Skip to main content
Log in

Proteasome Inhibitors in the Clinical Setting

Benefits and Strategies to Overcome Multiple Myeloma Resistance to Proteasome Inhibitors

  • Review Article
  • Published:
Drugs in R & D Aims and scope Submit manuscript

Abstract

The majority of intracellular proteins undergo degradation through the ubiquitin-proteasome pathway. The proteasome pathway has a role in regulating cell proliferation, differentiation, survival and apoptosis. The naturally occurring proteasome inhibitor lactacystin was the first proteasome inhibitor noted to induce apoptosis in vitro. Compared with first-generation proteasome inhibitors, bortezomib (PS-341), a dipeptide boronic acid, has exhibited higher potency and specificity, and has been approved for the treatment of relapsed or refractory myeloma. However, there are some patients who do not respond to therapy or who respond briefly and then relapse. It is becoming increasingly clear that myeloma cells respond to the stress caused by proteasome inhibitors (bortezomib) via rapidly up-regulating pathways that suppress apoptosis, thus attenuating its antitumour activity. The delineation of these molecular pathways and mechanisms to circumvent them are needed to allow this important class of agents to remain vital in the armamentarium of the management of multiple myeloma and other malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Orlowski RZ. The role of the ubiquitin-proteasome pathway in apoptosis. Cell Death Differ 1999; 6: 303–13

    Article  PubMed  CAS  Google Scholar 

  2. Baumeister W, Walz J, Zuhl F, et al. The proteasome: paradigm of a self-compartmentalizing protease. Cell 1998; 92: 367–80

    Article  PubMed  CAS  Google Scholar 

  3. Kisselev AF, Goldberg AL. Proteasome inhibitors: from research tools to drug candidates. Chem Biol 2001; 8: 739–58

    Article  PubMed  CAS  Google Scholar 

  4. Hershko A. Roles of ubiquitin-mediated proteolysis in cell cycle control. Curr Opin Cell Biol 1997; 9: 788–99

    Article  PubMed  CAS  Google Scholar 

  5. Imajoh-Ohmi S, Kawaguchi T, Sugiyama S, et al. Lactacystin, a specific inhibitor of the proteasome, induces apoptosis in human monoblast U937 cells. Biochem Biophys Res Commun 1995; 217: 1070–7

    Article  PubMed  CAS  Google Scholar 

  6. Voorhees PM, Dees EC, O’Neil B, et al. The proteasome as a target for cancer therapy. Clin Cancer Res 2003; 9: 6316–25

    PubMed  CAS  Google Scholar 

  7. Fujita E, Mukasa T, Tsukahara T, et al. Enhancement of CPP32-like activity in the TNF-treated U937 cells by the proteasome inhibitors. Biochem Biophys Res Commun 1996; 224: 74–9

    Article  PubMed  CAS  Google Scholar 

  8. Adams J, Palombella VJ, Sausville EA, et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 1999; 59: 2615–22

    PubMed  CAS  Google Scholar 

  9. Hideshima T, Richardson P, Chauhan D, et al. The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res 2001; 61: 3071–6

    PubMed  CAS  Google Scholar 

  10. Hideshima T, Mitsiades C, Akiyama M, et al. Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341. Blood 2003; 101: 1530–4

    Article  PubMed  CAS  Google Scholar 

  11. Pekol T, Daniels JS, Labutti J, et al. Human metabolism of the proteasome inhibitor bortezomib: identification of circulating metabolites. Drug Metab Dispos 2005; 33: 771–7

    Article  PubMed  CAS  Google Scholar 

  12. Mitsiades N, Mitsiades CS, Poulaki V, et al. Biologic sequelae of nuclear factor-kappaB blockade in multiple myeloma: therapeutic applications. Blood 2002; 99: 4079–86

    Article  PubMed  CAS  Google Scholar 

  13. Hideshima T, Chauhan D, Richardson P, et al. NF-kappa B as a therapeutic target in multiple myeloma. J Biol Chem 2002; 277: 16639–47

