Is Acne an Infection of Blocked Pilosebaceous Follicles?

Implications for Antimicrobial Treatment

Abstract

A model is proposed which is based on the assumption that acne is due to infection of functionally blocked pilosebaceous follicles by propionibacteria. Noninflamed lesions, which are first visible during the adrenarche in acne-prone individuals, do not contain propionibacteria. Comedogenesis appears to be independent of bacterial infection and may be driven by high levels of bioactive interleukin-1α derived from ductal hyperkeratinocytes. The stimulus which triggers interleukin-1α production is unknown. Formalin killed Propionibacterium acnes failed to stimulate production of the cytokine by cultured human keratinocytes in vitro.

Inflamed lesions are thought to arise from microcomedones, but the initiating events are unknown. Evidence that propionibacteria are involved in the generation of inflammatory lesions is inconclusive. The cellular infiltrate is consistent with a type IV hypersensitivity response to one or more persistent lesional antigens, not necessarily bacterial. The potent adjuvant activity of P. acnes would up-regulate the immune response to any antigen which came into contact with the mononuclear cell infiltrate.

Antibiotics are widely used in the treatment of acne, and their effects in selecting a predominantly resistant commensal population are well recognized. Although they reduce numbers of propionibacteria on the skin, other modes of action may contribute to or explain their therapeutic efficacy. At a time when there is global concern that antibiotic resistance rates in common bacterial pathogens may threaten our future ability to control bacterial infections, practices which promote the spread of antibiotic-resistant bacteria must be fully justified. A thorough reappraisal of the role of propionibacteria in acne is overdue. It is likely that further experimental work is needed to confirm or refute that P. acnes is aptly named.

This is a preview of subscription content, log in to check access.

Fig. 1
Table I
Table II

References

  1. 1.

    Stewart M.E., Downing D.T., Cook J.S., et al. Sebaceous gland activity and serum dehydroepiandrosterone sulphate levels in boys and girls. Arch Dermatol 1992; 128: 1345–1348

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Yamamoto A., Ito M. Sebaceous gland activity and urinary androgen levels in children. J Dermatol Sci 1992; 4: 98–104

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Lavker R.M., Leyden J.J., McGinley K.J. The relationship between bacteria and the abnormal follicular keratinisation in acne vulgaris. J Invest Dermatol 1981; 77: 325–330

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Pierard G.E., Pierard-Franchimont C., Le T. Seborrhoea in acne-prone and acne-free patients. Dermatologica 1987; 175: 5–9

    PubMed  CAS  Google Scholar 

  5. 5.

    Guy R., Kealey T. Modelling the infundibulum in acne. Dermatology 1998; 196: 32–37

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Walters C.E., Ingham E., Eady E.A., et al. In vitro modulation of keratinocyte-derived interleukin-1α (IL-1α) and peripheral blood mononuclear cell-derived IL-ß release in response to cutaneous commensal microorganisms. Infect Immun 1995; 63: 1223–1228

    PubMed  CAS  Google Scholar 

  7. 7.

    Marples R.R., Williamson P. Effects of systemic demethylchlortetracycline on human cutaneous microflora. Appl Microbiol 1969; 18: 228–234

    PubMed  CAS  Google Scholar 

  8. 8.

    Miskin J.E., Farrell A.M., Cunliffe W.J., et al. Propionibacterium acnes, a resident of lipid-rich human skin, produces a 33 kDA extracellular lipase encoded by gehA. Microbiology 1997; 143: 1745–1755

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Fulton J.E., Noble N.L., Bradley S., et al. The glycerol ester hydrolase (EC 3.1.1.3) from Corynebacterium acnes: a serine lipase. Biochemistry 1974; 13: 2320–2327

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Puhvel S.M., Sakamoto M. A reevaluation of fatty acids as inflammatory agents in acne. J Invest Dermatol 1977; 68: 93–97

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Weeks J.G., McCarty L., Fulton J.E. The inability of a bacterial lipase inhibitor to control acne vulgaris. J Invest Dermatol 1977; 69: 236–243

