Skip to main content
Log in

New Biochemical Tools for Diagnosing Acute Coronary Syndromes

Impact on Patient Outcomes and Resource Utilization in Hospitals

  • Review Article
  • Published:
Disease Management & Health Outcomes

Abstract

This article reviews the value of myoglobin, troponins, and creatine kinase, MB fraction (CK-MB) in diagnosis, risk stratification, and prognosis in patients presenting to hospital emergency departments (ED) with symptoms suggestive of acute coronary syndromes. Because the three markers differ in specificities and their sensitivities vary with time after the onset of chest pain, the authors suggest that serial measurements for all three markers by point-of-care methods will optimize patient outcomes and reduce resource utilization. The rationale for this strategy is examined from the viewpoint of ED physicians who must make diagnoses, risk stratify patients, and make treatment decisions in patients presenting with non-diagnostic ECGs.

The articles reviewed show that despite its elevation in renal and skeletal muscle disease, myoglobin offers more sensitivity for the early diagnosis of acute myocardial infarction (MI) than either CK-MB or troponins. The most important characteristic of myoglobin is its high negative predictive value for acute MI. Myoglobin also shows promise as a non-invasive marker of reperfusion status in patients undergoing thrombolytic therapy.

Articles are examined which indicate that cardiac troponin I and troponin T, despite standardization problems for troponin I, offer greater specificity than either CK-MB or myoglobin in detecting MI, particularly when measurements are made with third-generation assays at presentation and 6–12 hours later. Because troponin elevation persists for days after CK-MB and myoglobin have returned to normal, troponins have high sensitivity for detecting MIs in patients presenting days after the onset of chest pain.

The use of troponins in evaluating prognosis in patients with acute coronary syndromes — including those at low risk for MI, without ECG changes, triaged to a chest pain unit, with renal disease, undergoing noncardiac surgery, and undergoing treatment for MI — is discussed in detail because troponin concentrations may help to guide ED clinicians in diagnosis, risk stratification, and treatment.

Finally, key reports suggesting that rapid serial measurements of myoglobin, troponin, and CK-MB may improve patient outcomes and conserve hospital resources compared with laboratory-based testing are examined in detail.

Measurements of troponin, myoglobin, and CK-MB are useful in emergency care settings. Point-of-care tests are easy to perform and provide results rapidly enough to permit the use of marker concentrations in diagnosis and risk stratification. They offer an opportunity for clinicians to initiate prompt and aggressive treatments only when necessary, thus conserving hospital resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Garas S, Zafari AM. Myocardial infarction [online]. eMedicine 2002 Jan 23; 3 (1). Available from URL: http://www.emedicine.com/MED/topicl567.htm [Accessed 2003 Jun 25]

  2. Stahmer S, Baumann BM. Acute coronary syndrome [online]. eMedicine 2002 Jan 23; 3 (1). Available from URL: http://www.emedicine.com/EMERG/topic31.htm [Accessed 2003 Jun 25]

  3. Pope JH, Aufderheide TP, Selker HP, et al. Missed diagnoses of acute cardiac ischemia in the emergency department. N Engl J Med 2000; 342: 1163–70

    Article  PubMed  CAS  Google Scholar 

  4. National Heart Attack Alert Program Coordinating Committee, 60 Minutes to Treatment Working Group. Emergency department: rapid identification and treatment of patients with acute myocardial infarction. Ann Emerg Med 1994 Feb;23 (2): 311-29

  5. Roberts RR, Kleinman NS. Earlier diagnosis and treatment of acute myocardial infarction necessitates the need for a ‘new diagnostic mind-set’. Circulation 1994; 89: 872–81

    Article  PubMed  CAS  Google Scholar 

  6. Zimmerman J, Fromm R, Meyer D, et al. Diagnostic marker cooperative study for the diagnosis of myocardial infarction. Circulation 1999 Apr 6; 99(13): 1671–7

    Article  PubMed  CAS  Google Scholar 

  7. Braunwald E, Jones RH, Mark DB, et al. Diagnosing and managing unstable angina: Agency for Health Care Policy and Research. Circulation 1994 Jul; 90(1): 613–22

    Article  PubMed  CAS  Google Scholar 

  8. Fruergaard P, Launbjerg J, Hesse B, et al. The diagnosis of patients admitted with acute chest pain but without myocardial infarction. Eur Heart J 1996; 17: 1028–34

    Article  PubMed  CAS  Google Scholar 

  9. Newby LK, Storrow AB, Gibier WB, et al. Bedside multimarker testing for risk stratification in chest pain units: the chest pain evaluation by creatine kinase-MB, myoglobin, and troponin I(CHECKMATE) study. Circulation 2001 Apr 10`; 103(14): 1832–7

    Article  PubMed  CAS  Google Scholar 

  10. Farkouh ME, Smars PA, Reeder GS, et al. A clinical trial of a chest-pain observation unit for patients with unstable angina. N Engl J Med 1998; 339: 1882–8

    Article  PubMed  CAS  Google Scholar 

  11. Lee TH, Rouan GW, Weisberg MC, et al. Clinical characteristics and natural history of patients with acute myocardial infarction sent home from the emergency room. Am J Cardiol 1987; 60: 219–24

    Article  PubMed  CAS  Google Scholar 

  12. Gibier WB, Young GP, Hedges JR, et al. Acute myocardial infarction in chest pain patients with ECGs: serial CK-MB sampling in the emergency department. Ann Emerg Med 1992; 21: 504–12

    Article  Google Scholar 

  13. TIMI IIIB Investigators. Effects of tissue plasminogen activator and a comparison of early invasive and conservative strategies in unstable angina and non-Q-wave myocardial infarction: results of the TIMI IIIB trial: thrombolysis in myocardial ischemia. Circulation 1994; 89: 1545–56

    Article  Google Scholar 

  14. Lindahl B, Venge P, Wallentin L. Early diagnosis and exclusion of acute myocardial infarction using biochemical monitoring. Coron Artery Dis 1995; 6: 321–8

    Article  PubMed  CAS  Google Scholar 

  15. Hoekstra JW, Hedges JR, Gibier WB, et al. Emergency department CK-MB: a predictor of ischemic complications. Acad Emerg Med 1994; 1: 17–28

    Article  PubMed  CAS  Google Scholar 

  16. Hamm CW, Britta U, Goldmann BU, et al. Emergency room triage of patients with acute chest pain by means of rapid testing for cardiac troponin T or troponin I. N Engl J Med 1997 Dec 4; 337(23): 1648–53

    Article  PubMed  CAS  Google Scholar 

  17. Newby LK, Kaplan AL, Granger BB, et al. Comparison of cardiac troponin T versus creatine kinase MB for risk stratification in a chest pain evaluation unit. Am J Cardiol 2000; 85: 801–5

    Article  PubMed  CAS  Google Scholar 

  18. de Filippi CR, Tocchi M, Parmar RJ, et al. Cardiac troponin T in chest pain unit patients without ischemic electrocardiographic changes: angiographie correlates and long-term clinical outcomes. J Am Coll Cardiol 2000; 35: 1827–34

    Article  Google Scholar 

  19. Braunwald E, Antman EM, Beasley JN, et al. ACC/AHA guideline update for the management of patients with unstable angina and non-ST-segment elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines(Committee on the Management of Patients with Unstable Angina) 2002. Available from URL: http://www.acc.org/clinical/guidelines/unstable/unstable.pdf. [Accessed 2002 Mar 19]