    Article  PubMed  CAS  Google Scholar 

  14. Pomerantz JL, Baltimore D. Two pathways to NF-kappaB. Mol Cell 2002; 10: 693–5

    Article  PubMed  CAS  Google Scholar 

  15. Kurland JF, Meyn RE. Protease inhibitors restore radiation-induced apoptosis to Bcl-2-expressing lymphoma cells. Int J Cancer 2001; 96: 327–33

    Article  PubMed  CAS  Google Scholar 

  16. Masdehors P, Merle-Beral H, Maloum K, et al. Deregulation of the ubiquitin system and p53 proteolysis modify the apoptotic response in B-CLL lymphocytes. Blood 2000; 96: 269–74

    PubMed  CAS  Google Scholar 

  17. Masdehors P, Merle-Beral H, Magdelenat H, et al. Ubiquitin-proteasome system and increased sensitivity of B-CLL lymphocytes to apoptotic death activation. Leuk Lymphoma 2000; 38: 499–504

    Article  PubMed  CAS  Google Scholar 

  18. Salvat C, Aquaviva C, Jariel-Encontre I, et al. Are there multiple proteolytic pathways contributing to c-Fos, c-Jun and p53 protein degradation in vivo? Mol Biol Rep 1999; 26: 45–51

    Article  PubMed  CAS  Google Scholar 

  19. Li B, Dou QP. Bax degradation by the ubiquitin/proteasome-dependent pathway: involvement in tumor survival and progression. Proc Natl Acad Sci U S A 2000; 97: 3850–5

    Article  PubMed  CAS  Google Scholar 

  20. Kudo Y, Takata T, Ogawa I, et al. p27Kip1 accumulation by inhibition of proteasome function induces apoptosis in oral squamous cell carcinoma cells. Clin Cancer Res 2000; 6: 916–23

    PubMed  CAS  Google Scholar 

  21. Drexler HC. Activation of the cell death program by inhibition of proteasome function. Proc Natl Acad Sci U S A 1997; 94: 855–60

    Article  PubMed  CAS  Google Scholar 

  22. Kitagawa H, Tani E, Ikemoto H, et al. Proteasome inhibitors induce mitochondria-independent apoptosis in human glioma cells. FEBS Lett 1999; 443: 181–6

    Article  PubMed  CAS  Google Scholar 

  23. Nawrocki ST, Carew JS, Dunner Jr K, et al. Bortezomib inhibits PKR-like endoplasmic reticulum (ER) kinase and induces apoptosis via ER stress in human pancreatic cancer cells. Cancer Res 2005; 65: 11510–9

    Article  PubMed  CAS  Google Scholar 

  24. Obeng EA, Carlson LM, Gutman DM, et al. Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood 2006 Jun 15; 107 (12): 4907–16

    Article  PubMed  CAS  Google Scholar 

  25. Nawrocki ST, Carew JS, Pino MS, et al. Bortezomib sensitizes pancreatic cancer cells to endoplasmic reticulum stress-mediated apoptosis. Cancer Res 2005; 65: 11658–66

    Article  PubMed  CAS  Google Scholar 

  26. Fribley A, Zeng Q, Wang CY. Proteasome inhibitor PS-341 induces apoptosis through induction of endoplasmic reticulum stress-reactive oxygen species in head and neck squamous cell carcinoma cells. Mol Cell Biol 2004; 24: 9695–704

    Article  PubMed  CAS  Google Scholar 

  27. LeBlanc R, Catley LP, Hideshima T, et al. Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model. Cancer Res 2002; 62: 4996–5000

    PubMed  CAS  Google Scholar 

  28. Cusack Jr JC, Liu R, Houston M, et al. Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic nuclear factor-kappaB inhibition. Cancer Res 2001; 61: 3535–40

    PubMed  CAS  Google Scholar 

  29. Bold RJ, Virudachalam S, McConkey DJ. Chemosensitization of pancreatic cancer by inhibition of the 26S proteasome. J Surg Res 2001; 100: 11–7

