Skip to main content
Log in

Noninvasive Brain Imaging for Experimental Medicine in Drug Discovery and Development

Promise and Pitfalls

  • Review Article
  • Published:
International Journal of Pharmaceutical Medicine Aims and scope Submit manuscript

Abstract

There is currently increased focus on experimental medicine in drug development. Imaging methods potentially provide highly cost-effective, general approaches for the noninvasive characterisation of disease and pharmacokinetics, pharmacodynamics and drug effects directly in humans in ways that can enable this. The two methods most widely employed now are positron emission tomography (PET) and magnetic resonance imaging (MRI). PET allows the distribution of radiolabelled molecules to be mapped, enabling studies of molecule distribution and tissue metabolism. MRI was initially used primarily to define tissue structure, but a more recent range of functional MRI techniques promise the potential to define pharmacokinetic data over biologically meaningful timescales. With an understanding of the relationship between imaging biomarker changes and clinical outcomes, imaging can be used as a surrogate marker of response even for the later stages of drug development.

There are pitfalls in the application of these methods, which need to be avoided. The two most common are: (i) getting distracted by the technology rather than focusing on the questions that need to be asked; and (ii) the failure to interpret the imaging data in an appropriate disease- and drug-specific fashion. However, with attention to such issues, imaging should prove a powerful facilitating platform for experimental medicine in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Steinman L. Assessment of animal models for MS and demyelinating disease in the design of rational therapy. Neuron 1999; 24 (3): 511–4

    Article  PubMed  CAS  Google Scholar 

  2. Wrighton SA, Stevens JC. The human hepatic cytochromes P450 involved in drug metabolism. Crit Rev Toxicol 1992; 22 (1): 1–21

    Article  PubMed  CAS  Google Scholar 

  3. Ziessman H, Wahl R, Juni J, et al. The utility of SPECT for 99mTc-MAA hepatic arterial perfusion scintigraphy. Am J Roentgenol 1985; 145 (4): 747–51

    CAS  Google Scholar 

  4. Jokeit H, Okujava M, Woermann FG. Carbamazepine reduces memory induced activation of mesial temporal lobe structures: a pharmacological fMRI-study. BMC Neurol 2001; 1: 6. Epub 2001 Dec 8

    Article  PubMed  CAS  Google Scholar 

  5. McFarland HF, Barkhof F, Antel J, et al. The role of MRI as a surrogate outcome measure in multiple sclerosis. Mult Scler 2002; 8 (1): 40–51

    Article  PubMed  CAS  Google Scholar 

  6. Miller DH, Barkhof F, Frank JA, et al. Measurement of atrophy in multiple sclerosis: pathological basis, methodological aspects and clinical relevance. Brain 2002; 125 (Pt 8): 1676–95

    Article  PubMed  Google Scholar 

  7. Phelps ME. PET: molecular imaging and its biological applications. New York: Springer-Verlag, 2004

    Google Scholar 

  8. Phelps ME. Inaugural article: positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci U S A 2000; 97 (16): 9226–33

    Article  PubMed  CAS  Google Scholar 

  9. Wang J, Maurer L. Positron emission tomography: applications in drug discovery and drug development. Curr Top Med Chem 2005; 5 (11): 1053–75

    Article  PubMed  CAS  Google Scholar 

  10. Cunningham VJ, Parker CA, Rabiner EA, et al. PET studies in drug development: methodological considerations. Drug Discovery Today: Technologies 2005; 2 (4): 311–5

    Article  CAS  Google Scholar 

  11. Lappin G, Garner RC. Big physics, small doses: the use of AMS and PET in human microdosing of development drugs. Nat Rev Drug Discov 2003; 2 (3): 233–40

    Article  PubMed  CAS  Google Scholar 

  12. Bergstrom M, Grahnen A, Langstrom B. Positron emission tomography microdosing: a new concept with application in tracer and early clinical drug development. Eur J Clin Pharmacol 2003; 59 (5–6): 357–66

    Article  PubMed  Google Scholar 

  13. Martinez D, Hwang D, Mawlawi O, et al. Differential occupancy of somatodendritic and postsynaptic 5HT (1A) receptors by pindolol: a dose-occupancy study with [11C]WAY 100635 and positron emission tomography in humans. Neuropsychopharmacology 2001; 24 (3): 209–29

