 1993; 129: 728–38PubMedCrossRefGoogle Scholar
  109. 109.
    Miller CC, Tang W, Ziboh VA, et al. Dietary supplementation with ethyl ester concentrates of fish oil (n-3) and borage oil (n-6) polyunsaturated fatty acids induces epidermal generation of local putative anti-inflammatory metabolites. J Invest Dermatol 1991; 96: 98–103PubMedCrossRefGoogle Scholar
  110. 110.
    Orengo IF, Black HS, Wolf JE. Influence of fish oil supplementation on the minimal erythema dose in humans. Arch Dermatol Res 1992; 284: 219–21PubMedCrossRefGoogle Scholar
  111. 111.
    Danno K, Ikai K, Imamura S. Anti-inflammatory effects of eicosapentaenoic acid on experimental skin inflammation models. Arch Dermatol Res 1993; 285: 432–5PubMedCrossRefGoogle Scholar
  112. 112.
    Manku MS, Horrobin DF, Morse NL, et al. Essential fatty acids in the plasma phospholipids of patients with atopic eczema. Br J Dermatol 1984; 110: 643–8PubMedCrossRefGoogle Scholar
  113. 113.
    Tree S, Marks R. An explanation for the ´placebo´ effect of bland ointment bases. Br J Dermatol 1975; 92: 195–8PubMedCrossRefGoogle Scholar
  114. 114.
    De Groot AC, Nater JP, Lende R, et al. Adverse effects of cosmetics and toiletries: a retrospective study in the general population. Int J Dermatol Sci 1988; 9: 255–9Google Scholar
  115. 115.
    Rietschel RL, Fowler JF. Fisher´s contact dermatitis. 4th ed. Baltimore: Williams & Wilkins, 1995Google Scholar
  116. 116.
    Frosch PJ, Kligman AM. A method for appraising the stinging capacity of topically applied substances. J Soc Cosmet Chem 1977; 28: 197–209Google Scholar
  117. 117.
    Gabard B, Nook T, Muller KH. Tolerance of the lesioned skin to dermatological formulations. J Appl Cosmetol 1991; 9: 25–30Google Scholar
  118. 118.
    Larmi E, Lahti A, Hannuksela M. Immediate contact reactions to benzoic acid and the sodium salt of pyrrolidone carboxylic acid. Contact Dermatitis 1989; 20: 38–40PubMedCrossRefGoogle Scholar
  119. 119.
    Tsai TF, Maibach HI. How irritant is water?: An overview. Contact Dermatitis 1999; 41: 311–4PubMedGoogle Scholar
  120. 120.
    Tupker RA, Willis C, Berardesca E, et al. Guidelines on sodium lauryl sulfate (SLS) exposure tests: a report from the Standardization Group of the European Society of Contact Dermatitis. Contact Dermatitis 1997; 37: 53–69PubMedCrossRefGoogle Scholar
  121. 121.
    Aungst BJ. The influence of fatty acids and fatty alcohols on skin permeability. In: Lodén M, Maibach HI, editors. Dry skin and moisturizers: chemistry and function. Boca Raton: CRC Press, 2000: 299–325Google Scholar
  122. 122.
    Donbrow M, Azaz E, Pillersdorf A. Autooxidation of polysorbates. J Pharm Sci 1978; 67: 1676–81PubMedCrossRefGoogle Scholar
  123. 123.
    De Groot AC. Sensitizing substances. In: Lodén M, Maibach HI, editors. Dry skin and moisturizers: chemistry and function. Boca Raton: CRC Press, 2000: 403–11Google Scholar
  124. 124.
    Barany E, Lodén M. Content of fragrance mix ingredients and customer complaints of cosmetic products. Am J Contact Dermat 2000; 11: 74–9PubMedCrossRefGoogle Scholar
  125. 125.
    Jansson T, Lodén M. Strategy to decrease the risk of adverse effects of fragrance ingredients in cosmetic products. Am J Contact Dermat 2001; 12: 166–9PubMedCrossRefGoogle Scholar
  126. 126.
    Fan W, Kinnunen T, Niinimäke A, et al. Skin reactions to glycols used in dermatological and cosmetic vehicles. Am J Contact Dermat 1991; 2: 181–3Google Scholar
  127. 127.
    Funk JO, Maibach HI. Propylene glycol dermatitis: re-evaluation of an old problem. Contact Dermatitis 1994; 31: 236–41PubMedCrossRefGoogle Scholar
  128. 128.