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Leeming J.P., Holland K.T., Cunliffe W.J. The pathological and ecological significance of microorganisms colonising acne vulgaris comedones. J Med Microbiol 1985; 20: 11–16

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Pochi P.E., Strauss J.S., Downing D.T. Skin surface lipid composition, acne, pubertal development and urinary excretion of testosterone and 17-ketosteroids in children. J Invest Dermatol 1977; 69: 485–489

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Lucky A.W., Biro F.M., Huster G.A., et al. Acne vulgaris in early adolescent boys: correlations with pubertal maturation and age. Arch Dermatol 1991; 127: 210–216

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Lucky A.W., Biro F.M., Simbartl L.A., et al. Predictors of severity of acne vulgaris in young adolescent girls: results of a five-year longitudinal study. J Pediatr 1997; 130: 30–39

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Aldana O.L., Holland D.B., Cunliffe W.J. Precomedonal events in acne. J Invest Dermatol 1996; 104: 488

    Google Scholar 

  17. 17.

    Downing D.T., Stewart M.E., Wertz P.W., et al. Essential fatty acids and acne. J Am Acad Dermatol 1986; 14: 221–225

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Bomalaski J.S., Steiner M.R., Simon P.L., et al. IL-1 increases phospholipase A2 activating-protein, and release of linoleic acid from murine T helper cell line EL-4. J Immunol 1992; 148: 15–60

    Google Scholar 

  19. 19.

    Camacho M., Godessart N., Vila L. IL-1 increases the ability of human endothelial cells to transform linoleic acid into monohydroxy-isomers and their incorporation into lipid. Adv Exp Med Biol 1997; 400B: 647–654

    PubMed  CAS  Google Scholar 

  20. 20.

    Baldie G., Kaimakamis D., Rotondo D. Fatty acid modulation of cytokine release from human monocytic cells. Biochim Biophys Acta 1993; 1179: 125–133

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Stewart M.E. Sebaceous gland lipids. Semin Dermatol 1992; 11: 100–105

    PubMed  CAS  Google Scholar 

  22. 22.

    Kirschbaum J.D., Kligman A.M. The pathogenic role of Corynebacterium acnes in acne vulgaris. Arch Dermatol 1963; 88: 832–833

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    De Young L.M., Young J.M., Ballaron S.J., et al. Intradermal injection of Propionibacterium acnes: a model of inflammation relevant to acne. J Invest Dermatol 1984; 83: 394–398

    PubMed  Article  Google Scholar 

  24. 24.

    De Young L.M., Spires D.A., Ballaron S.J., et al. Acne-like chronic inflammatory activity of Propionibacterium acnes preparations in an animal model: correlation with ability to stimulate the reticuloendothelial system. J Invest Dermatol 1985; 85: 255–258

    PubMed  Article  Google Scholar 

  25. 25.

    Dalziel K., Dykes P.J., Marks R. Inflammation due to intra-cutaneous implantation of stratum corneum. Br J Exp Pathol 1984; 65: 107–115

    PubMed  CAS  Google Scholar 

  26. 26.

    Dalziel K., Dykes P.J., Marks R. The effect of tetracycline and erythromycin in a model of acne-type inflammation. Br J Exp Pathol 1987; 68: 67–70

    PubMed  CAS  Google Scholar 

  27. 27.

    Norris J.F.B., Cunliffe W.J. A histological and immunocytochemical study of early acne lesions. Br J Dermatol 1988; 118: 651–659

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Layton A.M., Morris C., Cunliffe W.J., et al. Immunohistochemical investigation of evolving inflammation in lesions of acne vulgaris. Exp Dermatol 1998; 7: 191–197

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Roszkowski W., Roszkowski K., Ko H.L., et al. Immunomodulation by propionibacteria. Zentralbl Bakteriol 1990; 274: 289–298

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Webster G.F., Leyden J.J., Musson R.A., et al. Susceptibility of Propionibacterium acnes to killing and degradation by human neutrophils and monocytes in vitro. Infect Immun 1985; 49: 116–121

    PubMed  CAS  Google Scholar 

  31. 31.

