Skip to main content
Log in

Systemic Antifungal Agents

What is in the Pipeline?

  • Section 2: Antifungal Agent
  • Leading article
  • Published:
Drugs in R & D Aims and scope Submit manuscript

Abstract

With the increase in serious and often life-threatening fungal infections over the last 2 decades, there has been an enhanced effort to bring new antifungal agents into the therapeutic armamentarium. The introduction of new agents into the clinical setting has been slow, in part because several drugs which appeared promising in vitro and in short term animal studies later proved to be toxic. Toxicity has been a major hurdle in the development of antifungal agents because mammalian cells, in contrast to bacterial cells, share with fungal cells many structures and metabolic pathways. For example, the 2 most common classes of antifungal agents, polyenes and azoles, target the synthesis of the cell membrane, a structure shared by both mammalian and fungal cells, and thus these drugs have inherent toxicity. Antifungal agents that act on protein synthesis are also inherently toxic to mammalian as well as fungal cells. New agents that target the fungal cell wall, a structure with no homology in mammalian cells, may prove to be less toxic and are currently of great interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marco F, Pfaller MA, Messer S, et al. In vitro activities of voriconazole (UK-109,496) and four other antifungal agents against 394 clinical isolates of Candida spp. Antimicrob Agents Chemother 1998; 42: 161–3

    Article  PubMed  CAS  Google Scholar 

  2. Ruhnke M, Schmidt-Westhausen A, Trautmann M. In vitro activities of voriconazole (UK-109,496) against fluconazole-susceptible and -resistant Candida albicans isolates from oral cavities of patients with human immunodeficiency virus infection. Antimicrob Agents Chemother 1997; 41: 575–7

    PubMed  CAS  Google Scholar 

  3. Kauffman CA, Zarins LT. In vitro activity of voriconazole against Candida species. Diagn Microbiol Infect Dis 1998; 31: 297–300

    Article  PubMed  CAS  Google Scholar 

  4. Barry AL, Brown SD. In vitro studies of two triazole antifungal agents (voriconazole [UK-109,496] and fluconazole) against Candida species. Antimicrob Agents Chemother 1996; 40: 1948–9

    PubMed  CAS  Google Scholar 

  5. Espinel-Ingroff A. In vitro activity of the new triazole voriconazole (UK-109,496) against opportunistic filamentous and dimorphic fungi and common and emerging yeast pathogens. J Clin Microbiol 1998; 36: 198–202

    PubMed  CAS  Google Scholar 

  6. Cuenca-Estrella M, Rodriquez-Tudela JL, Mellado E, et al. Comparison of the in vitro activity of voriconazole (UK- 109,496), itraconazole and amphotericin B against clinical isolates of Aspergillus fumigatus. J Antimicrob Chemother 1998; 42: 531–3

    Article  PubMed  CAS  Google Scholar 

  7. Marco F, Pfaller MA, Messer SA, et al. Antifungal activity of a new triazole, voriconazole (UK-109,496), compared with three other antifungal agents tested against clinical isolates of filamentous fungi. Med Mycol 1998; 36: 433–6

    PubMed  CAS  Google Scholar 

  8. McGinnis MR, Pasarell L, Sutton DA, et al. In vitro evaluation of voriconazole against some clinically important fungi. Antimicrob Agents Chemother 1997; 41: 1832–4

    PubMed  CAS  Google Scholar 

  9. Radford SA, Johnson EM, Warnock DW. In vitro studies of activity of voriconazole (UK-109,496), a new triazole antifungal agent, against emerging and less-common mold pathogens. Antimicrob Agents Chemother 1997; 41: 841–3

    PubMed  CAS  Google Scholar 

  10. Nguyen MH, Yu CY. In vitro comparative efficacy of voriconazole and itraconazole against fluconazole-susceptible and -resistant Cryptococcus neoformans isolates. Antimicrob Agents Chemother 1998; 42: 471–2

    PubMed  CAS  Google Scholar 

  11. Girmenia C, Luzi G, Monaco M, et al. Use of voriconazole in treatment of Scedosporium apiospermum infection: case report. J Clin Microbiol 1998; 36: 1436–8