    Article  PubMed  CAS  Google Scholar 

  14. Bench CJ, Lammertsma AA, Grasby PM, et al. The time course of binding to striatal dopamine D2 receptors by the neuroleptic ziprasidone (CP-88,059-01) determined by positron emission tomography. Psychopharmacology (Berl) 1996; 124 (1–2): 141–7

    Article  CAS  Google Scholar 

  15. Malizia AL, Gunn RN, Wilson SJ, et al. Benzodiazepine site pharmacokinetic/ pharmacodynamic quantification in man: direct measurement of drug occupancy and effects on the human brain in vivo. Neuropharmacology 1996; 35 (9–10): 1483–91

    Article  PubMed  CAS  Google Scholar 

  16. Hargreaves R. Imaging substance P receptors (NK1) in the living human brain using positron emission tomography. J Clin Psychiatry 2002; 63 Suppl. 11: 18–24

    PubMed  CAS  Google Scholar 

  17. Nordstrom AL, Farde L, Wiesel FA, et al. Central D2-dopamine receptor occupancy in relation to antipsychotic drug effects: a double-blind PET study of schizophrenic patients. Biol Psychiatry 1993; 33 (4): 227–35

    Article  PubMed  CAS  Google Scholar 

  18. Farde L, Nordstrom AL, Wiesel FA, et al. Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine: relation to extrapyramidal side effects. Arch Gen Psychiatry 1992; 49 (7): 538–44

    Article  PubMed  CAS  Google Scholar 

  19. Czernin J, Weber WA, Herschman HR. Molecular imaging in the development of cancer therapeutics. Annu Rev Med 2006; 57: 99–118

    Article  PubMed  CAS  Google Scholar 

  20. Stroobants S, Goeminne J, Seegers M, et al. 18FDG-Positron emission tomography for the early prediction of response in advanced soft tissue sarcoma treated with imatinib mesylate (Glivec). Eur J Cancer 2003; 39 (14): 2012–20

    Article  PubMed  CAS  Google Scholar 

  21. Petrovic P, Kalso E, Petersson KM, et al. Placebo and opioid analgesia: imaging a shared neuronal network. Science 2002; 295 (5560): 1737–40

    Article  PubMed  CAS  Google Scholar 

  22. Koepp MJ, Woermann FG. Imaging structure and function in refractory focal epilepsy. Lancet Neurol 2005; 4 (1): 42–53

    Article  PubMed  Google Scholar 

  23. Miller DH, Thompson AJ, Filippi M, Magnetic resonance studies of abnormalities in the normal appearing white matter and grey matter in multiple sclerosis. J Neurol 2003; 250 (12): 1407–19

    Article  PubMed  CAS  Google Scholar 

  24. Bilder RM, Wu H, Chakos MH, et al. Cerebral morphometry and clozapine treatment in schizophrenia. J Clin Psychiatry 1994; 55 Suppl. B: 53–6

    PubMed  Google Scholar 

  25. Gaser C, Nenadic I, Buchsbaum BR, et al. Ventricular enlargement in schizophrenia related to volume reduction of the thalamus, striatum, and superior temporal cortex. Am J Psychiatry 2004; 161 (1): 154–6

    Article  PubMed  Google Scholar 

  26. Ashburner J, Friston KJ. Voxel-based morphometry: the methods. Neuroimage 2000; 11 (6 Pt 1): 805–21

    Article  Google Scholar 

  27. Good CD, Ashburner J, Frackowiak RS. Computational neuroanatomy: new perspectives for neuroradiology. Rev Neurol (Paris) 2001; 157 (8–9 Pt 1): 797–806

    CAS  Google Scholar 

  28. Logothetis NK, Pauls J, Augath M, et al. Neurophysiological investigation of the basis of the fMRI signal. Nature 2001; 412 (6843): 150–7

    Article  PubMed  CAS  Google Scholar 

  29. Jezzard P, Matthews PM, Smith SM. Functional MRI: an introduction to methods. Oxford: Oxford University Press, 2001

    Google Scholar 

  30. Matthews PM, Jezzard P. Functional magnetic resonance imaging. J Neurol Neurosurg Psychiatry 2004; 75 (1): 6–12

    PubMed  CAS  Google Scholar 

  31. Bookheimer SY, Strojwas MH, Cohen MS, et al. Patterns of brain activation in people at risk for Alzheimer’s disease. N Engl J Med 2000; 343 (7): 450–6

