Skip to main content
Log in

The Emerging Role of Fusion Inhibitors in HIV Infection

  • Section 2: HIV Fusion Inhibitor
  • Leading Article
  • Published:
Drugs in R & D Aims and scope Submit manuscript

Abstract

Fusion of HIV with its host cell requires the interaction of the viral envelope glycoprotein 120 (gp120) with the chemokine receptor CXCR4 [T cell-tropic (T-tropic) or X4 HIV strains] or CCR5 [macrophage-tropic (M-tropic) or R5 HIV strains] followed by a ‘spring-loaded’ action of the glycoprotein 41 (gp41) that ensures fusion of the viral and cellular lipid membranes and permits the viral nucleocapsid to enter the cell. The overall fusion process can be blocked by a number of compounds. These include siamycin analogues, SPC 3 (a synthetic peptide derived from the V3 domain of gp120), pentafuside (T 20, DP 178) [a synthetic peptide corresponding to amino acid residues 127 to 162 of gp41], the betulinic acid derivative RPR 103611, TAK 779 (a low molecular weight nonpeptide CCR5 antagonist) and a number of compounds (T 22, T 134, ALX40–4C, CGP64222 andAMD3100) that are targeted at theCXCR4receptor. In particular, the bicyclam AMD 3100 has proved highly potent and selective as a CXCR4 antagonist that blocks the infectivity of X4 HIV strains in the nanomolar concentration range. The proof-of-concept that fusion inhibitors should be able to suppress viral replication in vivo has been demonstrated with pentafuside. Pentafuside and AMD 3100 have now proceeded to phase II clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Proudfoot AEI, Wells TNC, Clapham PR. Chemokine receptors: future therapeutic targets for HIV? Biochem Pharmacol 1999; 57: 451–63

    Article  PubMed  CAS  Google Scholar 

  2. Cammack N. Human immunodeficiency virus type 1 entry and chemokine receptors: a new therapeutic target. Antiviral Chem Chemother 1999; 10: 53–62

    CAS  Google Scholar 

  3. Zhang Y-J, Moore JP. Will multiple coreceptors need to be targeted by inhibitors of human immunodeficiency virus type 1 entry? J Virol 1999; 73: 3443–8

    PubMed  CAS  Google Scholar 

  4. Chen J-D, Bai X, Yang A-G, et al. Inactivation of HIV-1 chemokine co-receptor CXCR-4 by a novel intrakine strategy. Nat Med 1997; 3: 1110–6

    Article  PubMed  CAS  Google Scholar 

  5. Luster AD. Chemokines — chemotactic cytokines that mediate inflammation. N Engl J Med 1998; 338: 436–45

    Article  PubMed  CAS  Google Scholar 

  6. Wang H, English NJ, Reid CDL, et al. Role of ß-chemokines in HIV-1 infection of dendritic cells maturing from CD34+ stem cells. J Acquir Immune Defic Syndr 1999; 21: 179–88

    Article  PubMed  CAS  Google Scholar 

  7. Helynck G, Dubertret C, Mayaux J-F, et al. Isolation of RP 71955, a new anti-HIV-1 peptide secondary metabolite. J Antibiot 1993; 46: 1756–7

    Article  PubMed  CAS  Google Scholar 

  8. Fréchet D, Guitton JD, Herman F, et al. Solution structure of RP 71955, a new 21 amino acid tricyclic peptide active against HIV-1 virus. Biochemistry 1994; 33: 42–50

    Article  PubMed  Google Scholar 

  9. Constantine KL, Friedrichs MS, Detlefsen D, et al. High-resolution solution structure of siamycin II: novel amphipathic character of a 21-residue peptide that inhibits HIV fusion. J Biomol NMR 1995; 5: 271–86

    Article  PubMed  CAS  Google Scholar 

  10. Chokekijchai S, Kojima E, Anderson S, et al. NP-06: a novel anti-human immunodeficiency virus polypeptide produced by a Streptomyces species. Antimicrob Agents Chemother 1995; 39: 2345–7

    Article  PubMed  CAS  Google Scholar 

  11. Nakashima H, Ichiyama K, Inazawa K, et al. FR901724, a novel anti-human immunodeficiency virus (HIV) peptide produced by Streptomyces, shows synergistic antiviral activities with HIV protease inhibitor and 2’,3’-dideoxynucleosides. Biol Pharm Bull 1996; 19: 405–12

    Article  PubMed  CAS  Google Scholar 

  12. Lin P-F, Samanta H, Bechtold CM. Characterization of siamycin I, a human immunodeficiency virus fusion inhibitor. Antimicrob Agents Chemother 1996; 40: 133–8

    PubMed  CAS  Google Scholar 

  13. Yahi N, Fantini J, Baghdiguian S, et al. SPC3, a synthetic peptide derived from the V3 domain of human immunodeficiency virus type 1 (HIV-1) gp120, inhibits HIV-1 entry into CD4+ and CD4- cells by two distinct mechanisms. Proc Natl Acad Sci USA 1995; 92: 4867–71