    PubMed  CAS  Google Scholar 

  12. Manavathu EK, Cutright JL, Chandrasekar PH. Organism-dependent fungicidal activities of azoles. Antimicrob Agents Chemother 1998; 42: p

  13. Martin MV, Yates J, Hitchcock CA. Comparison of voriconazole (UK-109,496) and itraconazole in prevention and treatment of Aspergillus fumigatus endocarditis in guinea pigs. Antimicrob Agents Chemother 1997; 41: 13–6

    PubMed  CAS  Google Scholar 

  14. Murphy M, Bernard EM, Ishimaru T, et al. Activity of voriconazole (UK-109,496) against clinical isolates of Aspergillus species and its effectiveness in an experimental model of invasive pulmonary aspergillosis. Antimicrob Agents Chemother 1997; 41: 696–8

    PubMed  CAS  Google Scholar 

  15. George D, Miniter P, Andriole VT. Efficacy of UK-109,496, a new azole antifungal agent, in an experimental model of invasive aspergillosis. Antimicrob Agents Chemother 1996; 40: 86–91

    PubMed  CAS  Google Scholar 

  16. Troke PF, Brammer KW, Hitchcock CA, et al. UK-109,496, a novel wide-spectrum triazole derivative for the treatment of fungal infections: activity in systemic candidiasis models and early clinical efficacy in oropharyngeal candidiasis [abstract no. F73]. 35th Intersciences Conference on Antimicrobial Agents and Chemotherapy; 1995 Sep 17–20; San Francisco. Washington, DC: American Society for Microbiology, 1995

    Google Scholar 

  17. Hitchcock CA, Andrews RJ, Lewis BGH, et al. UK-19,496, a novel wide-spectrum triazole derivative for the treatment of fungal infections: antifungal activity in experimental infections with Cryptococcus [abstract no. F75]. 35th Intersciences Conference on Antimicrobial Agents and Chemotherapy; 1995 Sep 17–20; San Francisco. Washington, DC: American Society for Microbiology, 1995

    Google Scholar 

  18. Patterson BE, Coates PE. UK-19,496, a novel wide-spectrum triazole derivative for the treatment of fungal infections: pharmacokinetics in man [abstract no. F78]. 35th Intersciences Conference on Antimicrobial Agents and Chemotherapy; 1995 Sep 17–20; San Francisco. Washington, DC: American Society for Microbiology, 1995

    Google Scholar 

  19. Denning D, delFavero A, Gluckman E, et al. UK-19,496, a novel wide-spectrum triazole derivative for the treatment of fungal infections: clinical efficacy in acute invasive aspergillosis [abstract no. F80]. 35th Intersciences Conference on Antimicrobial Agents and Chemotherapy; 1995 Sep 17–20; San Francisco. Washington, DC: American Society for Microbiology, 1995

    Google Scholar 

  20. Dupont B, Denning D, Lode H, et al. UK-19,496, a novel widespectrum triazole derivative for the treatment of fungal infections: clinical efficacy in chronic invasive aspergillosis [abstract no. F81]. 35th Intersciences Conference on Antimicrobial Agents and Chemotherapy; 1995 Sep 17–20; San Francisco. Washington, DC: American Society for Microbiology, 1995

    Google Scholar 

  21. Pfaller MA, Messer S, Jones RN. Activity of a new triazole, Sch 56592, compared with those of four other antifungal agents tested against clinical isolates of Candida spp. and Saccharomyces cerevisiae. Antimicrob Agents Chemother 1997; 41: 233–5

    PubMed  CAS  Google Scholar 

  22. Law D, Moore CB, Denning DW. Activity of SCH 56592 compared with those of fluconazole and itraconazole against Candida spp. Antimicrob Agents Chemother 1997; 41: 2310–1

    PubMed  CAS  Google Scholar 

  23. Perfect JR, Cox GM, Dodge RK, et al. In vitro and in vivo efficacies of the azole SCH 56592 against Cryptococcus neoformans. Antimicrob Agents Chemother 1997; 40: 1910–3

