Skip to main content
Log in

Biomarker Analysis as a Decision-Making Tool in Drug Discovery and Development

Implications for Peroxisome Proliferator-Activator Receptors

  • Leading Article
  • Published:
International Journal of Pharmaceutical Medicine Aims and scope Submit manuscript

Abstract

Biomarkers are measurable properties that reflect the pathophysiology of disease, mechanism of action of a molecule or the interaction between the two. The early implementation of a biomarker strategy within drug development offers a great opportunity to enhance the efficiency of drug development. More specifically, biomarkers may be used to aid in lead compound selection, dose focusing, patient stratification and defining the mechanism of action of novel therapeutics. Validated biomarkers, especially surrogate endpoints, may have broader utility in both a regulatory context and in clinical practice. Biomarkers may be used to evaluate both the safety and efficacy of new drugs. Biomarker identification is enhanced with a clear understanding of the steps involved in a pathophysiology cascade.

Biomarkers discovered with the aid of molecular profiling may have particular utility in approaching complex diseases with poorly characterised pathophysiology, as in type 2 diabetes mellitus. For example, expression profiling experiments enabled the discovery of the 30kD protein adiponectin — a specific biomarker for in vivo activation of peroxisome proliferator-activator receptor gamma (PPARψ) activity. Adiponectin offers great utility in short-term clinical studies in healthy volunteers or patients with type 2 diabetes to assess whether new potential PPAR? agonists are efficacious in humans. In addition to enlightening key underlying pathophysiology, biomarkers such as adiponectin allow for improved decision-making earlier in development.

Ultimately biomarkers can be used to optimise development efficiency from discovery through to registration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I

Similar content being viewed by others

References

  1. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 2001; 69: 89–95

    Article  Google Scholar 

  2. Lesko LJ, Atkinson AJ. Use of biomarkers and surrogate endpoints in drug development and regulatory decision making: criteria, validation, strategies. Annu Rev Pharmacol Toxicol 2001; 41: 347–66

    Article  PubMed  CAS  Google Scholar 

  3. Ackerman BL, Hale JE, Duffin KL. The role of mass spectrometry in biomarker discovery and measurement. Curr Drug Metab 2006; 7: 525–39

    Article  Google Scholar 

  4. Aronson JK. Biomarkers and surrogate endpoints. Br J Clin Pharmacol 2005; 59: 491–4

    Article  PubMed  CAS  Google Scholar 

  5. Horig H, Marincola E, Marincola FM. Obstacles and opportunities in translational research. Nat Med 2005; 7 (11): 705–8

    Article  Google Scholar 

  6. Wagner JA. Overview of biomarkers and surrogate endpoints in drug development. Dis Markers 2002; 18: 41–6

    PubMed  CAS  Google Scholar 

  7. Lesko LJ, Woodcock J. Translation of pharmacogenomics and pharmacogenetics: a regulatory perspective. Nat Rev Drug Disc 2004; 3: 763–9

    Article  CAS  Google Scholar 

  8. Guidance for Industry. Pharmacogenomic data submissions. Mar 2005 [online]. Available from http://www.fda.gov [Accessed 2007 Jul 10]

  9. FDA-NIH conference: biomarkers and surrogate endpoints: advancing clinical research and applications [abstracts]. Dis Markers 1998; 14 (4): 187–334

    Google Scholar 

  10. Lathia CD. Biomarkers and surrogate endpoints: how and when might they impact drug development? Dis Markers 2002; 18: 83–90

    PubMed  CAS  Google Scholar 

  11. Srivastava S, Wagner JA. Surrogate endpoints in medicine. Dis Markers 2002; 18: 39–40

    Google Scholar 

  12. Mol MJTM, Erkelens DW, Gevers JA, et al. Effects of simvastatin (MK-733) on plasma lipids in familial hypercholesterolemia. Lancet 1986 Oct 25; 2 (8513): 936–9

    Article  PubMed  CAS  Google Scholar 

  13. Lipids Research Clinics Program. The relationship of reduction in incidence of coronary artery heart disease to cholesterol lowering. JAMA 1984; 251: 365–74

    Article  Google Scholar 

  14. Exht DS, Liebon B, Mitchell RW, et al. Mortality and morbidity of patients receiving encainide, flecainide or placebo: the cardiac arrhythmia suppression trial. N Eng J Med 1991; 324: 781–8

    Article  Google Scholar 

  15. Biomarkers Definitions Working Group. Biomarkers surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 2001; 69 (3): 89–95

    Article  Google Scholar 

  16. Marschner IC, Collier AC, Coombs RW, et al. Use of changes in plasma levels of human immunodeficiency virus type 1 RNA to assess the clinical benefit of antiretroviral therapy. J Infect Dis 1998; 177: 40–7

    Article  PubMed  CAS  Google Scholar 

  17. Ludwig JA, Weinstein JN. Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer 2005; 5: 845–56

    Article  PubMed  CAS  Google Scholar 

  18. Gutman S, Kessler LG. The US Food and Drug Administration perspective on cancer biomarker development. Nat Rev Cancer 2006; 6: 565–71

    Article  PubMed  CAS  Google Scholar 

  19. FDA clears genetic test that advances personalized medicine test helps determine safety of drug therapy. 2005 Aug 22 [press release; online]. Available from URL: http://www.fda.gov/bbs/topics/NEWS/2005/NEW01220.html [Accessed 2007 Jul 10]

  20. Lewin DA, Weiner MP. Molecular biomarkers in drug development. Drug Disc Today 2004; 9 (22): 976–83

    Article  CAS  Google Scholar 

  21. Combs TP, Wagner JA, Berger J, et al. Induction of adipocyte complement-related protein of 30 kilodaltons by PPAR? agonists: a potential mechanism of insulin sensitization. Endocrinology 2002; 143 (3): 998–1007