  20. Alpert JS, Thygesen K, Antman E, et al. Myocardial infarction redefined: a consensus document of the Joint European Society of Cardiology/American College of Cardiology Committee for redefinition of myocardial infarction. Eur Heart J 2000; 21: 1502–13

    Article  Google Scholar 

  21. Grenadier E, Keidar S, Kahana L, et al. The roles of serum myoglobin, total CPK, and CK-MB isoenzyme in the acute phase of myocardial infarction. Am Heart J 1983 Mar; 105(3): 408–16

    Article  PubMed  CAS  Google Scholar 

  22. Bodor GS, Porter S, Landt Y, et al. Development of monoclonal antibodies for an assay of cardiac troponin-I and preliminary results in suspected cases of myocardial infarction. Clin Chem 1992 Nov; 38(11): 2203–14

    PubMed  CAS  Google Scholar 

  23. Mair J, Genser N, Morandell D, et al. Cardiac troponin I in the diagnosis of myocardial injury and infarction. Clin Chim Acta 1996 Feb 9; 245(1): 19–38

    Article  PubMed  CAS  Google Scholar 

  24. Panteghini M, Bonora R, Pagani F. Rapid and specific immunoassay for cardiac troponin I in the diagnosis of myocardial damage. Int J Clin Lab Res 1997; 27(1): 60–4

    Article  PubMed  CAS  Google Scholar 

  25. Ohman EM, Armstrong PW, Christenson RH, et al. Cardiac troponin T levels for risk stratification in acute myocardial ischemia. GUSTO IIA Investigators. N Engl J Med 1996 Oct 31; 335(18): 1333–41

    Article  PubMed  CAS  Google Scholar 

  26. Antman EM, Tanasijevic MJ, Thompson B, et al. Cardiac-specific troponin I levels to predict the risk of mortality in patients with acute coronary syndromes. N Engl J Med 1996 Oct 31; 335(18): 1342–9

    Article  PubMed  CAS  Google Scholar 

  27. Ellis AK, Little T, Zaki Masud AR, et al. Patterns of myoglobin release after reperfusion of injured myocardium. Circulation 1985 Sep; 72(3): 639–47

    Article  PubMed  CAS  Google Scholar 

  28. Gornall DA, Roth SNL. Serial myoglobin quantitation in the early assessment of myocardial damage: a clinical study. Clin Biochem 1996; 29: 379–84

    Article  PubMed  CAS  Google Scholar 

  29. Young GP. Myoglobin and creatine kinase-MB. Ann Emerg Med 1996 Aug; 28(2): 245–6

    Article  PubMed  CAS  Google Scholar 

  30. Einstein AJ, Bodian CA, Gil J. The relationships among performance measures in the selection of diagnostic tests. Arch Pathol Lab Med 1997 Feb; 121(2): 110–7

    PubMed  CAS  Google Scholar 

  31. Brogan Jr GX, Friedman S, McCuskey C, et al. Evaluation of a new rapid quantitative immunoassay for serum myoglobin versus CK-MB for ruling out acute myocardial infarction in the emergency department. Ann Emerg Med 1994 Oct; 24(4): 665–71

    Article  PubMed  Google Scholar 

  32. Panteghini M, Pagani F, Bonetti G. The sensitivity of cardiac markers: an evidence-based approach. Clin Chem Lab Med 1999 Nov–Dec; 37(11–12): 1097–106

    Article  PubMed  CAS  Google Scholar 

  33. Wu AH, Apple FS, Gibier WB, et al. National Academy of Clinical Biochemistry Standards of Laboratory Practice: recommendations for the use of cardiac markers in coronary artery diseases. Clin Chem 1999 Jul; 45(7): 1104–21

    PubMed  CAS  Google Scholar 

  34. Panteghini M, Apple FS, Christenson RH, et al. Use of biochemical markers in acute coronary syndromes. IFCC Scientific Division, Committee on Standardization of Markers of Cardiac Damage. International Federation of Clinical Chemistry. Clin Chem Lab Med 1999 Jun; 37(6): 687–93

    Article  PubMed  CAS  Google Scholar 

  35. Zabel M, Hohnloser SH, Koster W. Analysis of creatine kinase, CK-MB, myoglobin, and troponin T time-activity curves for early assessment of coronary artery reperfusion after intravenous thrombolysis. Circulation 1993 May; 87(5): 1542–50

    Article  PubMed  CAS  Google Scholar 

  36. Miyata M, Abe S, Arima S, et al. Rapid diagnosis of coronary reperfusion by measurement of myoglobin level every 15 min in acute myocardial infarction. J Am Coll Cardiol 1994 Apr; 23(5): 1009–15

    Article  PubMed  CAS  Google Scholar 

  37. Ishii J, Nomura M, Ando T, et al. Early detection of successful coronary reperfusion based on serum myoglobin concentration: comparison with serum creatine kinase isoenzyme MB activity. Am Heart J 1994 Oct; 128(4): 641–8

    Article  PubMed  CAS  Google Scholar 

  38. Laperche T, Steg PG, Dehoux M, et al. A study of biochemical markers of reperfusion early after thrombolysis for acute myocardial infarction. The PERM Study Group. Prospective evaluation of reperfusion markers. Circulation 1995 Oct 15; 92(8): 2079–86

    Article  PubMed  CAS  Google Scholar 

  39. Tanasijevic MJ, Cannon CP, Antman EM, et al. Myoglobin, creatine-kinase-MB and cardiac troponin-I 60-minute ratios predict infarct-related artery patency after thrombolysis for acute myocardial infarction: results from the Thrombolysis in Myocardial Infarction Study (TIMI) 10B. J Am Coll Cardiol 1999 Sep; 34(3): 739–47

    Article  PubMed  CAS  Google Scholar 

  40. Anderson JL, Karagounis LA, Becker LC, et al. TIMI perfusion grade 3 but not grade 2 results in improved outcome after thrombolysis for myocardial infarction: ventriculographic, enzymatic, and electrocardiographic evidence from the TEAM-3 Study. Circulation 1993 Jun; 87(6): 1829–39

    Article  PubMed  CAS  Google Scholar 

  41. Christenson RH, Ohman EM, Topol EJ, et al. Assessment of coronary reperfusion after thrombolysis with a model combining myoglobin, creatine kinase-MB, and clinical variables. TAMI-7 Study Group. Thrombolysis and angioplasty in myocardial infarction-7. Circulation 1997 Sep 16; 96(6): 1776–82

    Article  PubMed  CAS  Google Scholar 

  42. Garabedian HD, Gold HK, Yasuda T, et al. Detection of coronary artery reperfusion with creatine kinase-MB determinations during thrombolytic therapy: correlation with acute angiography. J Am Coll Cardiol 1988 Apr; 11(4): 729–34

    Article  PubMed  CAS  Google Scholar 

  43. Abendschein DR, Ellis AK, Eisenberg PR, et al. Prompt detection of coronary recanalization by analysis of rates of change of concentrations of macromolecular markers in plasma. Coron Artery Dis 1991; 2: 201–12

    Article  Google Scholar 

  44. Abe S, Arima S, Nomoto K, et al. Early detection of coronary reperfusion by rapid assessment of plasma myoglobin. Int J Cardiol 1993 Jan; 38(1): 33–40