    Kersey P., Sussman M., Dahl M. Delayed skin test reactivity to Propionibacterium acnes correlates with severity of inflammation in acne vulgaris. Br J Dermatol 1980; 103: 651–655

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Ingham E. The immunology of Propionibacterium acnes and acne. Curr Opin Infect Dis 1999; 12: 191–197

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Leyden J.J., McGinley K.J., Mills O.H., et al. Age-related changes in the resident bacterial flora of the human face. J Invest Dermatol 1975; 65: 379–381

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Agache P., Blanc D., Barrand C., et al. Sebum levels during the first years of life. Br J Dermatol 1980; 103: 643–649

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Leyden J.J., McGinley K.J., Mills O.H., et al. Propionibacterium levels in patients with and without acne vulgaris. J Invest Dermatol 1975; 65: 382–384

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Pochi P.E., Strauss J.S., Downing D.T. Age-related changes in sebaceous gland activity. J Invest Dermatol 1979; 73: 108–111

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Puhvel S.M., Reisner R.M., Amirian D.A. Quantification of bacteria in isolated pilosebaceous follicles in normal skin. J Invest Dermatol 1975; 65: 525–531

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Leeming J.P., Holland K.T., Cunliffe W.J. The microbial colonisation of inflamed acne vulgaris lesions. Br J Dermatol 1988; 118: 203–208

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Bojar R.A., Cunliffe W.J., Holland K.T. The short-term treatment of acne vulgaris with benzoyl peroxide: effects on the surface and follicular cutaneous microflora. Br J Dermatol 1995; 132: 204–208

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Eady E.A., Cove J.H., Holland K.T., et al. Superior anti-bacterial action and reduced incidence of bacterial resistance in minocycline compared to tetracyclinetreated acne patients. Br J Dermatol 1990; 122: 233–244

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Cove J.H., Cunliffe W.J., Holland K.T. Acne vulgaris: is the bacterial population size significant? Br J Dermatol 1980; 102: 277–280

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Garner S.E., Eady E.A., Popescu C., et al. Minocycline for acne vulgaris: efficacy and safety. Cochrane Database Syst Rev 2000; 2: CD002086

    PubMed  Google Scholar 

  43. 43.

    Pulverer G., Ko H.L., Beuth J., et al. Tetracycline and 13-cis retinoic acid inhibit production and activity of granulocyte activating factor (GAF) from Propionibacterium acnes. Zentralbl Bakteriol 1990; 273: 362–368

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    van Vlem B., Vanholder R., de Paepe P., et al. Immunomodulating effects of antibiotics: literature review. Infection 1996; 24: 275–291

    PubMed  Article  Google Scholar 

  45. 45.

    Humbert P., Treffel P., Chapuis J.F., et al. The tetracyclines in dermatology. J Am Acad Dermatol 1991; 25: 691–697

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Labro M.T. Anti-inflammatory activity of macrolides: a new therapeutic potential? J Antimicrob Chemother 1998; 41 Suppl. B: 37–46

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Webster G.F., Toso S.M., Hegemann L. Inhibition of a model of granuloma formation by tetracyclines and ciprofloxacin. Arch Dermatol 1994; 130: 748–752

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Plewig G., Schöpf E. Anti-inflammatory effects of antimicrobial agents: an in vivo study. J Invest Dermatol 1975; 65: 532–536

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Miyachi Y., Yoshioka A., Imamura S., et al. Effect of antibiotics on the generation of reactive oxygen species. J Invest Dermatol 1986; 86: 449–453

    PubMed  Article  CAS  Google Scholar 

  50. 50.

    Golub L.M., Lee H.M., Ryan M.E., et al. Tetracyclines inhibit connective tissue breakdown by multiple non-antimicrobial mechanisms. Adv Dent Res 1998; 12: 12–26

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    Meneguzzi G., Partouche O., Ortonne J.P. Effect of minocycline on proliferation and differentiation of cultured normal human keratinocytes [abstract]. J Invest Dermatol 1997; 108: 377

    Google Scholar 

  52. 52.