    Article  PubMed  CAS  Google Scholar 

  14. Delézay O, Hammache D, Fantini J, et al. SPC3, a V3 loopderived synthetic peptide inhibitor of HIV-1 infection, binds to cell surface glycosphingolipids. Biochemistry 1996; 35: 15663–71

    Article  PubMed  Google Scholar 

  15. Barbouche R, Fenouillet E, Papandréou M-J, et al. Properties of HIV envelope expressed in the presence of SPC3, an Envderived peptide drug under phase II clinical trials. J Peptide Res 1998; 52: 283–8

    Article  CAS  Google Scholar 

  16. Wild C, Oas T, McDanal C, et al. A synthetic peptide inhibitor of human immunodeficiency virus replication: correlation between solution structure and viral inhibition. Proc Natl Acad Sci U S A 1992; 89: 10537–41

    Article  PubMed  CAS  Google Scholar 

  17. Wild C, Greenwell T, Matthews T. A synthetic peptide from HIV-1 gp41 is a potent inhibitor of virus-mediated cell-cell fusion. AIDS Res Hum Retroviruses 1993; 9: 1051–3

    Article  PubMed  CAS  Google Scholar 

  18. Wild CT, Shugars DC, Greenwell TK, et al. Peptides corresponding to a predictive a-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection. Proc Natl Acad Sci USA 1994; 91: 9770–4

    Article  PubMed  CAS  Google Scholar 

  19. Rimsky LT, Shugars DC, Matthews TJ. Determinants of human immunodeficiency virus type 1 resistance to gp41-derived inhibitory peptides. J Virol 1998; 72: 986–93

    PubMed  CAS  Google Scholar 

  20. Kilby JM, Hopkins S, Venetta TM, et al. Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry. Nat Med 1998; 4: 1302–7

    Article  PubMed  CAS  Google Scholar 

  21. Mayaux J-F, Bousseau A, Pauwels R, et al. Triterpene derivatives that block entry of human immunodeficiency virus type 1 into cells. Proc Natl Acad Sci U S A 1994; 91: 3564–8

    Article  PubMed  CAS  Google Scholar 

  22. Labrosse B, Pleskoff O, Sol N, et al. Antiviral and resistance studies of RPR103611, an inhibitor of HIV replication [abstract 33]. In: International Workshop on HIV Drug Resistance, Treatment Strategies and Eradication; 1997 June 25–28; St Petersburg, Florida, USA. Antiviral Ther 1997: 21

    Google Scholar 

  23. Baba M, Nishimura O, Kanzaki N, et al. A small-molecule, nonpeptide CCR5 antagonist with highly potent and selective anti-HIV-1 activity. Proc Natl Acad Sci U S A 1999; 96: 5698–703

    Article  PubMed  CAS  Google Scholar 

  24. Nakashima H, Masuda M, Murakami T, et al. Anti-human immunodeficiency virus activity of a novel synthetic peptide, T22 ([Tyr-5,12, Lys-7]polyphemusin II): a possible inhibitor of virus-cell fusion. Antimicrob Agents Chemother 1992; 36: 1249–55

    Article  PubMed  CAS  Google Scholar 

  25. Masuda M, Nakashima H, Ueda T, et al. Anovel anti-HIV synthetic peptide, T-22 ([Tyr5,12, Lys7]-polyphemusin II). Biochem Biophys Res Commun 1992; 189: 845–50

    Article  PubMed  CAS  Google Scholar 

  26. Tamamura H, Murakami T, Masuda M, et al. Structure-activity relationships of an anti-HIV peptide, T22. Biochem Biophys Res Commun 1994; 205: 1729–35

    Article  PubMed  CAS  Google Scholar 

  27. Tamamura H, Arakaki R, Funakoshi H, et al. Effective lowly cytotoxic analogs of an HIV-cell fusion inhibitor, T22 ([Tyr5,12, Lys7]-polyphemusin II). Bioorg Med Chem 1998; 6: 231–8

    Article  PubMed  CAS  Google Scholar 

  28. Murakami T, Nakajima T, Koyanagi Y, et al. A small molecule CXCR4 inhibitor that blocks T cell line-tropic HIV-1 infection. J Exp Med 1997; 186: 1389–93

    Article  PubMed  CAS  Google Scholar 

  29. Arakaki R, Tamamura H, Premanathan M, et al. T134, a smallmolecule CXCR4 inhibitor, has no cross-drug resistance with AMD3100, a CXCR4 antagonist with a different structure. J Virol 1999; 73: 1719–23

    PubMed  CAS  Google Scholar 

  30. O’Brien WA, Sumner-Smith M, Mao S-H, et al. Anti-human immunodeficiency virus type 1 activity of an oligocationic compound mediated via gp120 V3 interactions. J Virol 1996; 70: 2825–31

    PubMed  Google Scholar 

  31. Doranz BJ, Grovit-Ferbas K, Sharron MP, et al. A smallmolecule inhibitor directed against the chemokine receptor CXCR4 prevents its use as an HIV-1 coreceptor. J Exp Med 1997; 186: 1395–400