    Article  PubMed  CAS  Google Scholar 

  45. Apple FS. Biochemical markers of thrombolytic success. Scand J Clin Lab Invest 1999; 59 Suppl. 230: 60–6

    Google Scholar 

  46. In TIME-II Investigators. Intravenous NPA for the treatment of infarcting myocardium early: In TIME-II, a double-blind comparison of single-bolus lanoteplase vs accelerated alteplase for the treatment of patients with acute myocardial infarction. Eur Heart J 2000 Dec; 21(24): 2005–13

    Article  Google Scholar 

  47. de Lemos JA, Antman EM, Giugliano RP, et al. Very early risk stratification after thrombolytic therapy with a bedside myoglobin assay and the 12-lead electrocardiogram. Am Heart J 2000 Sep; 140(3): 373–8

    Article  PubMed  Google Scholar 

  48. Cannon CP, Gibson CM, McCabe CH, et al. TNK-tissue plasminogen activator compared with front-loaded alteplase in acute myocardial infarction: results of the TIMI 10B trial. Thrombolysis in Myocardial Infarction (TIMI) 10B Investigators. Circulation 1998 Dec 22–29; 98(25): 2805–14

    Article  PubMed  CAS  Google Scholar 

  49. Srinivas VS, Cannon CP, Gibson CM, et al. Myoglobin levels at 12 hours identify patients at low risk for 30-day mortality after thrombolysis in acute myocardial infarction: a Thrombolysis in Myocardial Infarction 10B substudy. Am Heart J 2001 Jul; 142(1): 29–36

    Article  PubMed  CAS  Google Scholar 

  50. Larue C, Defacque-Lacquement H, Calzolari C, et al. New monoclonal antibodies as probes for human cardiac troponin I: epitopic analysis with synthetic peptides. Mol Immunol 1992 Feb; 29(2): 271–8

    Article  PubMed  CAS  Google Scholar 

  51. Adams III JE, Schechtman KB, Landt Y, et al. Comparable detection of acute myocardial infarction by creatine kinase MB isoenzyme and cardiac troponin I. Clin Chem 1994 Jul; 40(7 Pt 1): 1291–5

    PubMed  CAS  Google Scholar 

  52. Cummins B, Auckland ML, Cummins P. Cardiac-specific troponin-I radioimmu-noassay in the diagnosis of acute myocardial infarction. Am Heart J 1987 Jun; 113(6): 1333–44

    Article  PubMed  CAS  Google Scholar 

  53. Katus HA, Remppis A, Looser S, et al. Enzyme linked immunoassay of cardiac troponin T for the detection of acute myocardial infarction in patients. J Mol Cell Cardiol 1989 Dec; 21(12): 1349–53

    Article  PubMed  CAS  Google Scholar 

  54. Katus HA, Remppis A, Neumann FJ, et al. Diagnostic efficiency of troponin T measurements in acute myocardial infarction. Circulation 1991 Mar; 83(3): 902–12

    Article  PubMed  CAS  Google Scholar 

  55. Gerhardt W, Katus H, Ravkilde J, et al. S-troponin T in suspected ischemic myocardial injury compared with mass and catalytic concentrations of S-creatine kinase isoenzyme MB. Clin Chem 1991 Aug; 37(8): 1405–11

    PubMed  CAS  Google Scholar 

  56. Mair J, Artner-Dworzak E, Lechleitner P, et al. Cardiac troponin T in diagnosis of acute myocardial infarction. Clin Chem 1991 Jun; 37(6): 845–52

    PubMed  CAS  Google Scholar 

  57. Burlina A, Zaninotto M, Secchiero S, et al. Troponin T as a marker of ischemic myocardial injury. Clin Biochem 1994 Apr; 27(2): 113–21

    Article  PubMed  CAS  Google Scholar 

  58. Wu AH, Valdes Jr R, Apple FS, et al. Cardiac troponin-T immunoassay for diagnosis of acute myocardial infarction. Clin Chem 1994 Jun; 40(6): 900–7

    PubMed  CAS  Google Scholar 

  59. Adams III JE, Bodor GS, Davila-Roman VG, et al. Cardiac troponin I: a marker with high specificity for cardiac injury. Circulation 1993 Jul; 88(1): 101–6

    Article  PubMed  Google Scholar 

  60. D’Costa M, Fleming E, Patterson MC. Cardiac troponin I for the diagnosis of acute myocardial infarction in the emergency department. Am J Clin Pathol 1997 Nov; 108(5): 550–5

    PubMed  Google Scholar 

  61. Apple FS, Falahati A, Paulsen PR, et al. Improved detection of minor ischemic myocardial injury with measurement of serum cardiac troponin I. Clin Chem 1997 Nov; 43(11): 2047–51

    PubMed  CAS  Google Scholar 

  62. Pervaiz S, Anderson FP, Lohmann TP, et al. Comparative analysis of cardiac troponin I and creating kinase-MB as markers of acute myocardial infarction. Clin Cardiol 1997 Mar; 20(3): 269–71

    Article  PubMed  CAS  Google Scholar 

  63. Christenson RH, Apple FS, Morgan DL, et al. Cardiac troponin I measurement with the ACCESS immunoassay system: analytical and clinical performance characteristics. Clin Chem 1998 Jan; 44(1): 52–60

    PubMed  CAS  Google Scholar 

  64. Falahati A, Sharkey SW, Christensen D, et al. Implementation of serum cardiac troponin I as marker for detection of acute myocardial infarction. Am Heart J 1999 Feb; 137(2): 332–7

    Article  PubMed  CAS  Google Scholar 

  65. Muller-Bardorff M, Hallermayer K, Schroder A, et al. Improved troponin T ELISA specific for cardiac troponin T isoform: assay development and analytical and clinical validation. Clin Chem 1997 Mar; 43(3): 458–66

    PubMed  CAS  Google Scholar 

  66. Chapelle JP. Cardiac troponin I and troponin T: recent players in the field of myocardial markers. Clin Chem Lab Med 1999 Jan; 37(1): 11–20

    Article  PubMed  CAS  Google Scholar 

  67. Ebell MH, Flewelling D, Flynn CA. A systematic review of troponin T and I for diagnosing acute myocardial infarction. J Fam Pract 2000 Jun; 49(6): 550–6

    PubMed  CAS  Google Scholar 

  68. Sarko J, Pollack Jr CV. Cardiac troponins. J Emerg Med 2002 Jul; 23(1): 57–65

    Article  PubMed  Google Scholar 

  69. Panteghini M. Acute coronary syndrome: biochemical strategies in the troponin era. Chest 2002 Oct; 122(4): 1428–35

    Article  PubMed  CAS  Google Scholar 

  70. McLaurin M, Apple FS, Henry TD, et al. Cardiac troponin I and T concentrations in patients with cocaine-associated chest pain. Ann Clin Biochem 1996 May; 33(Pt 3): 183–6

    PubMed  Google Scholar 

  71. Adams III JE, Davila-Roman VG, Bessey PQ, et al. Improved detection of cardiac contusion with cardiac troponin I. Am Heart J 1996 Feb; 131(2): 308–12