    Article  PubMed  CAS  Google Scholar 

  30. Shah SA, Potter MW, McDade TP, et al. 26S proteasome inhibition induces apoptosis and limits growth of human pancreatic cancer. J Cell Biochem 2001; 82: 110–22

    Article  PubMed  CAS  Google Scholar 

  31. Orlowski RZ, Stinchcombe TE, Mitchell BS, et al. Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. J Clin Oncol 2002; 20: 4420–7

    Article  PubMed  CAS  Google Scholar 

  32. Richardson PG, Barlogie B, Berenson J, et al. A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 2003; 348: 2609–17

    Article  PubMed  CAS  Google Scholar 

  33. Richardson PG, Sonneveld P, Schuster MW, et al. and the Assessment of Proteasome Inhibition for Extending Remissions (APEX) Investigators. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 2005; 352: 2487–98

    Article  PubMed  CAS  Google Scholar 

  34. Blade J, Samson D, Reece D, et al. Criteria for evaluating disease response and progression in patients with multiple myeloma treated by high-dose therapy and haemopoietic stem cell transplantation. Myeloma Subcommittee of the EBMT. European Group for Blood and Marrow Transplant. Br J Haematol 1998; 102: 1115–23

    Article  PubMed  CAS  Google Scholar 

  35. Jagannath S, Barlogie B, Berenson JR, et al. Bortezomib in recurrent and/or refractory multiple myeloma: initial clinical experience in patients with impaired renal function. Cancer 2005; 103: 1195–200

    Article  PubMed  CAS  Google Scholar 

  36. Goel A, Dispenzieri A, Greipp PR, et al. PS-341-mediated selective targeting of multiple myeloma cells by synergistic increase in ionizing radiation-induced apoptosis. Exp Hematol 2005; 33: 784–95

    Article  PubMed  CAS  Google Scholar 

  37. Oakervee HE, Popat R, Curry N, et al. PAD combination therapy (PS-341/bortezomib, doxorubicin and dexamethasone) for previously untreated patients with multiple myeloma. Br J Haematol 2005; 129: 755–62

    Article  PubMed  CAS  Google Scholar 

  38. Kawazoe Y, Nakai A, Tanabe M, et al. Proteasome inhibition leads to the activation of all members of the heat-shock-factor family. Eur J Biochem 1998; 255: 356–62

    Article  PubMed  CAS  Google Scholar 

  39. Mitsiades N, Mitsiades CS, Poulaki V, et al. Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci U S A 2002; 99: 14374–9

    Article  PubMed  CAS  Google Scholar 

  40. Parcellier A, Gurbuxani S, Schmitt E, et al. Heat shock proteins, cellular chaperones that modulate mitochondrial cell death pathways. Biochem Biophys Res Commun 2003; 304: 505–12

    Article  PubMed  CAS  Google Scholar 

  41. Beere HM. “The stress of dying ”: the role of heat shock proteins in the regulation of apoptosis. J Cell Sci 2004; 117: 2641–51

    Article  PubMed  CAS  Google Scholar 

  42. Igney FH, Krammer PH. Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer 2002; 2: 277–88

    Article  PubMed  CAS  Google Scholar 

  43. Martinou JC, Green DR. Breaking the mitochondrial barrier. Nat Rev Mol Cell Biol 2001; 2: 63–7

    Article  PubMed  CAS  Google Scholar 

  44. Zamzami N, Kroemer G. The mitochondrion in apoptosis: how Pandora’s box opens. Nat Rev Mol Cell Biol 2001; 2: 67–71

    Article  PubMed  CAS  Google Scholar 

  45. Nencioni A, Garuti A, Schwarzenberg K, et al. Proteasome inhibitor-induced apoptosis in human monocyte-derived dendritic cells. Eur J Immunol 2006 Mar; 36 (3): 681–9

    Article  PubMed  CAS  Google Scholar 

  46. Steel R, Doherty JP, Buzzard K, et al. Hsp72 inhibits apoptosis upstream of the mitochondria and not through interactions with Apaf-1. J Biol Chem 2004; 279: 51490–9