    Google Scholar 

  24. Oakley KL, Moore CB, Denning DW. In vitro activity of SCH- 56592 and comparison with activities of amphotericin B and itraconazole against Aspergillus spp. Antimicrob Agents Chemother 1997; 41: 1124–6

    PubMed  CAS  Google Scholar 

  25. Sugar AM, Liu X-P. In vitro and in vivo activities of SCH 56592 against Blastomyces dermatitidis. Antimicrob Agents Chemother 1996; 40: 1314–6

    CAS  Google Scholar 

  26. Lutz JE, Clemons KV, Aristizabal BH, et al. Activity of the triazole SCH 56592 against disseminated murine coccidioidomycosis. Antimicrob Agents Chemother 1997; 41: 1558–61

    PubMed  CAS  Google Scholar 

  27. Wheat J, Bick C, Connolly P, et al. Comparison of a new triazole, Schering 56592, with itraconazole and amphotericin B for treatment of murine histoplasmosis [abstract no. F101]. 36th Intersciences Conference on Antimicrobial Agents and Chemotherapy; 1996 Sep 15–18; New Orleans. Washington, DC: American Society for Microbiology, 1996

    Google Scholar 

  28. Al-Abdely H, Najvar L, Bocanegra R, et al. Activity of SCH56592, itraconazole, and amphotericin B in experimental murine cerebral phaeohyphomycosis due to Ramichloridium obovoideum (R. makenziei) [abstract J-68]. 38th Intersciences Conference on Antimicrobial Agents and Chemotherapy; 1998 Sep 24–27; San Diego. Washington, DC: American Society for Microbiology, 1998

    Google Scholar 

  29. Al-Abdely H, Najvar L, Bocanegra R, et al. SCH56592 therapy of experimental murine cerebral phaeohyphomycosis due to Cladophialophorum bantiana [abstract J-69]. 38th Intersciences Conference on Antimicrobial Agents and Chemotherapy; 1998 Sep 24–27; San Diego. Washington, DC: American Society for Microbiology, 1998

    Google Scholar 

  30. Graybill JR, Bocanegra R, Najvar LK, et al. SCH56592 treatment of murine invasive aspergillosis. J Antimicrob Chemother 1998; 42: 539–42

    Article  PubMed  CAS  Google Scholar 

  31. Oakley KL, Morrissey G, Denning DW. Efficacy of SCH-56592 in a temporarily neutropenic murine model of invasive aspergillosis with an itraconazole-susceptible and an itraconazole-resistant isolate of Aspergillus fumigatus. Antimicrob Agents Chemother 1997; 41: 1504–7

    PubMed  CAS  Google Scholar 

  32. Nomeir A, Kumari P, Hilbert MJ, et al. Comparative pharmacokinetics of a new triazole antifungal agent, SCH 56592, in mice, rats, rabbits, dogs, and cynomolgus monkeys [abstract no. F68]. 35th Intersciences Conference on Antimicrobial Agents and Chemotherapy; 1995 Sep 17–20; San Francisco. Washington, DC: American Society for Microbiology, 1995

    Google Scholar 

  33. Fung-Tomc JC, Huczko E, Minassian B, et al. In vitro activity of a new oral triazole, BMS-207147 (ER-30346). Antimicrob Agents Chemother 1998; 42: 313–8

    PubMed  CAS  Google Scholar 

  34. Pfaller MA, Messer SA, Hollis RJ, et al. In vitro susceptibilities of Candida bloodstream isolates to the new triazole antifungal agents BMS-207147, Sch 56592, and voriconazole. Antimicrob Agents Chemother 1998; 42: 3242–4

    PubMed  CAS  Google Scholar 

  35. Hata K, Kimura J, Miki H, et al. In vitro and in vivo antifungal activities of ER-30346, a novel oral triazole with a broad antifungal spectrum. Antimicrob Agents Chemother 1996; 40: 2237–42