    Article  PubMed  CAS  Google Scholar 

  32. Kim SG, Richter W, Ugurbil K. Limitations of temporal resolution in functional MRI. Magn Reson Med 1997; 37 (4): 631–6

    Article  PubMed  CAS  Google Scholar 

  33. Devlin JT, Russell RP, Davis MH, et al. Susceptibility-induced loss of signal: comparing PET and fMRI on a semantic task. Neuroimage 2000; 11 (6 Pt 1): 589–600

    Article  PubMed  CAS  Google Scholar 

  34. Buxton RB, Uludag K, Dubowitz DJ, et al. Modeling the hemodynamic response to brain activation. Neuroimage 2004; 23 Suppl. 1: S220–33

    Article  Google Scholar 

  35. Brooks DJ. Imaging basal ganglia function. J Anat 2000; 196 (Pt 4): 543–54

    Article  PubMed  Google Scholar 

  36. Brooks DJ. Functional imaging studies on dopamine and motor control. J Neural Transm 2001; 108 (11): 1283–98

    Article  PubMed  CAS  Google Scholar 

  37. Brooks DJ, Frey KA, Marek KL, et al. Assessment of neuroimaging techniques as biomarkers of the progression of Parkinson’s disease. Exp Neurol 2003; 184 Suppl. 1: S68–79

    Article  Google Scholar 

  38. Maccioni RB, Lavados M, Maccioni CB, et al. Biological markers of Alzheimer’s disease and mild cognitive impairment. Curr Alzheimer Res 2004; 1 (4): 307–14

    Article  PubMed  CAS  Google Scholar 

  39. Grossman M, Farmer J, Leight S, et al. Cerebrospinal fluid profile in frontotemporal dementia and Alzheimer’s disease. Ann Neurol 2005; 57 (5): 721–9

    Article  PubMed  Google Scholar 

  40. Nordberg A. PET imaging of amyloid in Alzheimer’s disease. Lancet Neurol 2004; 3 (9): 519–27

    Article  PubMed  CAS  Google Scholar 

  41. Klunk WE, Engler H, Nordberg A, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 2004; 55 (3): 306–19

    Article  PubMed  CAS  Google Scholar 

  42. Ward NS, Brown MM, Thompson AJ, et al. The influence of time after stroke on brain activations during a motor task. Ann Neurol 2004; 55 (6): 829–34

    Article  PubMed  Google Scholar 

  43. Ward NS, Frackowiak RS. Towards a new mapping of brain cortex function. Cerebrovasc Dis 2004; 17 Suppl. 3: 35–8

    Article  PubMed  Google Scholar 

  44. Johansen-Berg H, Dawes H, Guy C, et al. Correlation between motor improvements and altered fMRI activity after rehabilitative therapy. Brain 2002; 125 (Pt 12): 2731–42

    Article  PubMed  Google Scholar 

  45. Johansen-Berg H, Rushworth MF, Bogdanovic MD, et al. The role of ipsilateral premotor cortex in hand movement after stroke. Proc Natl Acad Sci U S A 2002; 99 (22): 14518–23

    Article  PubMed  CAS  Google Scholar 

  46. Lee MA, Blamire AM, Pendlebury S, et al. Axonal injury or loss in the internal capsule and motor impairment in multiple sclerosis. Arch Neurol 2000; 57 (1): 65–70

    Article  PubMed  CAS  Google Scholar 

  47. Mattay VS, Goldberg TE, Fera F, et al. Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. Proc Natl Acad Sci U S A 2003; 100 (10): 6186–91

    Article  PubMed  CAS  Google Scholar 

  48. Bertolino A, Caforio G, Blasi G, et al. Interaction of COMT (Val (108/158)Met) genotype and olanzapine treatment on prefrontal cortical function in patients with schizophrenia. Am J Psychiatry 2004; 161 (10): 1798–805

    Article  PubMed  Google Scholar 

  49. Blasi G, Mattay VS, Bertolino A, et al. Effect of catechol-O-methyltransferase val158met genotype on attentional control. J Neurosci 2005; 25 (20): 5038–45

    Article  PubMed  CAS  Google Scholar 

  50. Chan D, Janssen JC, Whitwell JL, et al. Change in rates of cerebral atrophy over time in early-onset Alzheimer’s disease: longitudinal MRI study. Lancet 2003; 362 (9390): 1121–2