    Article  PubMed  CAS  Google Scholar 

  22. Yang WS, Jeng CY, Wu TJ, et al. Synthetic peroxisome proliferator-activated receptor-ψ agonist, rosiglitazone, increases plasma levels of adiponectin in type 2 diabetic patients. Diabetes Care 2002; 25 (2): 376–80

    Article  PubMed  CAS  Google Scholar 

  23. Nawrocki AR, Scherer PE. The adipocyte as a drug discovery target. Drug Disc Today 2005; 10 (18): 1219–30

    Article  CAS  Google Scholar 

  24. Bloom S. Prominent investigator wins diabetes research award. J Clin Invest 2005; 115: 1678

    Google Scholar 

  25. Gimeno RE, Klaman LD. Adipose tissue as an active endocrine organ: recent advances. Curr Opin Pharmaocol 2005; 5: 122–8

    Article  CAS  Google Scholar 

  26. Pajvani UB, Scherer PE. Adiponectin: systemic contributor to insulin sensitivity. Curr Diab Rep 2003; 2: 207–13

    Article  Google Scholar 

  27. Hu E, Liang P, Spiegelman BM. AdipoQ is a novel adipose-specific gene dysregu-lated in obesity. J Biol Chem 1996; 271: 10697–703

    Article  PubMed  CAS  Google Scholar 

  28. Scherer PE, Williams S, Fogliano M, et al. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem 1995; 270: 26746–9

    Article  PubMed  CAS  Google Scholar 

  29. Schapiro L, Scherer PE. The crystal structure of a complement-1q family protein suggests an evolutionary link to tumor necrosis factor. Curr Biol 1998; 8: 335–8

    Article  Google Scholar 

  30. Pajvani UB, Du X, Combs TP, et al. Structure-function studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications for metabolic regulation and bioactivity. J Biol Chem 2003; 278: 9073–85

    Article  PubMed  CAS  Google Scholar 

  31. Rajala MW, Scherer PE. Minireview: The adipocyte at the crossroads of energy homeostasis, inflammation, and atherosclerosis. Endocrinology 2003; 5: 122–8

    Google Scholar 

  32. Xu A, Wang Y, Keshaw H, et al. The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J Clin Invest 2003; 112: 91–100

    PubMed  CAS  Google Scholar 

  33. Wang Y, Xu A, Knight C, et al. Hydroxylation and glycosylation of the four conserved lysine residues in the collagenous domain of adiponectin. J Biol Chem 2002; 277: 19521–9

    Article  PubMed  CAS  Google Scholar 

  34. Yamauchi T, Kamon J, Ito Y, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 2003; 423: 762–9

    Article  PubMed  CAS  Google Scholar 

  35. Fruebis J, Tsao TS, Javorschi S, et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci U S A 2001; 98: 2005–10

    Article  PubMed  CAS  Google Scholar 

  36. Yamauchi T, Kamon J, Waki H, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 2001; 7: 941–6

    Article  PubMed  CAS  Google Scholar 

  37. Berg AH, Combatsiaris TC, Du X, et al. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med 2001; 7: 947–53

    Article  PubMed  CAS  Google Scholar 

  38. Wagner JA. Early clinical development of pharmaceuticals for type 2 diabetes mellitus: from preclinical models to human investigation. J Clin Endo Metab 2002, 6

    Google Scholar 

  39. Wagner JA, Larson PJ, Weiss S, et al. Individual and combined effects of peroxisome proliferator-activated receptor α and ψ agonists, fenofibrate and rosiglitazone, on biomarkers of lipid and glucose metabolism in healthy nondiabetic volunteers. J Clin Pharmacol 2005; 45: 504–13

    Article  PubMed  CAS  Google Scholar 

  40. Pajvani UB, Hawkins M, et al. Complex distribution, not absolute amount of adiponectin, correlates with thiazolinedione-mediated improvement in insulin sensitivity. J Biol Chem 2004; 279 (13): 12152–62

    Article  PubMed  CAS  Google Scholar 

  41. Das K, Lin Y, Widen E, et al. Chromosomal localization, expression pattern and promoter analysis of the mouse gene encoding adipocyte-specific secretory protein Acrp30. Biochem Biophys Res Commun 2001; 280: 1120–9

    Article  PubMed  CAS  Google Scholar 

  42. Tontonoz P, Hu E, Spiegelman BM. Regulation of adipocyte gene expression and differentiation by peroxisome proliferator activated receptor?. Curr Biol 1995; 5: 571–6

    CAS  Google Scholar 

  43. O’Connor-Semmes R, Mydlow P, Walker A, et al. G1262570, a PPAR? agonist, maintains metabolic improvements throughout 24 hour profiles in type 2 diabetic patients. Diabetes 2000; 49 Suppl. 1: A119

    Google Scholar 

  44. Fiedorek FT, Wilson GG, Frith L, et al. Monotherapy with G1262570, a tyrosine- based non-thiazolidinedione PPAR? agonist, improves metabolic control in type 2 diabetes patients. Diabetes 2000; 49 (Suppl. 1): A38

    Google Scholar 

Download references

Acknowledgements

The authors are both employees at Merck & Co. Inc. and own stock options in the company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Wagner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoch, S.A., Wagner, J.A. Biomarker Analysis as a Decision-Making Tool in Drug Discovery and Development. Int J Pharm Med 21, 271–277 (2007). https://doi.org/10.2165/00124363-200721040-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00124363-200721040-00003

Keywords

Navigation