    PubMed  CAS  Google Scholar 

  36. Hata K, Kimura J, Miki H, et al. Efficacy of ER-30346, a novel oral triazole antifungal agent, in experimental models of aspergillosis, candidiasis, and cryptococcosis. Antimicrob Agents Chemother 1996; 40: 2243–7

    PubMed  CAS  Google Scholar 

  37. Shock K, Marino S, Baumgartner T, et al. Efficacy of a new triazole, BMS-207147, in a model of invasive aspergillosis in immunosuppressed, neutropenic rabbits [abstract no. J-54]. 38th Intersciences Conference on Antimicrobial Agents and Chemotherapy; 1998 Sep 24–27; San Diego. Washington, DC: American Society for Microbiology, 1998

    Google Scholar 

  38. Yotsuji A, Shimizu K, Araki H, et al. T-8581, a new orally and parenterally active triazole antifungal agent: in vitro and in vivo evaluations. Antimicrob Agents Chemother 1997; 41: 30–4

    PubMed  CAS  Google Scholar 

  39. Stevens DA, Aristizabal BH. In vitro antifungal activity of novel azole derivatives with a morpholine ring, UR-9746 and UR-9751, and comparison with fluconazole. Diagn Microbiol Infect Dis 1997; 29: 103–6

    Article  PubMed  CAS  Google Scholar 

  40. Clemons KV, Stevens DA. Efficacies of two novel azole derivatives each containing a morpholine ring, UR-9746 and UR-9751, against systemic murine coccidioidomycosis. Antimicrob Agents Chemother 1997; 41: 200–3

    PubMed  CAS  Google Scholar 

  41. Pfaller MA, Messer SA, Coffman S. In vitro susceptibilities of clinical yeast isolates to a new echinocandin derivative, LY303366, and other antifungal agents. Antimicrob Agents Chemother 1997; 41: 763–6

    PubMed  CAS  Google Scholar 

  42. Zhanel GG, Karlowsky JA, Harding GA, et al. In vitro activity of a new semisynthetic echinocandin, LY-303366, against systemic isolates of Candida species, Cryptococcus neoformans, Blastomyces dermatitidis, and Aspergillus species. Antimicrob Agents Chemother 1997; 41: 863–5

    PubMed  CAS  Google Scholar 

  43. Uzun O, Kocagoz S, Cetinkaya Y, et al. In vitro activity of a new echinocandin, LY303366, compared with those of amphotericin B and fluconazole against clinical yeast isolates. Antimicrob Agents Chemother 1997; 41: 1156–7

    PubMed  CAS  Google Scholar 

  44. Oakley KL, Moore CB, Denning DW. In vitro activity of the echinocandin antifungal agent LY303366 in comparison with itraconazole and amphotericin B against Aspergillus spp. Antimicrob Agents Chemother 1998; 42: 2726–30

    PubMed  CAS  Google Scholar 

  45. Espinel-Ingroff A. Comparison of in vitro activities of the new triazole SCH56592 and the echinocandins MK-0991 (L- 743,872) and LY303366 against opportunistic filamentous and dimorphic fungi and yeasts. J Clin Microbiol 1998; 36: 2950–6

    PubMed  CAS  Google Scholar 

  46. Bartlett MS, Current WL, Goheen MP, et al. Semisynthetic echinocandins affect cell wall deposition of Pneumocystis carinii in vitro and in vivo. Antimicrob Agents Chemother 1996; 40: 1811–6

    PubMed  CAS  Google Scholar 

  47. Verweij PE, Oakley KL, Morrissey J, et al. Efficacy of LY303366 against amphotericin B-susceptible and -resistant Aspergillus fumigatus in a murine model of invasive aspergillosis. Antimicrob Agents Chemother 1998; 42: 873–8

    PubMed  CAS  Google Scholar 

  48. Petraitis V, Petraitiene R, Groll AH, et al. Antifungal efficacy, safety, and single-dose pharmacokinetics of LY303366, a novel echinocandin B, in experimental pulmonary aspergillosis in persistently neutropenic rabbits. Antimicrob Agents Chemother 1998; 42: 2898–905