    Article  PubMed  CAS  Google Scholar 

  47. Mosser DD, Caron AW, Bourget L, et al. The chaperone function of hsp70 is required for protection against stress-induced apoptosis. Mol Cell Biol 2000; 20: 7146–59

    Article  PubMed  CAS  Google Scholar 

  48. Gotoh T, Terada K, Oyadomari S, et al. Hsp70-DnaJ chaperone pair prevents nitric oxide- and CHOP-induced apoptosis by inhibiting translocation of Bax to mitochondria. Cell Death Differ 2004; 11: 390–402

    Article  PubMed  CAS  Google Scholar 

  49. Ravagnan L, Gurbuxani S, Susin SA, et al. Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat Cell Biol 2001; 3: 839–43

    Article  PubMed  CAS  Google Scholar 

  50. Gurbuxani S, Schmitt E, Cande C, et al. Heat shock protein 70 binding inhibits the nuclear import of apoptosis-inducing factor. Oncogene 2003; 22: 6669–78

    Article  PubMed  CAS  Google Scholar 

  51. Gabai VL, Mabuchi K, Mosser DD, et al. Hsp72 and stress kinase c-jun N-terminal kinase regulate the bid-dependent pathway in tumor necrosis factor-induced apoptosis. Mol Cell Biol 2002; 22: 3415–24

    Article  PubMed  CAS  Google Scholar 

  52. Paul C, Manero F, Gonin S, et al. Hsp27 as a negative regulator of cytochrome c release. Mol Cell Biol 2002; 22: 816–34

    Article  PubMed  CAS  Google Scholar 

  53. Chen G, Cao P, Goeddel DV. TNF-induced recruitment and activation of the IKK complex require Cdc37 and Hsp90. Mol Cell 2002; 9: 401–10

    Article  PubMed  CAS  Google Scholar 

  54. Chen G, Goeddel DV. TNF-R1 signaling: a beautiful pathway. Science 2002; 296: 1634–5

    Article  PubMed  CAS  Google Scholar 

  55. Lewis J, Devin A, Miller A, et al. Disruption of Hsp90 function results in degradation of the death domain kinase, receptor-interacting protein (RIP), and blockage of tumor necrosis factor-induced nuclear factor-kappa B activation. J Biol Chem 2000; 275: 10519–26

    Article  PubMed  CAS  Google Scholar 

  56. Parcellier A, Schmitt E, Gurbuxani S, et al. HSP27 is a ubiquitin-binding protein involved in I-{kappa}B{alpha} proteasomal degradation. Mol Cell Biol 2003; 23: 5790–802

    Article  PubMed  CAS  Google Scholar 

  57. Yang X, Khosravi-Far R, Chang HY, et al. Daxx, a novel Fas-binding protein that activates JNK and apoptosis. Cell 1997; 89: 1067–76

    Article  PubMed  CAS  Google Scholar 

  58. Park HS, Cho SG, Kim CK, et al. Heat shock protein Hsp72 is a negative regulator of apoptosis signal-regulating kinase 1. Mol Cell Biol 2002; 22: 7721–30

    Article  PubMed  CAS  Google Scholar 

  59. Chang HY, Nishitoh H, Yang X, et al. Activation of apoptosis signal-regulating kinase 1(ASK1) by the adapter protein daxx. Science 1998; 281: 1860–3

    Article  PubMed  CAS  Google Scholar 

  60. Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell 2000; 103: 239–52

    Article  PubMed  CAS  Google Scholar 

  61. Park HS, Lee JS, Huh SH, et al. Hsp72 functions as a natural inhibitory protein of c-Jun N-terminal kinase. EMBO J 2001; 20: 446–56