    Toxicity profile: propylene glycol. Surrey, UK: TNO BIBRA International Ltd, 1996Google Scholar
  129. 129.
    Glover ML, Reed MD. Propylene glycol: the safe diluent that continues to cause harm. Pharmacotherapy 1996; 16: 690–3PubMedGoogle Scholar
  130. 130.
    LaKind JS, McKenna EA, Hubner RP, et al. A review of the comparative mammalian toxicity of ethylene glycol and propylene glycol. Crit Rev Toxicol 1999; 29: 331–65PubMedCrossRefGoogle Scholar
  131. 131.
    Mortensen B. Propylene glycol. Nord 1993; 29: 181–208Google Scholar
  132. 132.
    Drugs AAoP-Co. “Inactive” ingredients in pharmaceutical products: update (subject review). Pediatrics 1997; 99: 268–78CrossRefGoogle Scholar
  133. 133.
    Cawley EP, Peterson NT, Wheeler CE. Salicylic acid poisoning in dermatological therapy. JAMA 1953; 151: 372–3Google Scholar
  134. 134.
    Denda M, Koyama J, Namba R, et al. Stratum corneum lipid morphology and transepidermal water loss in normal skin and surfactant-induced scaly skin. Arch Dermatol Res 1994; 286: 41–6PubMedCrossRefGoogle Scholar
  135. 135.
    Imokawa G, Akasaki S, Minematsu Y, et al. Importance of intercellular lipids in water-retention properties of the stratum corneum: induction and recovery study of surfactant dry skin. Arch Dermatol Res 1989; 281: 45–51PubMedCrossRefGoogle Scholar
  136. 136.
    Horii I, Nakayama Y, Obata M, et al. Stratum corneum hydration and amino acid content in xerotic skin. Br J Dermatol 1989; 121: 587–92PubMedCrossRefGoogle Scholar
  137. 137.
    Watanabe M, Tagami H, Horii I, et al. Functional analyses of the superficial stratum corneum in atopic dermtitis. Arch Dermatol 1991; 127: 1689–92PubMedCrossRefGoogle Scholar
  138. 138.
    Denda M, Hori J, Koyama J, et al. Stratum corneum sphingolipids and free amino acids in experimentally-induced scaly skin. Arch Dermatol Res 1992; 284: 363–7PubMedCrossRefGoogle Scholar
  139. 139.
    Saint-Leger D, Francois AM, Leveque JL, et al. Stratum corneum lipids in skin xerosis. Dermatologica 1989; 178: 151–5PubMedCrossRefGoogle Scholar
  140. 140.
    Held E, Lund H, Agner T. Effect of different moisturizers on SLS-irritated human skin. Contact Dermatitis 2001; 44: 229–34PubMedCrossRefGoogle Scholar
  141. 141.
    Loden M. Barrier recovery and influence of irritant stimuli in skin treated with a moisturizing cream. Contact Dermatitis 1997; 36: 256–60PubMedCrossRefGoogle Scholar
  142. 142.
    Zettersten EM, Ghadially R, Feingold KR, et al. Optimal ratios of topical stratum corneum lipids improve barrier recovery in chronologically aged skin. J Am Acad Dermatol 1997; 37: 403–8PubMedCrossRefGoogle Scholar
  143. 143.
    De Paepe K, Derde M-P, Reseeuw D, et al. Incorporation of ceramide 3B in dermatocosmetic emulsions: effect of the transepidermal water loss of sodium lauryl sulphate-damaged skin. J Eur Acad Dermatol Venereol 2000; 14: 272–9PubMedCrossRefGoogle Scholar
  144. 144.
    Lodén M, Barany E. Skin-identical lipids versus petrolatum in the treatment of tape-stripped and detergent-perturbed human skin. Acta Derm Venereol 2000; 80: 412–5CrossRefGoogle Scholar
  145. 145.
    Halkier-Sorensen L, Thestrup-Pedersen K. The efficacy of a moisturizer (Locobase) among cleaners and kitchen assistants during everyday exposure to water and detergents. Contact Dermatitis 1993; 29: 266–71PubMedCrossRefGoogle Scholar
  146. 146.