    PubMed  CAS  Google Scholar 

  49. Petraitiene R, Petraitis V, Groll AH, et al. Efficacy of LY303366, a novel echinocandin, against disseminated candidiasis in persistently neutropenic rabbits [abstract no. J-73]. 38th Intersciences Conference on Antimicrobial Agents and Chemotherapy; 1998 Sep 24–27; San Diego. Washington, DC: American Society for Microbiology, 1998

    Google Scholar 

  50. Petraitis V, Petraitiene R, Candelario M, et al. Efficacy of LY303366, a semisynthetic echinocandin, against fluconazoleresistant esophageal candidiasis [abstract no. J-72]. 38th Intersciences Conference on Antimicrobial Agents and Chemotherapy; 1998 Sep 24–27; San Diego. Washington, DC: American Society for Microbiology, 1998

    Google Scholar 

  51. Rajman I, Desante K, Hatcher B, et al. LY303366 single intravenous dose pharmacokinetics and safety in healthy volunteers [abstract no. F74]. 37th Intersciences Conference on Antimicrobial Agents and Chemotherapy; 1997 Sep 28–Oct 1; Toronto. Washington, DC: American Society for Microbiology, 1997

    Google Scholar 

  52. Kurtz MB, Douglas CM. Lipopeptide inhibitors of fungal glucan synthesis. J Med Vet Mycol 1997; 35: 79–86

    Article  PubMed  CAS  Google Scholar 

  53. Marco F, Pfaller MA, Messer SA, et al. Activity of MK-0991 (L743,872), a new echinocandin, compared with those of LY303366 and four other antifungal agents tested against blood stream isolates of Candida spp. Diagn Microbiol Infect Dis 1998; 31: 33–7

    Article  Google Scholar 

  54. del Poeta M, Schell WA, Perfect JR. In vitro antifungal activity of L-743,873 against a variety of clinically important molds. Antimicrob Agents Chemother 1997; 41: 1835–6

    PubMed  Google Scholar 

  55. Graybill JR, Najvar LK, Luther MF, et al. Treatment of murine disseminated candidiasis with L-743,872. Antimicrob Agents Chemother 1997; 41: 1775–7

    PubMed  CAS  Google Scholar 

  56. Abruzzo GK, Flattery AM, Gill CJ, et al. Evaluation of the echinocandin antifungal MK-0991 (L743,872): efficacies in mouse models of disseminated aspergillosis, candidiasis, and cryptococcosis. Antimicrob Agents Chemother 1997; 41: 2333–8

    PubMed  CAS  Google Scholar 

  57. Powles MA, Liberator P, Anderson J, et al. Efficacy of MK-991 (L-743,872), a semisynthetic pneumocandin, in murine models of Pneumocystis carinii. Antimicrob Agents Chemother 1998; 42: 1985–9

    PubMed  CAS  Google Scholar 

  58. Graybill JR, Najvar LK, Montalbo EM, et al. Treatment of histoplasmosis with MK-991 (L-743,872). Antimicrob Agents Chemother 1998; 42: 151–3

    PubMed  CAS  Google Scholar 

  59. Hajdu R, Thompson R, Sundelof JG, et al. Preliminary animal pharmacokinetics of the parenteral antifungal agent MK-0991 (L-743,872). Antimicrob Agents Chemother 1997; 41: 2339–44

    PubMed  CAS  Google Scholar 

  60. Arathoon E, Gotuzzo E, Noriega L, et al. A randomized, double-blind, multicenter trial of MK-0991, an echinocandin antifungal agent, vs amphotericin B for the treatment of oropharyngeal and esophageal candidiasis in adults [abstract no. 99]. 35th Infectious Diseases Society of America Annual Meeting; 1997 Sep 13–16; San Francisco