    Article  PubMed  Google Scholar 

  72. Georges JL, Spentchian M, Caubel C, et al. Time course of troponin I, myoglobin, and cardiac enzyme release after electrical cardioversion. Am J Cardiol 1996 Oct 1; 78(7): 825–6

    Article  PubMed  CAS  Google Scholar 

  73. McLaurin MD, Apple FS, Voss EM, et al. Cardiac troponin I, cardiac troponin T, and creatine kinase MB in dialysis patients without ischemic heart disease: evidence of cardiac troponin T expression in skeletal muscle. Clin Chem 1997 Jun; 43(6 Pt 1): 976–82

    PubMed  CAS  Google Scholar 

  74. Wu AH, Jialal I. How specific is cardiac troponin? Am J Clin Pathol 2000 Oct; 114(4): 509–11

    Article  PubMed  CAS  Google Scholar 

  75. Collinson PO, Hadcocks L, Foo Y, et al. Cardiac troponins in patients with renal dysfunction. Ann Clin Biochem 1998 May; 35(Pt 3): 380–6

    PubMed  Google Scholar 

  76. Musso P, Cox I, Vidano E, et al. Cardiac troponin elevations in chronic renal failure: prevalence and clinical significance. Clin Biochem 1999 Mar; 32(2): 125–30

    Article  PubMed  CAS  Google Scholar 

  77. Aviles RJ, Askari AT, Lindahl B, et al. Troponin T levels in patients with acute coronary syndromes, with or without renal dysfunction. N Engl J Med 2002 Jun 27; 346(26): 2047–52

    Article  PubMed  CAS  Google Scholar 

  78. Khan IA, Wattanasuwan N, Mehta NJ, et al. Prognostic value of serum cardiac troponin I in ambulatory patients with chronic renal failure undergoing long-term hemodialysis: a two-year outcome analysis. J Am Coll Cardiol 2001 Oct; 38(4): 991–8

    Article  PubMed  CAS  Google Scholar 

  79. Ravkilde J, Horder M, Gerhardt W, et al. Diagnostic performance and prognostic value of serum troponin T in suspected acute myocardial infarction. Scand J Clin Lab Invest 1993 Nov; 53(7): 677–85

    Article  PubMed  CAS  Google Scholar 

  80. Hamm CW, Ravkilde J, Gerhardt W, et al. The prognostic value of serum troponin T in unstable angina. N Engl J Med 1992 Jul 16; 327(3): 146–50

    Article  PubMed  CAS  Google Scholar 

  81. Katus HA, Looser S, Hallermayer K, et al. Development and in vitro characterization of a new immunoassay of cardiac troponin T. Clin Chem 1992 Mar; 38(3): 386–93

    PubMed  CAS  Google Scholar 

  82. Hafner G, Thome-Kromer B, Schaube J, et al. Cardiac troponins in serum in chronic renal failure. Clin Chem 1994 Sep; 40(9): 1790–1

    PubMed  CAS  Google Scholar 

  83. Katus HA, Haller C, Muller-Bardorff M, et al. Cardiac troponin T in end-stage renal disease patients undergoing chronic maintenance hemodialysis. Clin Chem 1995 Aug; 41(8 Pt 1): 1201–3

    PubMed  CAS  Google Scholar 

  84. Lofberg M, Tahtela R, Harkonen M, et al. Cardiac troponins in severe rhabdomyolysis. Clin Chem 1996 Jul; 42(7): 1120–1

    PubMed  CAS  Google Scholar 

  85. Bodor GS, Porterfield D, Voss EM, et al. Cardiac troponin-I is not expressed in fetal and healthy or diseased adult human skeletal muscle tissue. Clin Chem 1995 Dec; 41(12 Pt 1): 1710–5

    PubMed  CAS  Google Scholar 

  86. Abe S, Arima S, Yamashita T, et al. Early assessment of reperfusion therapy using cardiac troponin T. J Am Coll Cardiol 1994 May; 23(6): 1382–9

    Article  PubMed  CAS  Google Scholar 

  87. Apple FS, Henry TD, Berger CR, et al. Early monitoring of serum cardiac troponin I for assessment of coronary reperfusion following thrombolytic therapy. Am J Clin Pathol 1996 Jan; 105(1): 6–10

    PubMed  CAS  Google Scholar 

  88. Heidenreich PA, Alloggiamento T, Melsop K, et al. The prognostic value of troponin in patients with non-ST elevation acute coronary syndromes: a meta-analysis. J Am Coll Cardiol 2001 Aug; 38(2): 478–85

    Article  PubMed  CAS  Google Scholar 

  89. Fleming SM, Daly KM. Cardiac troponins in suspected acute coronary syndrome: a meta-analysis of published trials. Cardiology 2001; 95(2): 66–73

    Article  PubMed  CAS  Google Scholar 

  90. Ottani F, Galvani M, Nicolini FA, et al. Elevated cardiac troponin levels predict the risk of adverse outcome in patients with acute coronary syndromes. Am Heart J 2000 Dec; 140(6): 917–27

    Article  PubMed  CAS  Google Scholar 

  91. Olatidoye AG, Wu AH, Feng YJ, et al. Prognostic role of troponin T versus troponin I in unstable angina pectoris for cardiac events with meta-analysis comparing published studies. Am J Cardiol 1998 Jun 15; 81(12): 1405–10

    Article  PubMed  CAS  Google Scholar 

  92. Hamm CW. Risk stratifying acute coronary syndromes: gradient of risk and benefit. Am Heart J 1999 Jul; 138(1 Pt 2): S6–11

    Article  PubMed  CAS  Google Scholar 

  93. Calvin JE, Klein LW, VandenBerg BJ, et al. Clinical predictors easily obtained at presentation predict resource utilization in unstable angina. Am Heart J 1998 Sep; 136(3): 373–81

    Article  PubMed  CAS  Google Scholar 

  94. Doukky R, Calvin JE. Risk stratification in patients with unstable angina and non-ST-segment elevation myocardial infarction: evidence-based review. J Invasive Cardiol 2002; 14(4): 215–20

    PubMed  Google Scholar 

  95. Peacock IV WF, Emerman CL, McErlean ES, et al. Prediction of short- and long-term outcomes by troponin T levels in low-risk patients evaluated for acute coronary syndromes. Ann Emerg Med 2000 Mar; 35(3): 213–20

    Article  PubMed  Google Scholar 

  96. Hillis GS, Oliner C, O’Neil BJ, et al. Coronary artery disease in patients with chest pain who have low-risk clinical characteristics and negative cardiac troponin I. Am J Emerg Med 2001 Mar; 19(2): 118–21

    Article  PubMed  CAS  Google Scholar 

  97. Fleming SM, Divilly M, Chakravarthi PI, et al. The role of cardiac troponin I in determining the necessity for exercise electrocardiography in low risk patients with chest pain. Ir J Med Sci 2000 Jul-Sep; 169(3): 173–5

    Article  PubMed  CAS  Google Scholar 

  98. Hlatky MA. Evaluation of chest pain in the emergency department. N Engl J Med 1997 Dec 4; 337(23): 1687–9

    Article  PubMed  CAS  Google Scholar 

  99. Stryer DB. Cardiac troponins in patients with chest pain. N Engl J Med 1998 Apr 30; 338(18): 1314; author reply 1315

    Article  PubMed  CAS  Google Scholar 

  100. Van Lente F, McErlean ES, DeLuca SA, et al. Ability of troponins to predict adverse outcomes in patients with renal insufficiency and suspected acute coronary syndromes: a case-matched study. J Am Coll Cardiol 1999 Feb; 33(2): 471–8