    Article  PubMed  CAS  Google Scholar 

  62. Yang JY, Michod D, Walicki J, et al. Surviving the kiss of death. Biochem Pharmacol 2004; 68: 1027–31

    Article  PubMed  CAS  Google Scholar 

  63. Dougherty MK, Morrison DK. Unlocking the code of 14-3-3. J Cell Sci 2004; 117: 1875–84

    Article  PubMed  CAS  Google Scholar 

  64. Zha J, Harada H, Yang E, et al. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell 1996; 87: 619–28

    Article  PubMed  CAS  Google Scholar 

  65. Peso LD, Gonzalez-Garcia M, Page C, et al. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 1997; 278: 687–9

    Article  PubMed  Google Scholar 

  66. Kane LP, Shapiro VS, Stokoe D, et al. Induction of NF-kappaB by the Akt/PKB kinase. Curr Biol 1999; 9: 601–4

    Article  PubMed  CAS  Google Scholar 

  67. Chu ZL, McKinsey TA, Liu L, et al. Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis c-IAP2 is under NF-kappa B control. Proc Natl Acad Sci U S A 1997; 94: 10057–62

    Article  PubMed  CAS  Google Scholar 

  68. You M, Ku PT, Hrdlickova R, et al. ch-IAP1, a member of the inhibitor-of-apoptosis protein family, is a mediator of the antiapoptotic activity of the v-Rel oncoprotein. Mol Cell Biol 1997; 17: 7328–41

    PubMed  CAS  Google Scholar 

  69. Zong WX, Edelstein LC, Chen C, et al. The prosurvival Bcl-2 homolog Bfl-1/A1 is a direct transcriptional target of NF-kappa B that blocks TNFalpha -induced apoptosis. Genes Dev 1999; 13: 382–7

    Article  PubMed  CAS  Google Scholar 

  70. Heinrich PC, Behrmann I, Haan S, et al. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 2003; 374: 1–20

    Article  PubMed  CAS  Google Scholar 

  71. Chauhan D, Pandey P, Hideshima T, et al. SHP2 mediates the protective effect of interleukin-6 against dexamethasone-induced apoptosis in multiple myeloma cells. J Biol Chem 2000; 275: 27845–50

    PubMed  CAS  Google Scholar 

  72. Tassone P, Galea E, Forciniti S, et al. The IL-6 receptor super-antagonist Sant7 enhances antiproliferative and apoptotic effects induced by dexamethasone and zoledronic acid on multi- ple myeloma cells. Int J Oncol 2002; 21: 867–73

    PubMed  CAS  Google Scholar 

  73. Thomas PJ, Qu BH, Pedersen PL. Defective protein folding as a basis of human disease. Trends Biochem Sci 1995; 20: 456–9

    Article  PubMed  CAS  Google Scholar 

  74. Hideshima T, Bradner JE, Wong J, et al. Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proc Natl Acad Sci USA 2005; 102: 8567–72

    Article  PubMed  CAS  Google Scholar 

  75. Bardag-Gorce F, Riley NE, Nan L, et al. The proteasome inhibitor, PS-341, causes cytokeratin aggresome formation. Exp Mol Pathol 2004; 76: 9–16

    Article  PubMed  CAS  Google Scholar 

  76. French BA, van Leeuwen F, Riley NE, et al. Aggresome formation in liver cells in response to different toxic mechanisms: role of the ubiquitin-proteasome pathway and the frameshift mutant of ubiquitin. Exp Mol Pathol 2001; 71: 241–6

    Article  PubMed  CAS  Google Scholar 

  77. Nawrocki ST, Carew JS, Pino MS, et al. Aggresome disruption: a novel strategy to enhance bortezomib-induced apoptosis in pancreatic cancer cells. Cancer Res 2006; 66: 3773–81

    Article  PubMed  CAS  Google Scholar 

  78. Orlowski RZ. The ubiquitin proteasome pathway from bench to bedside. Hematology Am Soc Hematol Educ Program 2005, 220–5

    Google Scholar 

  79. Chauhan D, Li G, Shringarpure R, et al. Blockade of hsp27 overcomes bortezomib/proteasome inhibitor PS-341 resistance in lymphoma cells. Cancer Res 2003; 63: 6174–7

    PubMed  CAS  Google Scholar 

  80. Hideshima T, Podar K, Chauhan D, et al. p38 MAPK inhibition enhances PS-341 (bortezomib)-induced cytotoxicity against multiple myeloma cells. Oncogene 2004; 23: 8766–76