    Serup J. A double-blind comparison of two creams containing urea as the active ingredient: assessment of efficacy and side-effects by non-invasive techniques and a clinical scoring scheme. Acta Derm Venereol 1992; 177: 34–43Google Scholar
  147. 147.
    Rogers RS, Callen J, Wehr R, et al. Comparative efficacy of 12% ammonium lactate lotion and 5% lactic acid lotion in the treatment of moderate to severe xerosis. J Am Acad Dermatol 1989; 21: 714–6PubMedCrossRefGoogle Scholar
  148. 148.
    Siskin SB, Quinlan PJ, Finkelstein MS, et al. The effect of ammonium lactate 12% lotion versus no therapy in the treatment of dry skin of the heels. Int J Dermatol 1983; 32: 905–7CrossRefGoogle Scholar
  149. 149.
    Dahl MV, Dahl AC. 12% lactate lotion for the treatment of xerosis. Arch Dermatol 1983; 119: 27–30PubMedCrossRefGoogle Scholar
  150. 150.
    Wehr RF, Kantor I, Jones EL, et al. A controlled comparative efficacy study of 5% ammonium lactate lotion versus an emollient control lotion in the treatment of moderate xerosis. J Am Acad Dermatol 1991; 25: 849–51PubMedCrossRefGoogle Scholar
  151. 151.
    Middleton JD, Roberts ME. Effect of a skin cream containing the sodium salt of pyrrolidone carboxylic acid on dry and flaky skin. J Soc Cosmet Chem 1978; 29: 201–5Google Scholar
  152. 152.
    Schölermann A, Banké-Bochita J, Bohnsack K, et al. Efficacy and safety of Eucerin 10% urea lotion in the treatment of symptoms of aged skin. J Dermatol Treatm 1998; 9: 175–9CrossRefGoogle Scholar
  153. 153.
    Frithz A. Investigation of Cortesal®, a hydrocortisone cream and its water-retaining cream base in the treatment of xerotic skin and dry eczemas. Curr Ther Res 1983; 33: 930–5Google Scholar
  154. 154.
    McNally NJ, Williams HC, Phillips DR, et al. Atopic eczema and domestic water hardness. Lancet 1998; 352: 527–31PubMedCrossRefGoogle Scholar
  155. 155.
    Williams REA, Gibson AG, Aitchinson TC, et al. Assessment of a contact-plate sampling technique and subsequent quantitative bacterial studies in atopic dermatitis. Br J Dermatol 1990; 123: 493–501PubMedCrossRefGoogle Scholar
  156. 156.
    Breuer K, Haussler S, Kapp A, et al. Staphylococcus aureus: colonizing features and influence of an antibacterial treatment in adults with atopic dermatitis. Br J Dermatol 2002; 147: 55–61PubMedCrossRefGoogle Scholar
  157. 157.
    Linde YW, Bengtsson A, Lodén M. ’Dry’ skin in atopic dermatitis: II. a surface profilometry study. Acta Derm Venereol 1989; 69: 315–9PubMedGoogle Scholar
  158. 158.
    Berardesca E, Fideli D, Borroni G, et al. In vivo hydration and water-retention capacity of stratum corneum in clinically uninvolved skin in atopic and psoriatic patients. Acta Derm Venereol 1990; 70: 400–4PubMedGoogle Scholar
  159. 159.
    Wellner K, Wohlrab W. Quantitative evaluation of urea in stratum corneum of human skin. Arch Dermatol Res 1993; 285: 239–40PubMedCrossRefGoogle Scholar
  160. 160.
    Forslind B, Werner-Linde Y, Lindberg M, et al. Elemental analysis mirrors epidermal differentiation. Acta Derm Venereol 1999; 79: 12–7PubMedCrossRefGoogle Scholar
  161. 161.
    Hara J, Higuchi K, Okamato R, et al. High-expression of sphingomyelin deacylase is an important determinant of ceramide deficiency leading to barrier disruption in atopic dermatititis. J Invest Dermatol 2000; 115: 406–13PubMedCrossRefGoogle Scholar
  162. 162.
    Murata Y, Ogata J, Higaki Y, et al. Abnormal expression of sphingomyelin acylase in atopic dermatitis: an etiologic factor for ceramide deficiency? J Invest Dermatol 1996; 106: 1242–9PubMedCrossRefGoogle Scholar
  163. 163.