    Google Scholar 

  61. Hector RF. Compounds active against cell walls of medically important fungi. Clin Microbiol Rev 1993; 6: 1–21

    PubMed  CAS  Google Scholar 

  62. Hector RF, Zimmer BL, Pappagianis D. Evaluation of nikkomycin X and Z in murine models of coccidioidomycosis, histoplasmosis, and blastomycosis. Antimicrob Agents Chemother 1990; 34: 587–93

    Article  PubMed  CAS  Google Scholar 

  63. Clemons KV, Stevens DA. Effect of nikkomycin Z against experimental pulmonary blastomycosis. Antimicrob Agents Chemother 1997; 41: 2026–8

    PubMed  CAS  Google Scholar 

  64. Graybill JR, Najvar LK, Bocanegra R, et al. Efficacy of nikkomycin Z in the treatment of murine histoplasmosis. Antimicrob Agents Chemother 1998; 42: 2371–4

    PubMed  CAS  Google Scholar 

  65. Fung-Tomc JC, Minassian B, Huczko E, et al. In vitro antifungal and fungicidal spectra of a new pradimicin derivative, BMS-181184. Antimicrob Agents Chemother 1995; 39: 295–300

    Article  PubMed  CAS  Google Scholar 

  66. Wardle HM, Law D, Denning DW. In vitro activity of BMS- 181184 compared with those of fluconazole and amphotericin B against various Candida spp. Antimicrob Agents Chemother 1996; 40: 2229–31

    PubMed  CAS  Google Scholar 

  67. Karlowsky JA, Zhanel GG, Balko TV, et al. In vitro antifungal activity of BMS-181184 against systemic isolates of Candida, Cryptococcus, and Blastomyces species. Diagn Microbiol Infect Dis 1997; 28: 179–82

    Article  PubMed  CAS  Google Scholar 

  68. Groll AH, Sein T, Petraitis V, et al. Compartmental pharmacokinetics and tissue distribution of the pradimicin derivative BMS 181184 in rabbits. Antimicrob Agents Chemother 1998; 42: 2700–5

    PubMed  CAS  Google Scholar 

  69. Dominguez JM, Kelly VA, Kinsman OS, et al. Sordarins: a new class of antifungals with selective inhibition of the protein synthesis elongation cycle in yeasts. Antimicrob Agents Chemother 1998; 42: 2274–8

    PubMed  CAS  Google Scholar 

  70. Dominguez JM, Martin JJ. Identification of elongation factor 2 as the essential protein targeted by the sordarins in Candida albicans. Antimicrob Agents Chemother 1998; 42: 2279–83

    PubMed  CAS  Google Scholar 

  71. Herreros E, Martinez CM, Almela MJ, et al. Sordarins: in vitro activities of new antifungal derivatives against pathogenic yeasts, Pneumocystis carinii, and filamentous fungi. Antimicrob Agents Chemother 1998; 42: 2863–9

    PubMed  CAS  Google Scholar 

  72. Martinez A, Jimenez E, Aviles P, et al. Activity of GM 237354 against murine models of systemic and oral candidiasis [abstract no. F60]. 37th Intersciences Conference on Antimicrobial Agents and Chemotherapy; 1997 Sep 28–Oct 1; Toronto. Washington, DC: American Society for Microbiology, 1997

    Google Scholar 

  73. Clemons KV, Stevens DA. Efficacy of sordaricin derivatives GM193663, GM211676, or GM237354 in a murine model of systemic coccidioidomycosis [abstract no. F62]. 37th Intersciences Conference on Antimicrobial Agents and Chemotherapy; 1997 Sep 28–Oct 1; Toronto. Washington, DC: American Society for Microbiology, 1997

    Google Scholar 

  74. Najvar LK, Bocanegra RA, Fothergill A, et al. New sodaricin antifungal drugs active in murine histoplasmosis [abstract no. F63]. 37th Intersciences Conference on Antimicrobial Agents and Chemotherapy; 1997 Sep 28–Oct 1; Toronto. Washington, DC: American Society for Microbiology, 1997

    Google Scholar 

  75. Herreros E, Martinez A, Jimenez E, et al. Anti-pneumocystosis activity of GM237354 in vitro and in vivo [abstract no. F64]. 37th Intersciences Conference on Antimicrobial Agents and Chemotherapy; 1997 Sep 28–Oct 1; Toronto. Washington, DC: American Society for Microbiology, 1997