    Article  PubMed  CAS  Google Scholar 

  32. Hamy F, Felder ER, Heizmann G, et al. An inhibitor of the Tat/TAR RNA interaction that effectively suppresses HIV-1 replication. Proc Natl Acad Sci U S A 1997; 94: 3548–53

    Article  PubMed  CAS  Google Scholar 

  33. Daelemans D, Schols D, Witvrouw M, et al. Asecond target for the peptoid Tat/TAR inhibitor CGP64222: inhibition of HIV replication by blocking CXCR4-mediated virus entry. Mol Pharmacol.. In press

  34. De Clercq E, Yamamoto N, Pauwels R, et al. Potent and selective inhibition of human immunodeficiency virus (HIV)-1 and HIV-2 replication by a class of bicyclams interacting with a viral uncoating event. Proc Natl Acad Sci U S A 1992; 89: 5286–90

    Article  PubMed  Google Scholar 

  35. De Clercq E, Yamamoto N, Pauwels R, et al. Highly potent and selective inhibition of human immunodeficiency virus by the bicyclam derivative JM3100. Antimicrob Agents Chemother 1994; 38: 668–74

    Article  PubMed  Google Scholar 

  36. De Vreese K, Reymen D, Griffin P, et al. The bicyclams, a new class of potent human immunodeficiency virus inhibitors, block viral entry after binding. Antiviral Res 1996; 29: 209–19

    Article  PubMed  CAS  Google Scholar 

  37. Esté JA, De Vreese K, Witvrouw M, et al. Antiviral activity of the bicyclam derivative JM3100 against drug-resistant strains of human immunodeficiency virus type 1. Antiviral Res 1996; 29: 297–307

    Article  PubMed  Google Scholar 

  38. De Vreese K, Kofler-Mongold V, Leutgeb C, et al. The molecular target of bicyclams, potent inhibitors of human immunodeficiency virus replication. J Virol 1996; 70: 689–96

    PubMed  Google Scholar 

  39. De Vreese K, Van Nerum I, Vermeire K, et al. Sensitivity of human immunodeficiency virus to bicyclam derivatives is influenced by the three-dimensional structure of gp120. Antimicrob Agents Chemother 1997; 41: 2616–20

    PubMed  Google Scholar 

  40. Schols D, Struyf S, Van Damme J, et al. Inhibition of T-tropic HIV strains by selective antagonization of the chemokine receptor CXCR4. J Exp Med 1997; 186: 1383–8

    Article  PubMed  CAS  Google Scholar 

  41. Schols D, Esté J, Henson G, et al. Bicyclams, a class of potent anti-HIV agents, are targeted at the HIV coreceptor fusin/ CXCR-4. Antiviral Res 1997; 35: 147–56

    Article  PubMed  CAS  Google Scholar 

  42. Donzella GA, Schols D, Lin SW, et al. AMD3100, a small molecule inhibitor of HIV-1 entry via the CXCR4 co-receptor. Nat Med 1998; 4: 72–7

    Article  PubMed  CAS  Google Scholar 

  43. Schols D, Esté J, Cabrera C, et al. T-Cell-line-tropic human immunodeficiency virus type 1 that is made resistant to stromal cell-derived factor 1a contains mutations in the envelope gp120 but does not show a switch in coreceptor use. J Virol 1998; 72: 4032–7

    PubMed  CAS  Google Scholar 

  44. Labrosse B, Brelot A, Heveker N, et al. Determinants for sensitivity of human immunodeficiency virus coreceptor CXCR4 to the bicyclam AMD3100. J Virol 1998; 72: 6381–8

    PubMed  CAS  Google Scholar 

  45. Esté JA, Cabrera C, Blanco J, et al. Shift of clinical human immunodeficiency virus type 1 isolates from X4 to R5 and prevention of emergence of the syncytium-inducing phenotype by blockade of CXCR4. J Virol 1999; 73: 5577–85

    PubMed  Google Scholar 

  46. Datema R, Rabin L, Hincenbergs M, et al. Antiviral efficacy in vivo of the anti-human immunodeficiency virus bicyclam SDZ SIC 791 (JM 3100), an inhibitor of infectious cell entry. Antimicrob Agents Chemother 1996; 40: 750–4

    PubMed  CAS  Google Scholar 

  47. Hendrix C, Flexner C, MacFarland R, et al. Chemokine CXCR- 4 receptor blocker, AMD-3100: clinical and pre-clinical studies of pharmacokinetics and safety [abstract]. 6th Conference on Retroviruses and Opportunistic Infections; 1999 Jan 31-Feb 4; Chicago (IL)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik De Clercq.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Clercq, E. The Emerging Role of Fusion Inhibitors in HIV Infection. Drugs R&D 2, 321–331 (1999). https://doi.org/10.2165/00126839-199902050-00010

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00126839-199902050-00010

Keywords

Navigation