Skip to main content
Log in

Effects of Levocarnitine on Mitochondrial Antioxidant Systems and Oxidative Stress in Aged Rats

  • Original Research Article
  • Published:
Drugs in R & D Aims and scope Submit manuscript

Abstract

Objective: Levocarnitine is important in β-oxidation of fatty acids. We evaluated the role of levocarnitine in the skeletal muscle mitochondrial antioxidant system of aged rats.

Methods: Male albino Wistar rats were used in this study. The animals were divided into two groups: young rats (group I) and aged rats (group II). These rats were further subdivided into three groups: one control group (groups Ia and IIa) and two experimental groups (groups Ib, IIb and Ic, IIc) for supplementation with levocarnitine for 14 and 21 days, respectively. After the experimental period, the animals were killed by cervical decapitation; blood and skeletal muscle were isolated for further analysis.

Results: Levels of antioxidant enzymes such as superoxide dismutase, catalase and glutathione peroxidase, and non-enzymatic antioxidants such as reduced glutathione, ascorbic acid (vitamin C) and tocopherol (vitamin E) were found to be decreased in the blood and skeletal muscle mitochondria of aged rats. Supplementation with levocarnitine in aged rats improved the antioxidant status in a dose-dependent manner.

Conclusions: These findings demonstrated that levocarnitine enhances the activity of the mitochondrial antioxidant system and decreases the incidence of free radical-induced lipid peroxidation in aged rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II

Similar content being viewed by others

References

  1. Harman D. Ageing: a theory based on free radical and radiation chemistry. J Gerontol 1956; 11: 298–300

    Article  PubMed  CAS  Google Scholar 

  2. Sohal RS. Role of oxidative stress and protein oxidation in the aging process. Free Radic Biol Med 2002; 33 (1): 37–44

    Article  Google Scholar 

  3. Cadenas E, Davies KJA. Mitochondrial free radical generation, oxidative stress and ageing. Free Radic Biol Med 2000; 26: 222–30

    Article  Google Scholar 

  4. Nicholls DG. Mitochondrial function and dysfunction in the cell: its relevance to aging and aging-related disease. Int J Biochem Cell Biol 2002; 34 (11): 1372–81

    Article  PubMed  CAS  Google Scholar 

  5. Sastre J, Pallardo FV, Vina J. Mitochondrial oxidative stress plays a key role in aging and apoptosis. IUBMB Life 2000; 49 (5): 427–35

    Article  PubMed  CAS  Google Scholar 

  6. Mecocci P, MacGarvey U, Kaufman AE, et al. Oxidative damage to mitochondrial DNA shows marked age dependent increases in human brain. Ann Neurol 1993; 34: 609–16

    Article  PubMed  CAS  Google Scholar 

  7. Wei YH, Lee HC. Oxidative stress, mitochondrial DNA mutation, and impairment of antioxidant enzymes in aging. Exp Biol Med (Maywood) 2002; 227 (9): 671–82

    CAS  Google Scholar 

  8. Rani PJ, Panneerselvam C. Effect of L-Carnitine on brain lipid peroxidation and antioxidant enzymes in old rats. J Gerontol A Sci Med Sci 2002; 57 (4): B143–7

    Google Scholar 

  9. Halliwell B, Gutteridge JMC, Cross C. Free radicals and human disease: where are we now? J Lab Clin Med 1992; 119: 598–620

    PubMed  CAS  Google Scholar 

  10. Yasui F, Matsugo S, Ishibashi M, et al. Effect of chronic acetyl-L-carnitine treatment on brain lipid hydroperoxide level and passive avoidance learning in senescence-accelerated mice. Neurosci Lett 2002; 334 (3): 177–80

    Article  PubMed  CAS  Google Scholar 

  11. Sayed-Ahmed MM, Salman TM, Gaballah HE, et al. Propinoyl: L-carnitine as a protector against adriamycin induced cardiomyopathy. Pharmacol Res 2001; 43: 513–20

    Article  PubMed  CAS  Google Scholar 

  12. Bieber LL, Choi YR. Isolation and identification of aliphatatic short chain acylcarnitines from beef heart: possible role for carnitine in branched chain amino acid metabolism. Pro Natl Acad Sci U S A 1997; 74: 2795–8

    Article  Google Scholar 

  13. Nakajima T, Horiuchi M, Yamanaka H, et al. The effect of carnitine on ketogenesis in perfused livers from juvenile visceral steatosis mice with systemic carnitine deficiency. Pediatr Res 1997; 42: 108–13

    Article  PubMed  CAS  Google Scholar 

  14. Chen W, Huang YC, Shultz TD, et al. Urinary, plasma and erythrocyte carnitine concentrations during transition to a lactoovovegetarian diet with vitaminB-6 depletion and repletion in young, adult women. Am J Clin Nutr 1998; 67: 221–30

    PubMed  CAS  Google Scholar 

  15. Ernster L, Nordenbrand K. Skeletal muscle mitochondria. Methods Enzymol 1967; 10: 86–94

    Article  CAS  Google Scholar 

  16. Slater EC, Bonner WD. Effect of fluoride on succinate oxidase system. Biochem J 1952; 52: 569–76

    Google Scholar 

  17. Lowry OH, Rosenbrough NJ, Farr AL, et al. Protein measurement with the Folin-phenol reagent. J Biol Chem 1951; 193: 351–8

    Google Scholar 

  18. Okawa H, Oshihi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979; 95: 351–8

    Article  Google Scholar 

  19. Marklund S, Marklund G. Involvement of the superoxide anion in the autoxidation of pyrogallol and a convenient assay of superoxide dismutase. Eur J Biochem 1974; 47: 469–74