    Article  PubMed  Google Scholar 

  101. Apple FS, Sharkey SW, Hoeft P, et al. Prognostic value of serum cardiac troponin I and T in chronic dialysis patients: a 1-year outcomes analysis. Am J Kidney Dis 1997 Mar; 29(3): 399–403

    Article  PubMed  CAS  Google Scholar 

  102. Lopez-Jimenez F, Goldman L, Sacks DB, et al. Prognostic value of cardiac troponin T after noncardiac surgery: 6-month follow-up data. J Am Coll Cardiol 1997 May; 29(6): 1241–5

    Article  PubMed  CAS  Google Scholar 

  103. Benamer H, Steg PG, Benessiano J, et al. Elevated cardiac troponin I predicts a high-risk angiographic anatomy of the culprit lesion in unstable angina. Am Heart J 1999 May; 137(5): 815–20

    Article  PubMed  CAS  Google Scholar 

  104. Sobel BE, Bresnahan GF, Shell WE, et al. Estimation of infarct size in man and its relation to prognosis. Circulation 1972 Oct; 46(4): 640–8

    Article  PubMed  CAS  Google Scholar 

  105. Cerqueira MD, Maynard C, Ritchie JL, et al. Long-term survival in 618 patients from the Western Washington Streptokinase in Myocardial Infarction trials. J Am Coll Cardiol 1992; 20: 1452–9

    Article  PubMed  CAS  Google Scholar 

  106. Miller TD, Christian TF, Hopfenspirger MR, et al. Infarct size after acute myocardial infarction measured by quantitative tomographic 99mTc sestamibi imaging predicts subsequent mortality. Circulation 1995; 92: 334–41

    Article  PubMed  CAS  Google Scholar 

  107. Grande P, Christiansen C, Alstrup K. Comparison of ASAT, CK, CK-MB, and LD for the estimation of acute myocardial infarct size in man. Clin Chim Acta 1983 Mar 14; 128(2–3): 329–35

    Article  PubMed  CAS  Google Scholar 

  108. Hackel DB, Reimer KA, Ideker RE, et al. Comparison of enzymatic and anatomic estimates of myocardial infarct size in man. Circulation 1984 Nov; 70(5): 824–35

    Article  PubMed  CAS  Google Scholar 

  109. Burlina A, Rizzotti P, Plebani M, et al. CPK and CPK-MB in the early diagnosis of acute myocardial infarction and prediction of infarcted area. Clin Biochem 1984 Dec; 17(6): 356–61

    Article  PubMed  CAS  Google Scholar 

  110. Omura T, Teragaki M, Tani T, et al. Estimation of infarct size using serum troponin T concentration in patients with acute myocardial infarction. Jpn Circ J 1993 Nov; 57(11): 1062–70

    Article  PubMed  CAS  Google Scholar 

  111. Panteghini M, Cuccia C, Bonetti G, et al. Single-point cardiac troponin T at coronary care unit discharge after myocardial infarction correlates with infarct size and ejection fraction. Clin Chem 2002 Sep; 48(9): 1432–6

    PubMed  CAS  Google Scholar 

  112. Wagner I, Mair J, Fridrich L, et al. Cardiac troponin T release in acute myocardial infarction is associated with scintigraphic estimates of myocardial scar. Coron Artery Dis 1993 Jun; 4(6): 537–44

    Article  PubMed  CAS  Google Scholar 

  113. Tanaka H, Abe S, Yamashita T, et al. Serum levels of cardiac troponin I and troponin T in estimating myocardial infarct size soon after reperfusion. Coron Artery Dis 1997 Jul; 8(7): 433–9

    Article  PubMed  CAS  Google Scholar 

  114. Antman EM. Decision making with cardiac troponin tests. N Engl J Med 2002 Jun 27; 346(26): 2079–82

    Article  PubMed  Google Scholar 

  115. Panteghini M. The measurement of cardiac markers: where should we focus? Am J Clin Pathol 2002 Sep; 118(3): 354–61

    Article  PubMed  Google Scholar 

  116. Panteghini M. Recent approaches to the standardization of cardiac markers. Scand J Clin Lab Invest 2001 Apr; 61(2): 95–101

    Article  PubMed  CAS  Google Scholar 

  117. Jaffe AS, Ravkilde J, Roberts R, et al. It’s time for a change to a troponin standard. Circulation 2000 Sep 12; 102(11): 1216–20

    Article  PubMed  CAS  Google Scholar 

  118. Lindahl B, Venge P, Wallentin L. Troponin T identifies patients with unstable coronary artery disease who benefit from long-term antithrombotic protection: Fragmin in Unstable Coronary Artery Disease (FRISC) Study Group. J Am Coll Cardiol 1997 Jan; 29(1): 43–8

    Article  PubMed  CAS  Google Scholar 

  119. FRISC Study Group. Low-molecular-weight heparin during instability in coronary artery disease. Fragmin during Instability in Coronary Artery Disease (FRISC). Lancet 1996 Mar 2; 347(9001): 561–8

    Google Scholar 

  120. Antman EM, McCabe CH, Gurfinkel EP, et al. Enoxaparin prevents death and cardiac ischemic events in unstable angina/non-Q-wave myocardial infarction: results of the thrombolysis in myocardial infarction (TIMI)-11B trial. Circulation 1999 Oct 12; 100(15): 1593–601

    Article  PubMed  CAS  Google Scholar 

  121. PRISM Study Investigators. A comparison of aspirin plus tirofiban with aspirin plus heparin for unstable angina. N Engl J Med 1998 May 21; 338(21): 1498–505

    Article  Google Scholar 

  122. CAPTURE Investigators. Randomised placebo-controlled trial of abciximab before and during coronary intervention in refractory unstable angina: the CAPTURE Study. Lancet 1997 May 17; 349(9063): 1429–35

    Article  Google Scholar 

  123. Moliterno DJ. Patient-specific dosing of Ilb/IIIa antagonists during acute coronary syndromes: rationale and design of the PARAGON B study. The PARAGON B International Steering Committee. Am Heart J 2000 Apr; 139(4): 563–6

    Article  PubMed  CAS  Google Scholar 

  124. Hamm CW, Heeschen C, Goldmann B, et al. Benefit of abciximab in patients with refractory unstable angina in relation to serum troponin T levels. c7E3 Fab Antiplatelet Therapy in Unstable Refractory Angina (CAPTURE) Study Investigators. N Engl J Med 1999 May 27; 340(21): 1623–9

    Article  PubMed  CAS  Google Scholar 

  125. Newby LK, Ohman EM, Christenson RH, et al. Benefit of glycoprotein Ilb/IIIa inhibition in patients with acute coronary syndromes and troponin t-positive status: the paragon-B troponin T substudy. Circulation 2001 Jun 19; 103(24): 2891–6

    Article  PubMed  CAS  Google Scholar 

  126. Heeschen C, Hamm CW, Goldmann B, et al. Troponin concentrations for stratification of patients with acute coronary syndromes in relation to therapeutic efficacy of tirofiban: PRISM Study Investigators: platelet receptor inhibition in ischemic syndrome management. Lancet 1999 Nov 20; 354(9192): 1757–62