    Article  PubMed  CAS  Google Scholar 

  81. Mimnaugh EG, Xu W, Vos M, et al. Simultaneous inhibition of hsp 90 and the proteasome promotes protein ubiquitination, causes endoplasmic reticulum-derived cytosolic vacuolization, and enhances antitumor activity. Mol Cancer Ther 2004; 3: 551–66

    PubMed  CAS  Google Scholar 

  82. Zaarur N, Gabai VL, Porco Jr JA, et al. Targeting heat shock response to sensitize cancer cells to proteasome and Hsp90 inhibitors. Cancer Res 2006; 66: 1783–91

    Article  PubMed  CAS  Google Scholar 

  83. Robertson JD, Datta K, Biswal SS, et al. Heat-shock protein 70 antisense oligomers enhance proteasome inhibitor-induced apoptosis. Biochem J 1999; 344 Pt 2: 477–85

    Article  PubMed  CAS  Google Scholar 

  84. Chanan-Khan A, Alsina M, Carroll M, et al. Dose escalating trial of 17-AAG with bortezomib (BZ) in patients with relapsed refractory multiple myeloma (MM) [abstract]. Proc Amr Soc Clin Oncol 2005; 24: 605s

    Google Scholar 

  85. Navas TA, Nguyen AN, Hideshima T, et al. Inhibition of p38alpha MAPK enhances proteasome inhibitor-induced apoptosis of myeloma cells by modulating Hsp27, Bcl-X(L), Mcl-1 and p53 levels in vitro and inhibits tumor growth in vivo. Leukemia 2006; 20: 1017–27

    Article  PubMed  CAS  Google Scholar 

  86. Denlinger CE, Keller MD, Mayo MW, et al. Combined proteasome and histone deacetylase inhibition in non-small cell lung cancer. J Thorac Cardiovasc Surg 2004; 127: 1078–86

    Article  PubMed  CAS  Google Scholar 

  87. Catley L, Tai YT, Chauhan D, et al. Perspectives for combination therapy to overcome drug-resistant multiple myeloma. Drug Resist Updat 2005; 8: 205–18

    Article  PubMed  CAS  Google Scholar 

  88. Pei XY, Dai Y, Grant S. Synergistic induction of oxidative injury and apoptosis in human multiple myeloma cells by the proteasome inhibitor bortezomib and histone deacetylase inhibitors. Clin Cancer Res 2004; 10: 3839–52

    Article  PubMed  CAS  Google Scholar 

  89. Dai Y, Rahmani M, Dent P, et al. Blockade of histone deacetylase inhibitor-induced RelA/p65 acetylation and NF-kappaB activation potentiates apoptosis in leukemia cells through a process mediated by oxidative damage, XIAP downregulation, and c-Jun N-terminal kinase 1 activation. Mol Cell Biol 2005; 25: 5429–44

    Article  PubMed  CAS  Google Scholar 

  90. Mitsiades N, Mitsiades CS, Richardson PG, et al. Molecular sequelae of histone deacetylase inhibition in human malignant B cells. Blood 2003; 101: 4055–62

    Article  PubMed  CAS  Google Scholar 

  91. Macherla VR, Mitchell SS, Manam RR, et al. Structure-activity relationship studies of salinosporamide A (NPI-0052), a novel marine derived proteasome inhibitor. J Med Chem 2005; 48: 3684–7

    Article  PubMed  CAS  Google Scholar 

  92. Chauhan D, Catley L, Li G, et al. A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from bortezomib. Cancer Cell 2005; 8: 407–19

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the Myeloma Foundation of America and the Pastore Foundation. Mohamad A. Hussein has received a research grant from Millennium Pharmaceuticals, Inc. The other authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad A. Hussein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheriyath, V., Jacobs, B.S. & Hussein, M.A. Proteasome Inhibitors in the Clinical Setting. Drugs R D 8, 1–12 (2007). https://doi.org/10.2165/00126839-200708010-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00126839-200708010-00001

Keywords

Navigation