    Imokawa G, Abe A, Jin K, et al. Decreased level of ceramides in stratum corneum of atopic dermatitis: an etiologic factor in atopic dry skin? J Invest Dermatol 1991; 96: 523–6PubMedCrossRefGoogle Scholar
  164. 164.
    Matsumoto M, Umemoto N, Sugiura H, et al. Difference in ceramide composition between “dry” and “normal” skin in patients with atopic dermatitis. Acta Derm Venereol 1999; 79: 246–7PubMedCrossRefGoogle Scholar
  165. 165.
    Melnik B, Hollmann J, Hofmann U, et al. Lipid composition of outer stratum corneum and nails in atopic and control subjects. Arch Dermatol Res 1990; 282: 549–51PubMedCrossRefGoogle Scholar
  166. 166.
    Di Nardo A, Wertz P, Giannetti A, et al. Ceramide and cholesterol composition of the skin of patients with atopic dermatitis. Acta Derm Venereol 1998; 78: 27–30PubMedCrossRefGoogle Scholar
  167. 167.
    Pilgram GS, Vissers DC, vander Meulen H, et al. Aberrant lipid organization in stratum corneum of patients with atopic dermatitis and lamellar ichthyosis. J Invest Dermatol 2001; 117: 710–7PubMedCrossRefGoogle Scholar
  168. 168.
    Matsumoto M, Sugiura H, Uehara M. Skin barrier function in patients with completely healed atopic dermatitis. J Dermatol Sci 2000; 23: 178PubMedCrossRefGoogle Scholar
  169. 169.
    Wright S, Burton JL. Oral evening-primrose-seed oil improves atopic eczema. Lancet 1982; II: 1120–2CrossRefGoogle Scholar
  170. 170.
    Hederos CA, Berg A. Epogam evening primrose oil treatment in atopic dermatitis and asthma. Arch Dis Child 1996; 75: 494–7PubMedCrossRefGoogle Scholar
  171. 171.
    Bamford JTM, Gibson RW, Renier CM. Atopic eczema unresponsive to evening primrose oil (linoleic and α-linolenic acids). J Am Acad Dermatol 1985; 13: 959–65PubMedCrossRefGoogle Scholar
  172. 172.
    Henz BM, Jablonska S, vande Kerkhof PCM, et al. Double-blind, multicentre analysis of the efficacy of borage oil in patients with atopic dermatitis. Br J Dermatol 1999; 140: 685–8PubMedCrossRefGoogle Scholar
  173. 173.
    Elias PM, Wood LC, Feingold KR. Epidermal pathogenesis of inflammatory dermatoses. Am J Contact Dermat 1999; 10: 119–26PubMedCrossRefGoogle Scholar
  174. 174.
    Vilaplana J, Coll J, Trullás C, et al. Clinical and non-invasive evaluation of 12% ammonium lactate emulsion for the treatment of dry skin in atopic and non-atopic subjects. Acta Derm Venereol (Stockh) 1992; 72: 28–33Google Scholar
  175. 175.
    Chamlin SL, Kao J, Frieden IJ, et al. Ceramide-dominant barrier repair lipids alleviate childhood atopic dermatitis: changes in barrier function provide a sensitive indicator of disease activity. J Am Acad Dermatol 2002; 47: 198–208PubMedCrossRefGoogle Scholar
  176. 176.
    Andersson A-C, Lindberg M, Lodén M. The effect of two urea-containing creams on dry, eczematous skin in atopic patients: I. expert, patient and instrumental evaluation. J Dermatol Treat 1999; 10: 165–9CrossRefGoogle Scholar
  177. 177.
    Lodén M, Andersson A-C, Lindberg M. Improvement in skin barrier function in patients with atopic dermatitis after treatment with a moisturizing cream (Canoderm®). Br J Dermatol 1999; 140: 264–7CrossRefGoogle Scholar
  178. 178.
    Hagströmer L, Nyrén M, Emtestam L. Do urea and sodium chloride together increase the efficacy of moisturizers for atopic dermatitis skin: a comparative, double-blind and randomised study. Skin Pharmacol Appl Skin Physiol 2001; 14: 27–33CrossRefGoogle Scholar
  179. 179.
    Baker H. Clinical dermatology. 4th ed. London: Baillière Tindall, 1998Google Scholar
  180. 180.
    Marstein S, Jellum E, Eldjarn L. The concentration of pyroglutamic acid (2-pyrrolidone-5-carboxylic acid) in normal and psoriatic epidermis, determined on a microgram scale by gas chromatography. Clin Chim Acta 1973; 43: 389–95CrossRefGoogle Scholar
  181. 181.