    Article  PubMed  Google Scholar 

  51. Barnes J, Scahill RI, Boyes RG, et al. Differentiating AD from aging using semiautomated measurement of hippocampal atrophy rates. Neuroimage 2004; 23 (2): 574–81

    Article  PubMed  Google Scholar 

  52. Paty DW, Li DK. Interferon beta-lb is effective in relapsing-remitting multiple sclerosis: II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. 1993 [classical article]. Neurology 2001; 57 (12 Suppl. 5): S10–5

    Google Scholar 

  53. Rudick RA, Lee JC, Simon J, et al. Defining interferon beta response status in multiple sclerosis patients. Ann Neurol 2004; 56 (4): 548–55

    Article  PubMed  CAS  Google Scholar 

  54. Arnold DL, Shoubridge EA, Emrich J, et al. Early metabolic changes following chemotherapy of human gliomas in vivo demonstrated by phosphorus magnetic resonance spectroscopy. Invest Radiol 1989; 24 (12): 958–61

    Article  PubMed  CAS  Google Scholar 

  55. Arnold DL, Shoubridge EA, Feindel W, et al. Metabolic changes in cerebral gliomas within hours of treatment with intra-arterial BCNU demonstrated by phosphorus magnetic resonance spectroscopy. Can J Neurol Sci 1987; 14 (4): 570–5

    PubMed  CAS  Google Scholar 

  56. Fu CH, Williams SC, Cleare AJ, et al. Attenuation of the neural response to sad faces in major depression by antidepressant treatment: a prospective, event-related functional magnetic resonance imaging study. Arch Gen Psychiatry 2004; 61 (9): 877–89

    Article  PubMed  Google Scholar 

  57. Rajendran JG, Krohn KA. Imaging hypoxia and angiogenesis in tumors. Radiol Clin North Am 2005; 43 (1): 169–87

    Article  Google Scholar 

  58. Akella NS, Twieg DB, Mikkelsen T, et al. Assessment of brain tumor angiogenesis inhibitors using perfusion magnetic resonance imaging: quality and analysis results of a phase I trial. J Magn Reson Imaging 2004; 20 (6): 913–22

    Article  PubMed  Google Scholar 

  59. Parry AM, Scott RB, Palace J, et al. Potentially adaptive functional changes in cognitive processing for patients with multiple sclerosis and their acute modulation by rivastigmine. Brain 2003; 126 (Pt 12): 2750–60

    Article  PubMed  Google Scholar 

  60. Goekoop R, Scheltens P, Barkhof F, et al. Cholinergic challenge in Alzheimer patients and mild cognitive impairment differentially affects hippocampal activation: a pharmacological fMRI study. Brain 2006; 129 (Pt 1): 141–57

    PubMed  Google Scholar 

  61. Wilkinson D, Halligan P. The relevance of behavioural measures for functionalimaging studies of cognition. Nat Rev Neurosci 2004; 5 (1): 67–73

    Article  PubMed  CAS  Google Scholar 

  62. Wise RG, Rogers R, Painter D, et al. Combining fMRI with a pharmacokinetic model to determine which brain areas activated by painful stimulation are specifically modulated by remifentanil. Neuroimage 2002; 16 (4): 999–1014

    Article  PubMed  Google Scholar 

  63. Rogers R, Wise RG, Painter DJ, et al. An investigation to dissociate the analgesic and anesthetic properties of ketamine using functional magnetic resonance imaging. Anesthesiology 2004; 100 (2): 292–301

    Article  PubMed  CAS  Google Scholar 

  64. Borsook D, Ploghaus A, Becerra L. Utilizing brain imaging for analgesic drug development. Curr Opin Investig Drugs 2002; 3 (9): 1342–7

    PubMed  CAS  Google Scholar 

  65. Coghill RC, McHaffie JG, Yen YF, Neural correlates of interindividual differences in the subjective experience of pain. Proc Natl Acad Sci U S A 2003; 100 (14): 8538–42

    Article  PubMed  CAS  Google Scholar 

  66. Koeppe C, Schneider C, Thieme K, et al. The influence of the 5-HT3 receptor antagonist tropisetron on pain in fibromyalgia: a functional magnetic resonance imaging pilot study. Scand J Rheumatol Suppl 2004; (119): 24–7