    Article  PubMed  CAS  Google Scholar 

  127. Morrow DA, Antman EM, Tanasijevic M, et al. Cardiac troponin I for stratification of early outcomes and the efficacy of enoxaparin in unstable angina: a TIMI-11B substudy. J Am Coll Cardiol 2000 Nov 15; 36(6): 1812–7

    Article  PubMed  CAS  Google Scholar 

  128. Januzzi JL, Chae CU, Sabatine MS, et al. Elevation in serum troponin I predicts the benefit of tirofiban. J Thromb Thrombolysis 2001 May; 11(3): 211–5

    Article  PubMed  CAS  Google Scholar 

  129. Matetzky S, Sharir T, Domingo M, et al. Elevated troponin I level on admission is associated with adverse outcome of primary angioplasty in acute myocardial infarction. Circulation 2000 Oct 3; 102(14): 1611–6

    Article  PubMed  CAS  Google Scholar 

  130. Cannon CP, Weintraub WS, Demopoulos LA, et al. Comparison of early invasive and conservative strategies in patients with unstable coronary syndromes treated with the glycoprotein Ilb/IIIa inhibitor tirofiban. N Engl J Med 2001 Jun 21; 344(25): 1879–87

    Article  PubMed  CAS  Google Scholar 

  131. McCaig LF, Burt CW. National Ambulatory Medical Care Survey: 1999 Emergency Department Summary: advance data from vital and health statistics; No. 320, 1.1MG. Hyattsville (MD): National Center for Health Statistics, 2001

  132. Anderson FP, Fritz ML, Kontos MC, et al. Cost-effectiveness of cardiac troponin I in a systematic chest pain evaluation protocol: use of cardiac troponin I lowers length of stay for low-risk cardiac patients. Clin Lab Manage Rev 1998 Mar-Apr; 12(2): 63–9

    PubMed  CAS  Google Scholar 

  133. Owen A, Khan W, Griffiths KD. Troponin T: role in altering patient management and enabling earlier discharge from a district general hospital. Ann Clin Biochem 2001 Mar; 38(Pt 2): 135–9

    Article  PubMed  CAS  Google Scholar 

  134. Zarich S, Bradley K, Seymour J, et al. Impact of troponin T determinations on hospital resource utilization and costs in the evaluation of patients with suspected myocardial ischemia. Am J Cardiol 2001 Oct 1; 88(7): 732–6

  135. Hillis GS, Zhao N, Taggart P, et al. Utility of cardiac troponin I, creatine kinase-MB (mass), myosin light chain 1, and myoglobin in the early in-hospital triage of “high risk” patients with chest pain. Heart 1999 Nov; 82(5): 614–20

    PubMed  CAS  Google Scholar 

  136. Gomez MA, Anderson JL, Karagounis LA, et al. An emergency department-based protocol for rapidly ruling out myocardial ischemia reduces hospital time and expense: results of a randomized study (ROMIO). J Am Coll Cardiol 1996 Jul; 28(1): 25–33

    Article  PubMed  CAS  Google Scholar 

  137. Gibier WB, Runyon JP, Levy RC, et al. A rapid diagnostic and treatment center for patients with chest pain in the emergency department. Ann Emerg Med 1995 Jan; 25(1): 1–8

    Article  Google Scholar 

  138. de Winter RJ, Bholasingh R, Nieuwenhuijs AB, et al. Ruling out acute myocardial infarction early with two serial creatine kinase-MB mass determinations. Eur Heart J 1999 Jul; 20(13): 967–72

    Article  PubMed  Google Scholar 

  139. Bhayana V, Cohoe S, Pellar TG. Combination (multiple) testing for myocardial infarction using myoglobin, creatine kinase-2 (mass), and troponin T. Clin Biochem 1994 Oct; 27(5): 395–406

    Article  PubMed  CAS  Google Scholar 

  140. Maisel AS, Templin K, Love M, et al. A prospective study of an algorithm using cardiac troponin I and myoglobin as adjuncts in the diagnosis of acute myocardial infarction and intermediate coronary syndromes in a veteran’s hospital. Clin Cardiol 2000 Dec; 23(12): 915–20

    Article  PubMed  CAS  Google Scholar 

  141. Dagnone E, Collier C, Pickett W, et al. Chest pain with nondiagnostic electrocardiogram in the emergency department: a randomized controlled trial of two. Can Med Assoc J 2000 May 30; 162(11): 1561–6

    CAS  Google Scholar 

  142. Ng SM, Krishnaswamy P, Morissey R, et al. Ninety-minute accelerated critical pathway for chest pain evaluation. Am J Cardiol 2001 Sep 15; 88(6): 611–7

    Article  PubMed  CAS  Google Scholar 

  143. McCord J, Nowak RM, McCullough PA, et al. Ninety-minute exclusion of acute myocardial infarction by use of quantitative point-of-care testing of myoglobin and troponin I. Circulation 2001 Sep 25; 104(13): 1483–8

    Article  PubMed  CAS  Google Scholar 

  144. Ridker PM. Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation 2003 Jan 28; 107(3): 363–9

    Article  PubMed  Google Scholar 

  145. Nakagawa O, Ogawa Y, Itoh H, et al. Rapid transcriptional activation and early mRNA turnover of brain natriuretic peptide in cardiocyte hypertrophy: evidence for brain natriuretic peptide as an “emergency” cardiac hormone against ventricular overload. J Clin Invest 1995 Sep; 96(3): 1280–7

    Article  PubMed  CAS  Google Scholar 

  146. Maeda K, Tsutamoto T, Wada A, et al. Plasma brain natriuretic peptide as a biochemical marker of high left ventricular end-diastolic pressure in patients with symptomatic left ventricular dysfunction. Am Heart J 1998 May; 135(5 Pt 1): 825–32

    Article  PubMed  CAS  Google Scholar 

  147. Omland T, Aakvaag A, Bonarjee VV, et al. Plasma brain natriuretic peptide as an indicator of left ventricular systolic function and long-term survival after acute myocardial infarction: comparison with plasma atrial natriuretic peptide and N-terminal proatrial natriuretic peptide. Circulation 1996 Jun 1; 93(11): 1963–9

    Article  PubMed  CAS  Google Scholar 

  148. Bettencourt P, Ferreira A, Pardal-Oliveira N, et al. Clinical significance of brain natriuretic peptide in patients with postmyocardial infarction. Clin Cardiol 2000 Dec; 23(12): 921–7

    Article  PubMed  CAS  Google Scholar 

  149. Krishnaswamy P, Lubien E, Clopton P, et al. Utility of B-natriuretic peptide levels in identifying patients with left ventricular systolic or diastolic dysfunction. Am J Med 2001 Sep; 111(4): 274–9

    Article  PubMed  CAS  Google Scholar 

  150. Maisel AS, Koon J, Krishnaswamy P, et al. Utility of B-natriuretic peptide as a rapid, point-of-care test for screening patients undergoing echocardiography to determine left ventricular dysfunction. Am Heart J 2001 Mar; 141(3): 367–74

    Article  PubMed  CAS  Google Scholar 

  151. Cheng V, Kazanagra R, Garcia A, et al. A rapid bedside test for B-type peptide predicts treatment outcomes in patients admitted for decompensated heart failure: a pilot study. J Am Coll Cardiol 2001 Feb; 37(2): 386–91