    Saint-Marie I., Tenaud I., Jumbou O., et al. Minocycline modulation of alpha-MSH production by keratinocytes in vitro. Arch Dermatol Venereol 1999; 79: 265–267

    Article  Google Scholar 

  53. 53.

    Eady E.A., Cove J.H., Holland K.T., et al. Erythromycin resistant propionibacteria in antibiotic-treated acne patients: association with therapeutic failure. Br J Dermatol 1989; 121: 51–57

    PubMed  Article  CAS  Google Scholar 

  54. 54.

    Leyden J.J., McGinley K.J., Cavalieri S., et al. Propionibacterium acnes resistance to antibiotics in acne patients. J Am Acad Dermatol 1983; 8: 41–45

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Bojar R.A., Eady E.A., Jones C.E., et al. Inhibition of erythromycin-resistant propionibacteria on the skin of acne patients by topical erythromycin with and without zinc. Br J Dermatol 1994; 130: 329–336

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Eady E.A., Bojar R.A., Jones C.E., et al. The effects of acne treatment with a combination of benzoyl peroxide and erythromycin on skin carriage of erythromycin-resistant propionibacteria. Br J Dermatol 1996; 134: 107–113

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Verschoore M., Poncet M., Krebs B., et al. Circadian variations in the number of actively secreting sebaceous follicles and androgen circadian rhythms. Chronobiol Int 1993; 10: 349–359

    PubMed  Article  CAS  Google Scholar 

  58. 58.

    McGinley K.J., Webster G.F., Ruggieri M.R., et al. Regional variations in density of cutaneous propionibacteria: correlation of Propionibacterium acnes populations with sebaceous secretion. J Clin Microbiol 1980; 12: 672–675

    PubMed  CAS  Google Scholar 

  59. 59.

    Cove J.H., Holland K.T., Cunliffe W.J. An analysis of sebum excretion rate, bacterial population and the production rate of free fatty acids on human skin. Br J Dermatol 1980; 103: 383–386

    PubMed  Article  CAS  Google Scholar 

  60. 60.

    Kearney J.N., Ingham E., Cunliffe W.J., et al. Correlations between human skin bacteria and skin lipids. Br J Dermatol 1984; 110: 593–599

    PubMed  Article  CAS  Google Scholar 

  61. 61.

    Stewart M.E., Downing D.T. Measurement of sebum secretion rates in young children. J Invest Dermatol 1985; 84: 59–61

    PubMed  Article  CAS  Google Scholar 

  62. 62.

    Green S.C., Stewart M.E., Downing D.T. Variations in sebum fatty acid composition among adult humans. J Invest Dermatol 1984; 83: 114–117

    PubMed  Article  CAS  Google Scholar 

  63. 63.

    Williams M., Cunliffe W.J. Explanation for pre-menstrual acne. Lancet 1973; 2 (7837): 1055–1057

    PubMed  Article  CAS  Google Scholar 

  64. 64.

    Gardner K.J., Cunliffe W.J., Eady E.A., et al. Variation in comedonal antibiotic concentrations following application of topical tetracycline for acne vulgaris. Br J Dermatol 1994; 131: 649–654

    PubMed  Article  CAS  Google Scholar 

  65. 65.

    Guin J.D., Lummis W.L. Comedonal levels of free clindamycin following topical treatment with a 1% solution of clindamycin phosphate. J Am Acad Dermatol 1982; 7: 265–268

    PubMed  Article  CAS  Google Scholar 

  66. 66.

    Standing Medical Advisory Committee The path of least resistance: main report. London: Department of Health, 1998

    Google Scholar 

Download references

Acknowledgements

We would like to thank all those colleagues in the Skin Research Centre at Leeds who have contributed so many key studies to the literature on Propionibacterium acnes and with whom we have had many stimulating discussions about why people get spots.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dr E. Anne Eady.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Eady, E.A., Cove, J.H. Is Acne an Infection of Blocked Pilosebaceous Follicles?. Am J Clin Dermatol 1, 201–209 (2000). https://doi.org/10.2165/00128071-200001040-00001

Download citation

Keywords

  • Acne
  • Minocycline
  • DHEAS
  • Benzoyl Peroxide
  • Lesion Formation