    Motta S, Sesana S, Ghidoni R, et al. Content of the different lipid classes in psoriatic scale. Arch Dermatol Res 1995; 287: 691–4PubMedCrossRefGoogle Scholar
  182. 182.
    Menon GK, Elias PM. Ultrastructural localization of calcium in psoriatic and normal human epidermis. Arch Dermatol 1991; 127: 57–63PubMedCrossRefGoogle Scholar
  183. 183.
    Hartop PJ, Allenby CF, Prottey C. Comparison of barrier function and lipids in psoriasis and essential fatty acid-deficient rats. Clin Exp Dermatol 1978; 3: 259–67PubMedCrossRefGoogle Scholar
  184. 184.
    Gupta AK, Ellis CN, Goldfarb MT, et al. The role of fish oil in psoriasis: a randomized, double blind, placebo-controlled study to evaluate the effect of fish oil and topical corticosteroid therapy in psoriasis. Int J Dermatol 1990; 29: 591–5PubMedCrossRefGoogle Scholar
  185. 185.
    Zepelin HHH-V, Mrowietz U, Färber L, et al. Highly purified omega-3-polyunsaturated fatty acids for topical treatment of psoriasis: results of a double-blind, placebo-controlled multicentre study. Br J Dermatol 1993; 129: 713–7CrossRefGoogle Scholar
  186. 186.
    Fry L, Almeyda J, McMinn RM. Effect of plastic occlusive dressings on psoriatic epidermis. Br J Dermatol 1970; 82: 458–62PubMedCrossRefGoogle Scholar
  187. 187.
    Hwang SM, Ahn SK, Menon GP, et al. Basis of occlusive therapy in psoriasis: correcting defects in permeability barrier and calcium gradient. Int J Dermatol 2001; 40: 223–31PubMedCrossRefGoogle Scholar
  188. 188.
    Halprin KM, Fukui K, Ohkawara A. Flurandrenolone (Cordran) tape and carbohydrate metabolizing enzymes: use in the epidermis of people with psoriasis. Arch Dermatol 1969; 100: 336–41PubMedCrossRefGoogle Scholar
  189. 189.
    Fisher LM, Maibach HI. Physical occlusion controlling epidermal mitosis. J Invest Dermatol 1972; 59: 106–8PubMedCrossRefGoogle Scholar
  190. 190.
    Singh S, Gopal J, Mishra RN, et al. Topical 0.05% betamethasone dipropionate: efficacy in psoriasis with once a day vs twice a day application. Br J Dermatol 1995; 133: 497–8PubMedCrossRefGoogle Scholar
  191. 191.
    Watsky KL, Frieije L, Lenevue M-C, et al. Water-in-oil emulsions as steroid-sparing adjunctive therapy in the treatment of psoriasis. Cutis 1992; 50: 383–6PubMedGoogle Scholar
  192. 192.
    Finlay AY. Emollients as adjuvant therapy for psoriasis. J Dermatol Treatm 1997; 8: S25–7CrossRefGoogle Scholar
  193. 193.
    Comaish JS, Greener JS. The inhibiting effect of soft paraffin on the Kobner response in psoriasis. Br J Dermatol 1976; 94: 195–200PubMedCrossRefGoogle Scholar
  194. 194.
    Swanbeck G. A new treatment of ichthyosis and other hyperkeratotic conditions. Acta Derm Venereol (Stockh) 1968; 48: 123–7Google Scholar
  195. 195.
    Hagemann I, Proksch E. Topical treatment by urea reduces epidermal hyperproliferation and induces differentiation in psoriasis. Acta Derm Venereol (Stockh) 1996; 76: 353–6Google Scholar
  196. 196.
    Wohlrab W, Schiemann S. Investigations on the mechanism of the activity of urea upon the epidermis [author’s transl]. Arch Dermatol Res 1976; 255: 23–30PubMedCrossRefGoogle Scholar
  197. 197.
    Sasaki Y, Tadaki T, Tagami H. The effects of a topical application of urea cream on the function of pathological stratum corneum. Acta Dermatol Kyoto 1989; 84: 581–6Google Scholar
  198. 198.