    Article  PubMed  CAS  Google Scholar 

  152. Harrison A, Morrison LK, Krishnaswamy P, et al. B-type natriuretic peptide predicts future cardiac events in patients presenting to the emergency department with dyspnea. Ann Emerg Med 2002 Feb; 39(2): 131–8

    Article  PubMed  Google Scholar 

  153. Arakawa N, Nakamura M, Aoki H, et al. Plasma brain natriuretic peptide concentrations predict survival after acute myocardial infarction. J Am Coll Cardiol 1996 Jun; 27(7): 1656–61

    Article  PubMed  CAS  Google Scholar 

  154. Darbar D, Davidson NC, Gillespie N, et al. Diagnostic value of B-type natriuretic peptide concentrations in patients with acute myocardial infarction. Am J Cardiol 1996 Aug 1; 78(3): 284–7

    Article  PubMed  CAS  Google Scholar 

  155. Richards AM, Nicholls MG, Yandle TG, et al. Plasma N-terminal pro-brain natriuretic peptide and adrenomedullin: new neurohormonal predictors of left ventricular function and prognosis after myocardial infarction. Circulation 1998 May 19; 97(19): 1921–9

    Article  PubMed  CAS  Google Scholar 

  156. Richards AM, Nicholls MG, Yandle TG, et al. Neuroendocrine prediction of left ventricular function and heart failure after acute myocardial infarction. The Christchurch Cardioendocrine Research Group. Heart 1999 Feb; 81(2): 114–20

    PubMed  CAS  Google Scholar 

  157. Nagaya N, Nishikimi T, Goto Y, et al. Plasma brain natriuretic peptide is a biochemical marker for the prediction of progressive ventricular remodeling after acute myocardial infarction. Am Heart J 1998 Jan; 135(1): 21–8

    Article  PubMed  CAS  Google Scholar 

  158. Motwani JG, McAlpine H, Kennedy N, et al. Plasma brain natriuretic peptide as an indicator for angiotensin-converting-enzyme inhibition after myocardial infarction. Lancet 1993 May 1; 341(8853): 1109–13

    Article  PubMed  CAS  Google Scholar 

  159. Kikuta K, Yasue H, Yoshimura M, et al. Increased plasma levels of B-type natriuretic peptide in patients with unstable angina. Am Heart J 1996 Jul; 132(1 Pt 1): 101–7

    Article  PubMed  CAS  Google Scholar 

  160. Talwar S, Squire IB, Downie PF, et al. Plasma N terminal pro-brain natriuretic peptide and cardiotrophin 1 are raised in unstable angina. Heart 2000 Oct; 84(4): 421–4

    Article  PubMed  CAS  Google Scholar 

  161. Maisel AS, Krishnaswamy P, Nowak RM, et al. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med 2002 Jul 18; 347(3): 161–7

    Article  PubMed  CAS  Google Scholar 

  162. Morrison LK, Harrison A, Krishnaswamy P, et al. Utility of a rapid B-natriuretic peptide assay in differentiating congestive heart failure from lung disease in patients presenting with dyspnea. J Am Coll Cardiol 2002 Jan 16; 39(2): 202–9

    Article  PubMed  CAS  Google Scholar 

  163. McCullough PA, Nowak RM, McCord J, et al. B-type natriuretic peptide and clinical judgment in emergency diagnosis of heart failure: analysis from Breathing Not Properly (BNP) Multinational Study. Circulation 2002 Jul 23; 106(4): 416–22

    Article  PubMed  Google Scholar 

  164. Lubien E, DeMaria A, Krishnaswamy P, et al. Utility of B-natriuretic peptide in detecting diastolic dysfunction: comparison with Doppler velocity recordings. Circulation 2002 Feb 5; 105(5): 595–601

    Article  PubMed  CAS  Google Scholar 

  165. de Lemos JA, Morrow DA, Bentley JH, et al. The prognostic value of B-type natriuretic peptide in patients with acute coronary syndromes. N Engl J Med 2001 Oct 4; 345(14): 1014–21

    Article  PubMed  Google Scholar 

  166. Sabatine MS, Morrow DA, de Lemos JA, et al. Multimarker approach to risk stratification in non-ST elevation acute coronary syndromes: simultaneous assessment of troponin I, C-reactive protein, and B-type natriuretic peptide. Circulation 2002 Apr 16; 105(15): 1760–3

    Article  PubMed  CAS  Google Scholar 

  167. Ardissino D, Merlini PA, Gamba G, et al. Thrombin activity and early outcome in unstable angina pectoris. Circulation 1996 May 1; 93(9): 1634–9

    Article  PubMed  CAS  Google Scholar 

  168. Sonel A, Sasseen BM, Fineberg N, et al. Prospective study correlating fibrinopeptide A, troponin I, myoglobin, and myosin light chain levels with early and late ischemic events in consecutive patients presenting to the emergency department with chest pain. Circulation 2000 Sep 5; 102(10): 1107–13

    Article  PubMed  CAS  Google Scholar 

  169. Becker RC, Cannon CP, Bovill EG, et al. Prognostic value of plasma fibrinogen concentration in patients with unstable angina and non-Q-wave myocardial infarction (TIMI IIIB Trial). Am J Cardiol 1996 Jul 15; 78(2): 142–7

    Article  PubMed  CAS  Google Scholar 

  170. Gil M, Zarebinski M, Adamus J. Plasma fibrinogen and troponin I in acute coronary syndrome and stable angina. Int J Cardiol 2002 Apr; 83(1): 43–6

    Article  PubMed  Google Scholar 

  171. Oltrona L, Ardissino D, Merlini PA, et al. C-reactive protein elevation and early outcome in patients with unstable angina pectoris. Am J Cardiol 1997 Oct 15; 80(8): 1002–6

    Article  PubMed  CAS  Google Scholar 

  172. van Wissen S, Trip MD, Smilde TJ, et al. Differential hs-CRP reduction in patients with familial hypercholesterolemia treated with aggressive or conventional statin therapy. Atherosclerosis 2002 Dec; 165(2): 361–6

    Article  PubMed  Google Scholar 

  173. Liuzzo G, Biasucci LM, Gallimore JR, et al. The prognostic value of C-reactive protein and serum amyloid a protein in severe unstable angina. N Engl J Med 1994 Aug 18; 331(7): 417–24

    Article  PubMed  CAS  Google Scholar 

  174. Biasucci LM, Liuzzo G, Grillo RL, et al. Elevated levels of C-reactive protein at discharge in patients with unstable angina predict recurrent instability. Circulation 1999 Feb 23; 99(7): 855–60

    Article  PubMed  CAS  Google Scholar 

  175. Lindahl B, Toss H, Siegbahn A, et al. Markers of myocardial damage and inflammation in relation to long-term mortality in unstable coronary artery disease: FRISC Study Group: fragmin during instability in coronary artery disease. N Engl J Med 2000 Oct 19; 343(16): 1139–47

    Article  PubMed  CAS  Google Scholar 

  176. Heeschen C, Hamm CW, Bruemmer J, et al. Predictive value of C-reactive protein and troponin T in patients with unstable angina: a comparative analysis. CAPTURE Investigators. Chimeric c7E3 AntiPlatelet Therapy in Unstable angina REfractory to standard treatment trial. J Am Coll Cardiol 2000 May; 35(6): 1535–42