    Google Scholar 

  76. Herreros E, Martinez A, Almela MJ, et al. GM237354: in vitro selectivity and tolerance in rodents [abstract no. F59]. 37th Intersciences Conference on Antimicrobial Agents and Chemotherapy; 1997Sep 28–Oct 1; Toronto. Washington, DC: American Society for Microbiology, 1997

    Google Scholar 

  77. Georgopapadakou NH, Walsh TJ. Antifungal agents: chemotherapeutic targets and immunologic strategies. Antimicrob Agents Chemother 1996; 40: 279–91

    PubMed  CAS  Google Scholar 

  78. Shen LL, Baranowski J, Fostel J, et al. DNA topoisomerases from pathogenic fungi: targets for the discovery of antifungal drugs. Antimicrob Agents Chemother 1992; 36: 2778–84

    Article  PubMed  CAS  Google Scholar 

  79. Monk BC, Perlin DS. Fungal plasma membrane proton pumps as promising new antifungal targets. Crit Rev Microbiol 1994; 20: 209–23

    Article  PubMed  CAS  Google Scholar 

  80. Hancock REW. Peptide antibiotics. Lancet 1997; 349: 418-22

    Google Scholar 

  81. del Poeta M, Schell WA, Dykstra CC, et al. In vitro antifungal activities of a series of dication-substituted carbazoles, furans, and benzimidazoles. Antimicrob Agents Chemother 1998; 42: 2503–10

    PubMed  Google Scholar 

  82. Zakula D, Capobianco JO, Goldman RC. Novel antifungal agents which inhibit lanosterol 14?-demethylase in Candida albicans CCH442. J Antimicrob Chemother 1997; 39: 261–4

    Article  PubMed  CAS  Google Scholar 

  83. Li L, Thomas DJ, Grampovnick L, et al. Synthesis and antifungal activities of cyclopentamines: novel cell wall synthesis inhibitors [abstract no. F238]. 37th Intersciences Conference on Antimicrobial Agents and Chemotherapy; 1997 cdSep 28–Oct 1; Toronto. Washington, DC: American Society for Microbiology, 1997

    Google Scholar 

  84. Mehta RT, Hopfer RL, McQueen T, et al. Toxicity and therapeutic effects in mice of liposome-encapsulated nystatin for systemic fungal infections. Antimicrob Agents Chemother 1987; 31: 1901–3

    Article  PubMed  CAS  Google Scholar 

  85. Boutati E, Maltezou HC, Lopez-Berestin G, et al. Phase I study of maximum tolerated dose of intravenous liposomal nystatin for the treatment of refractory febrile neutropenia in patients with hematological malignancies [abstract no. LM22]. 35th Intersciences Conference on Antimicrobial Agents and Chemotherapy; 1995 Sep 17–20; San Francisco. Washington, DC: American Society for Microbiology, 1995

    Google Scholar 

  86. Rimaroli C, Bruzzese T. In vitro activity of a new polyene, SPA-S-843, against yeasts. Antimicrob Agents Chemother 1998; 42: 3012–3

    PubMed  CAS  Google Scholar 

  87. Graybill JR, Najvar LK, Fothergill A, et al. KY-62, a polyene analog of amphotericin B, for treatment of murine candidiasis. Antimicrob Agents Chemother 1998; 42: 147–50

    Article  PubMed  CAS  Google Scholar 

  88. Hossain MA, Maesaki S, Kakeya H, et al. Efficacy of NS-718, a novel lipid nanosphere-encapsulated amphotericin B, against Cryptococcus neoformans. Antimicrob Agents Chemother 1998; 42: 1722–5

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol A. Kauffman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kauffman, C.A. Systemic Antifungal Agents. Drugs R&D 1, 153–159 (1999). https://doi.org/10.2165/00126839-199901020-00009

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00126839-199901020-00009

Keywords

Navigation