    Article  PubMed  CAS  Google Scholar 

  20. Sinha AK. Colorimetric assay of catalase. Anal Biochem 1972; 47: 389–94

    Article  PubMed  CAS  Google Scholar 

  21. Rotruk JT, Pope AL, Ganther HE, et al. Selenium: biochemical role as a component of glutathione peroxidase. Science 1973; 179: 588–90

    Article  Google Scholar 

  22. Moron MS, Depierre JW, Mannervik B. Levels of glutathione reductase and gulutathione S-transferase activities in rat lung and liver. Biochem Biophys Acta 1979; 582: 67–70

    Article  PubMed  CAS  Google Scholar 

  23. Omaye ST, Turnbull JD, Sauberlich HE. Selected methods for the determination of ascorbic acid in animal cells, tissues and fluids. Methods Enzymol 1979; 62: 1–11

    Google Scholar 

  24. Desai ID. Vitamin E analysis method for animal tissues. Methods Enzymol 1984; 105: 138–43

    Article  PubMed  CAS  Google Scholar 

  25. Lenaz G. Role of mitochondria in oxidative stress and ageing. Biochim Biophys Acta 1998; 1366 (1–2): 53–67

    PubMed  CAS  Google Scholar 

  26. Mecocci P, Beal MF, Cecchetti R, et al. Mitochondrial membrane fluidity and oxidative damage to mitochondrial DNA in aged and AD human brain. Mol Chem Neuropathol 1997; 31 (1): 53–64

    Article  PubMed  CAS  Google Scholar 

  27. Chen JJ, Yu BP. Alteration in the mitochondrial membrane fluidity by lipid peroxidation products. Free Radic Biol Med 1994; 17: 411–8

    Article  PubMed  CAS  Google Scholar 

  28. Esterbauer H, Schaur RJ, Zoller S. Chemistry and biochemistry of 4-hydroxynonenal, malondialdehyde and related aldehydes. Free Radic Biol Med 1991; 11: 81–128

    Article  PubMed  CAS  Google Scholar 

  29. Sverko V, Balog T, Sobocanec S, et al. Age associated alteration of lipid peroxidation and superoxide dismutase activity in CBA and AKR mice. Exp Gerontol 2002; 197: 119–24

    Google Scholar 

  30. Shol R, Dubey A. Mitochondrial oxidative damage, hydrogen peroxide release and ageing. Free Radic Biol Med 1994; 16: 621–6

    Article  Google Scholar 

  31. Hagen TM, Moreau R, Suh JH, et al. Mitochondrial decay in the aging rat heart: evidence for improvement by dietary supplementation with acetyl-L-carnitine and/or lipoic acid. Ann N Y Acad Sci 2002; 959: 491–507

    Article  PubMed  CAS  Google Scholar 

  32. Rani PJA, Panneerselvam C. Carnitine as a free radical scavenger in ageing. Exp Gerontol 2001; 30: 1713–26

    Google Scholar 

  33. Harris ED. Regulation of antioxidant enzymes. FASEB J 1992; 6: 2675–83

    PubMed  CAS  Google Scholar 

  34. Russel RL, Siedlak SL, Raina AK, et al. Increased neuronal glucose-6-phosphate dehydrogenase and sulfhydryl levels indicate reductive compensation to oxidative stress in Alzheimer’s disease. Arch Biochem Biophys 1999; 370: 236–9

    Article  Google Scholar 

  35. Alvarez E, Santa Maria C, Machodo A. Respiratory burst reaction changes with age in rat peritoneal macrophages. Biochim Biophys Acta 1993; 1179: 247–52

    Article  PubMed  CAS  Google Scholar 

  36. Ketterer B. Protective role of glutathione and glutathione transferase in mutagenesis and carcinogenesis. Mutat Res 1998; 202: 343–61

    Google Scholar 

  37. Fernandez-Checa JC, Yi J, Garcia Ruzi C, et al. Plasma membrane and mitochondrial transport of hepatic reduced glutathione. Semin Liver Dis 1996; 16: 147–58

    Article  PubMed  CAS  Google Scholar 

  38. Singh RJ. Glutathione: a marker and antioxidant for ageing. J Lab Clin Med 2002; 140: 380–1

    Article  PubMed  Google Scholar 

  39. Kiziltunc A, Cogalgil S, Cerrahoglu L. Carnitine and antioxidants levels in patients with rheumatoid arthritis. Scand J Rheumatol 1998; 27: 441–5

    Article  PubMed  CAS  Google Scholar 

  40. Hagen TM, Ingersoll RT, Wehr CM, et al. Acetyl-L-carnitine fed to old rats partially restores mitochondrial function and ambulatory activity. Proc Natl Acad Sci U S A 1998; 95: 9562–6

    Article  PubMed  CAS  Google Scholar 

  41. Rebouche CJ. Carnitine function and requirement during the life cycle. FASEB J 1992; 6: 3379–86

    PubMed  CAS  Google Scholar 

  42. Bertoni-Freddari C, Fattoretti P, Caselli U, et al. Vitamin E deficiency as a model of precocious brain ageing: assessment by x- ray microanalysis and morphometry. Scanning Microsc 1995; 9: 289–301

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Dr D. Kumaran, Reader, Department of Education, University of Madras, Chepauk for his very kind assistance in statistical analysis, and thank the University Grant Commission, New Delhi, India for financial assistance in carrying out this work.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumaran, S., Deepak, B., Naveen, B. et al. Effects of Levocarnitine on Mitochondrial Antioxidant Systems and Oxidative Stress in Aged Rats. Drugs R&D 4, 141–147 (2003). https://doi.org/10.2165/00126839-200304030-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00126839-200304030-00001

Keywords

Navigation