    Article  PubMed  CAS  Google Scholar 

  177. Morrow DA, Rifai N, Antman EM, et al. Serum amyloid A predicts early mortality in acute coronary syndromes: A TIMI 11A substudy. J Am Coll Cardiol 2000 Feb; 35(2): 358–62

    Article  PubMed  CAS  Google Scholar 

  178. Biasucci LM, Vitelli A, Liuzzo G, et al. Elevated levels of interleukin-6 in unstable angina. Circulation 1996 Sep 1; 94(5): 874–7

    Article  PubMed  CAS  Google Scholar 

  179. Ikeda U, Ito T, Shimada K. Interleukin-6 and acute coronary syndrome. Clin Cardiol 2001 Nov; 24(11): 701–4

    Article  PubMed  CAS  Google Scholar 

  180. Simon AD, Yazdani S, Wang W, et al. Circulating levels of IL-1beta, a prothrom-botic cytokine, are elevated in unstable angina versus stable angina. J Thromb Thrombolysis 2000 Apr; 9(3): 217–22

    Article  PubMed  CAS  Google Scholar 

  181. Lindmark E, Diderholm E, Wallentin L, et al. Relationship between interleukin 6 and mortality in patients with unstable coronary artery disease: effects of an early invasive or noninvasive strategy. JAMA 2001 Nov 7; 286(17): 2107–13

    Article  PubMed  CAS  Google Scholar 

  182. Mallat Z, Henry P, Fressonnet R, et al. Increased plasma concentrations of interleukin-18 in acute coronary syndromes. Heart 2002 Nov; 88(5): 467–9

    Article  PubMed  CAS  Google Scholar 

  183. Blankenberg S, Tiret L, Bickel C, et al. Interleukin-18 is a strong predictor of cardiovascular death in stable and unstable angina. Circulation 2002 Jul 2; 106(1): 24–30

    Article  PubMed  CAS  Google Scholar 

  184. Blake GJ, Ridker PM. Novel clinical markers of vascular wall inflammation. Circ Res 2001 Oct 26; 89(9): 763–71

    Article  PubMed  CAS  Google Scholar 

  185. Futterman LG, Lemberg L. Novel markers in the acute coronary syndrome: BNP, IL-6, PAPP-A. Am J Crit Care 2002 Mar; 11(2): 168–72

    PubMed  Google Scholar 

  186. Ghaisas NK, Shahi CN, Foley B, et al. Elevated levels of circulating soluble adhesion molecules in peripheral blood of patients with unstable angina. Am J Cardiol 1997 Sep 1; 80(5): 617–9

    Article  PubMed  CAS  Google Scholar 

  187. Mulvihill NT, Foley JB, Murphy RT, et al. Risk stratification in unstable angina and non-Q wave myocardial infarction using soluble cell adhesion molecules. Heart 2001 Jun; 85(6): 623–7

    Article  PubMed  CAS  Google Scholar 

  188. O’Malley T, Ludlam CA, Riemermsa RA, et al. Early increase in levels of soluble inter-cellular adhesion molecule-1 (sICAM-1); potential risk factor for the acute coronary syndromes. Eur Heart J 2001 Jul; 22(14): 1226–34

    Article  PubMed  Google Scholar 

  189. Ridker PM, Buring JE, Rifai N. Soluble P-selectin and the risk of future cardiovascular events. Circulation 2001 Jan 30; 103(4): 491–5

    Article  PubMed  CAS  Google Scholar 

  190. Bayes-Genis A, Conover CA, Overgaard MT, et al. Pregnancy-associated plasma protein A as a marker of acute coronary syndromes. N Engl J Med 2001 Oct 4; 345(14): 1022–9

    Article  PubMed  CAS  Google Scholar 

  191. Mallat Z, Hugel B, Ohan J, et al. Shed membrane microparticles with procoagulant potential in human atherosclerotic plaques: a role for apoptosis in plaque thrombogenicity. Circulation 1999 Jan 26; 99(3): 348–53

    Article  PubMed  CAS  Google Scholar 

  192. Mallat Z, Benamer H, Hugel B, et al. Elevated levels of shed membrane microparticles with procoagulant potential in the peripheral circulating blood of patients with acute coronary syndromes. Circulation 2000 Feb 29; 101(8): 841–3

    Article  PubMed  CAS  Google Scholar 

  193. Irwin MW, Mak S, Mann DL, et al. Tissue expression and immunolocalization of tumor necrosis factor-alpha in postinfarction dysfunctional myocardium. Circulation 1999 Mar 23; 99(11): 1492–8

    Article  PubMed  CAS  Google Scholar 

  194. Basaran Y, Basaran MM, Babacan KF, et al. Serum tumor necrosis factor levels in acute myocardial infarction and unstable angina pectoris. Angiology 1993 Apr; 44(4): 332–7

    Article  PubMed  CAS  Google Scholar 

  195. Maury CP, Teppo AM. Circulating tumour necrosis factor-alpha (cachectin) in myocardial infarction. J Intern Med 1989 May; 225(5): 333–6

    Article  PubMed  CAS  Google Scholar 

  196. Latini R, Bianchi M, Correale E, et al. Cytokines in acute myocardial infarction: selective increase in circulating tumor necrosis factor, its soluble receptor, and interleukin-1 receptor antagonist. J Cardiovasc Pharmacol 1994 Jan; 23(1): 1–6

    PubMed  CAS  Google Scholar 

  197. Hirschl MM, Gwechenberger M, Binder T, et al. Assessment of myocardial injury by serum tumour necrosis factor alpha measurements in acute myocardial infarction. Eur Heart J 1996 Dec; 17(12): 1852–9

    Article  PubMed  CAS  Google Scholar 

  198. Ridker PM, Rifai N, Pfeffer M, et al. Elevation of tumor necrosis factor-alpha and increased risk of recurrent coronary events after myocardial infarction. Circulation 2000 May 9; 101(18): 2149–53

    Article  PubMed  CAS  Google Scholar 

  199. Bar-Or D, Lau E, Rao N, et al. Reduction in the cobalt binding capacity of human albumin with myocardial ischemia [abstract]. Ann Emerg Med 1999; 34: S56

    Article  Google Scholar 

  200. Bar-Or D, Lau E, Winkler JV. A novel assay for cobalt-albumin binding and its potential as a marker for myocardial ischemia: a preliminary report. J Emerg Med 2000 Nov; 19(4): 311–5

    Article  PubMed  CAS  Google Scholar 

  201. Christenson RH, Duh SH, Sanhai WR, et al. Characteristics of an Albumin Cobalt Binding Test for assessment of acute coronary syndrome patients: a multicenter study. Clin Chem 2001 Mar; 47(3): 464–70

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Dr Peacock is a member of Biosite Diagnostics’ speakers bureau and has received research grants from Biosite. Mr Wilson was paid by Biosite to assist in preparing this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Frank Peacock IV.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frank Peacock, W., Wilson, F. New Biochemical Tools for Diagnosing Acute Coronary Syndromes. Dis-Manage-Health-Outcomes 11, 519–540 (2003). https://doi.org/10.2165/00115677-200311080-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00115677-200311080-00005

Keywords

Navigation