    Berardesca E, Vignoli GP, Distante F, et al. Effects of glycolic acid on psoriasis. Clin Exp Dermatol 1998; 23: 190–1PubMedCrossRefGoogle Scholar
  199. 199.
    Vahlquist A. Ichthyosis: an inborn dryness of the skin. In: Lodén M, Maibach HI, editor. Dry skin and moisturizers: chemistry and function. Boca Raton: CRC Press, 2000: 121–33Google Scholar
  200. 200.
    Sybert VP, Dale BA, Holbrook KA. Ichthyosis vulgaris: identification of a defect in filaggrin synthesis correlated with an absence of keratohyaline granules. J Invest Dermatol 1985; 84: 191–4PubMedCrossRefGoogle Scholar
  201. 201.
    Williams ML, Feingold KR, Grubauer G, et al. Ichthyosis induced by cholesterol-lowering drugs: implications for epidermal cholesterol homeostasis. Arch Dermatol 1987; 123: 1535–8PubMedCrossRefGoogle Scholar
  202. 202.
    Shapiro LJ, Weiss R, Buxman MM, et al. Enzymatic basis of typical x-linked ichthyosis. Lancet 1978; II: 756–7CrossRefGoogle Scholar
  203. 203.
    Zettersten E, Man MQ, Sato J, et al. Recessive x-linked ichthyosis: role of cholesterol-sulfate accumulation in the barrier abnormality. J Invest Dermatol 1998; 111: 784–90PubMedCrossRefGoogle Scholar
  204. 204.
    Ranasinghe AW, Wertz PW, Downing DT, et al. Lipid composition of cohesive and desquamated corneocytes from mouse ear skin. J Invest Dermatol 1986; 86: 187–90PubMedCrossRefGoogle Scholar
  205. 205.
    Van Scott EJ, Yu RJ. Control of keratinization with alpha-hydroxy acids and related compounds: I. topical treatment of ichthyotic disorders. Arch Dermatol 1974; 110: 586–90PubMedCrossRefGoogle Scholar
  206. 206.
    Van Scott EJ, Yu RJ. Hyperkeratinization, corneocyte cohesion, and alpha hydroxy acids. J Am Acad Dermatol 1984; 11: 867–79PubMedCrossRefGoogle Scholar
  207. 207.
    Yu RJ, Van Scott EJ. Alpha-hydroxy acids: science and therapeutic use. Cos Derm 1994, 1–6Google Scholar
  208. 208.
    Blair C. The action of a urea-lactic acid ointment in ichthyosis: with particular reference to the thickness of the horny layer. Br J Dermatol 1976; 94: 145–53PubMedCrossRefGoogle Scholar
  209. 209.
    Pope FM, Rees JK, Wells RS, et al. Out-patient treatment of ichthyosis: a double-blind trial of of ointments. Br J Dermatol 1972; 86: 291–6PubMedCrossRefGoogle Scholar
  210. 210.
    Lykkesfeldt G, Hoyer H. Topical cholesterol treatment of recessive X-linked ichthyosis. Lancet 1983; II: 1337–8CrossRefGoogle Scholar
  211. 211.
    Fredriksson T, Gip L. Urea creams in the treament of dry skin and hand dermatitis. Int J Dermatol 1975; 32: 442–4CrossRefGoogle Scholar
  212. 212.
    Kuster W, Bohnsack K, Rippke F, et al. Efficacy of urea therapy in children with ichthyosis: a multicenter randomized, placebo-controlled, double-blind, semilateral study. Dermatology 1998; 196: 217–22PubMedCrossRefGoogle Scholar
  213. 213.
    Redondo P, Bauza A. Topical N-acetylcysteine for lamellar ichthyosis [letter]. Lancet 1999; 354: 1880PubMedCrossRefGoogle Scholar
  214. 214.
    Gånemo A, Vahlquist A. Lamellar ichthyosis is markedly improved by a noval combination of emollients. Br J Dermatol 1997; 137: 1011–31CrossRefGoogle Scholar
  215. 215.
    Grice K, Sattar H, Baker H. Urea and retinoic acid in ichthyosis and their effect on transepidermal water loss and water holding capacity of stratum corneum. Acta Derm Venereol (Stockh) 1973; 54: 114–8Google Scholar

Copyright information

© Adis Data Information BV 2003

Authors and Affiliations

  1. 1.ACO Hud ABVäsby, StockholmSweden

Personalised recommendations