    Google Scholar 

  67. Wise RG, Williams P, Tracey I. Using fMRI to quantify the time dependence of remifentanil analgesia in the human brain. Neuropsychopharmacology 2004; 29 (3): 626–35

    Article  PubMed  CAS  Google Scholar 

  68. van Laarhoven HW, Klomp DW, Kamm YJ, et al. In vivo monitoring of capecitabine metabolism in human liver by 19fluorine magnetic resonance spectroscopy at 1.5 and 3 Tesla field strength. Cancer Res 2003; 63 (22): 7609–12

    PubMed  Google Scholar 

  69. Klomp DW, van Laarhoven HW, Kentgens AP, et al. Optimization of localized 19F magnetic resonance spectroscopy for the detection of fluorinated drugs in the human liver. Magn Reson Med 2003; 50 (2): 303–8

    Article  PubMed  CAS  Google Scholar 

  70. Krams M, Lees KR, Berry DA. The past is the future: innovative designs in acute stroke therapy trials. Stroke 2005; 36 (6): 1341–7

    Article  PubMed  Google Scholar 

  71. McFarland HF, Reingold SC. The future of multiple sclerosis therapies: redesigning multiple sclerosis clinical trials in a new therapeutic era. Mult Scler 2005; 11 (6): 669–76

    Article  PubMed  CAS  Google Scholar 

  72. Heinz A, Siessmeier T, Wrase J, et al. Correlation between dopamine D (2) receptors in the ventral striatum and central processing of alcohol cues and craving. Am J Psychiatry 2004; 161 (10): 1783–9

    Article  PubMed  Google Scholar 

  73. Heinz A, Siessmeier T, Wrase J, et al. Correlation of alcohol craving with striatal dopamine synthesis capacity and D2/3 receptor availability: a combined [18F]DOPA and [18F]DMFP PET study in detoxified alcoholic patients. Am J Psychiatry 2005; 162 (8): 1515–20

    Article  PubMed  Google Scholar 

  74. Farahani K, Slates R, Shao Y, et al. Contemporaneous positron emission tomography and MR imaging at 1.5 T. J Magn Reson Imaging 1999; 9 (3): 497–500

    Article  PubMed  CAS  Google Scholar 

  75. Marsden PK, Strul D, Keevil SF, et al. Simultaneous PET and NMR. Br J Radiol 2002; 75 Spec No: S53–9

    Google Scholar 

  76. Bielekova B, Kadom N, Fisher E, et al. MRI as a marker for disease heterogeneity in multiple sclerosis. Neurology 2005; 65 (7): 1071–6

    Article  PubMed  CAS  Google Scholar 

  77. Filippi M, Tortorella C, Rovaris M, Magnetic resonance imaging of multiple sclerosis. J Neuroimaging 2002; 12 (4): 289–301

    Article  PubMed  Google Scholar 

  78. Filippi M, Grossman RI. MRI techniques to monitor MS evolution: the present and the future. Neurology 2002; 58 (8): 1147–53

    Article  PubMed  Google Scholar 

  79. Albert MS, Cates GD, Driehuys B, et al. Biological magnetic resonance imaging using laser-polarized 129Xe. Nature 1994; 370 (6486): 199–201

    Article  PubMed  CAS  Google Scholar 

  80. Kauczor H, Hofmann D, Kreitner K, et al. Normal and abnormal pulmonary ventilation: visualization at hyperpolarized He-3 MR imaging. Radiology 1996; 201 (2): 564–8

    PubMed  CAS  Google Scholar 

  81. de Lange EE, Mugler III JP, Brookeman JR, et al. Lung air spaces: MR imaging evaluation with hyperpolarized 3He gas. Radiology 1999; 210 (3): 851–7

    PubMed  Google Scholar 

  82. Choudhury RP, Fuster V, Fayad ZA. Molecular, cellular and functional imaging of atherothrombosis. Nat Rev Drug Discov 2004; 3 (11): 913–25

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Dr Matthews wishes to thank the MRC for research support in the University of Oxford and gratefully acknowledges receipt of an MRC Clinical Research Chair.

The authors have provided no information on sources of funding or on conflicts of interest directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whitcher, B., Matthews, P.M. Noninvasive Brain Imaging for Experimental Medicine in Drug Discovery and Development. Int J Pharm Med 20, 167–175 (2006). https://doi.org/10.2165/00124363-200620030-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00124363-200620030-00003

Keywords

Navigation