Skip to main content
Log in

Can Genomics Deliver on the Promise of Improved Outcomes and Reduced Costs?

Background and Recommendations for Health Insurers

  • Current Opinion
  • Published:
Disease Management & Health Outcomes

Abstract

The increased availability of genetic information has the potential to dramatically change the practice of medicine. Health insurers, in their role of evaluating medical appropriateness while controlling costs, are struggling with the incorporation of the genetic paradigm into clinical practice. Tremendous progress has been made in the understanding of genetic causes of single gene disorders. This has led to more sophisticated diagnostic approaches but, with few exceptions, has not led to innovative therapies. Tremendous sums of money are being spent in the emerging field of pharmacogenomics, but little return on this investment has been seen to this point. The ‘Holy Grail’ of the new genetics is to understand the genetic factors that predispose to common disease that will eventually lead to individualized preventive care, rather than prevention based on population tendencies. There are enormous obstacles to overcome if this goal is to be realized, including identification of genetic variation, quantification of variant effect, environmental interactions, and development of interventions based on variation and cost analysis to ensure that this type of approach is feasible within the current economic environment. It must also be recognized that genomics may not be the answer to any of the above questions, given that each of the approximately 30 000 genes in the genome produces, on average, 3.7 proteins. The new field of proteomics may supplant genomics as the guide to accomplishing the goals above.

Insurers do not have the luxury to wait for the outcome of this debate. They must act now to analyze the new genetic technologies, and incorporate those that demonstrate value. This will necessitate involving geneticists in technology assessment and utilization decisions, as well as adding these specialists to the provider network. In addition, they will need to partner with educators and researchers to ensure that the next generation of providers is genetically competent, as well as to help establish the evidence base for interventions developed from genetic insight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Garrod A. Inborn errors of metabolism. London: Frowde, 1909.

    Google Scholar 

  2. Beadle GW, Tatum EL. Genetic control of chemical reactions in Neurospora. Proc Natl Acad Sci U S A 1941; 27: 499–506.

    Article  PubMed  CAS  Google Scholar 

  3. McKusick VA. Mendelian inheritance in man. 1st ed. Baltimore (MD): Johns Hopkins University Press, 1966.

    Google Scholar 

  4. McKusick-Nathans Institute For Genetic Medicine, Johns Hopkins University, National Center for Biotechnology Information, National Library of Medicine. Online Mendelian Inheritance in Man, OMIM™. Available from URL: http://www.ncbi.nlm.nih.gov/omim/ [Accessed 2003 Feb 26].

  5. Tjio JH, Levan A. The chromosome number in man. Hereditas 1956; 42: 1–6.

    Article  Google Scholar 

  6. LeJeune J, Gautier M, Turpin R. Etude des chromosomes somatiques de enfants mongoliens. C R Acad Sci 1959; 248: 1721–2.

    CAS  Google Scholar 

  7. Watson JD, Crick FHC. A structure for deoxyribose nucleic acid. Nature 1953; 171: 737–8.

    Article  PubMed  CAS  Google Scholar 

  8. Mizutani S, Boettiger D, Temin HM. A DNA-dependent DNA polymerase and a DNA endonuclease in virions of Rous sarcoma virus. Nature 1970; 228: 424–7.

    Article  PubMed  CAS  Google Scholar 

  9. Smith HO, Wilcox KW. A restriction enzyme from Hemophilus influenzae: I. purification and general properties. J Mol Biol 1970; 51: 379–91.

    Article  PubMed  CAS  Google Scholar 

  10. Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 1975; 98: 503–17.

    Article  PubMed  CAS  Google Scholar 

  11. The human genome. Nature 2001 Feb 15(409): 745–964.

    Google Scholar 

  12. The human genome. Science 2001 Feb 16(5507): 1145–1434.

    Google Scholar 

  13. Claverie JM. What if there are only 30,000 human genes? Science 2001; 5507: 1255–7.

    Article  Google Scholar 

  14. Subramanian G, Adams MD, Venter JC, et al. Implications of the human genome for understanding human biology and medicine. JAMA 2001; 286: 2296–307.

    Article  PubMed  CAS  Google Scholar 

  15. Peltonen L, McKusick VA. Dissecting human disease in the postgenomic era. Science 2001; 5507: 1224–9.

    Article  Google Scholar 

  16. Fields S. Proteomics in genomeland. Science 2001; 5507: 1221–4.

    Article  Google Scholar 

  17. Baird PA, Anderson TW, Newcombe HB, et al. Genetic disorders in children and young adults: a population study. Am J Hum Genet 1988; 42: 677–93.

    PubMed  CAS  Google Scholar 

  18. Yang Q, Khoury MJ, Mannino D. Trends and patterns of mortality associated with birth defects and genetic diseases in the United States, 1979–1992: an analysis of multiple cause mortality data. Genet Epidemiol 1997; 14: 493–505.

    Article  PubMed  CAS  Google Scholar 

  19. Yoon PW, Olney RS, Khoury MJ, et al. Contribution of birth defects and genetic diseases to pediatrie hospitalizations: a population-based study. Arch Pediatr Adolesc Med 1997; 151: 1096–103.

    Article  PubMed  CAS  Google Scholar 

  20. Emery AEH, Rimoin DL. Principles and practice of medical genetics. 2nd ed. New York (NY): Churchill Livingstone, 1990.

    Google Scholar 

  21. el-Hazmi MA. Spectrum of genetic disorders and the impact on health care delivery: an introduction. East Mediterr Health J 1999; 5: 1104–13.

    PubMed  CAS  Google Scholar 

  22. Scheuner MT, Wong SJ, Raffel LJ, et al. Family history: a comprehensive genetic risk assessment method for the chronic conditions of adulthood. Am J Med Genet 1997; 71: 315–24.

    Article  PubMed  CAS  Google Scholar 

  23. Gelehrter TD, Collins FS, editors. Principles of medical genetics. 1st ed. Baltimore: Williams & Wilkins, 1990.

    Google Scholar 

  24. American College of Medical Genetics Foundation. Genetic susceptibility to breast and ovarian cancer: assessment, counseling & testing guidelines. Policy statement of the American College of Medical Genetics Foundation 1999. Available from URL: http://www.health.state.ny.us/nysdoh/cancer/obcancer/contents.htm [Accessed 2003 Feb 26].

  25. Foulkes WD, Rosenblatt J, Chappuis PO. The contribution of inherited factors to the clinicopathological features and behavior of breast cancer. J Mammary Gland Biol Neoplasia 2001; 6: 453–65.

    Article  PubMed  CAS  Google Scholar 

  26. Schneider KA. Genetic counseling for BRCA1/BRCA2 testing. Genet Test 1997; 1: 91–8.

    Article  PubMed  CAS  Google Scholar 

  27. Lerman C, Narod S, Schulman K, et al. H. BRCA1 testing in families with hereditary breast-ovarian cancer a prospective study of patient decision making and outcomes. JAMA 1996; 275: 1885–92.

    Article  PubMed  CAS  Google Scholar 

  28. Petersen GM, Codori AM. Genetic testing for familial cancer. In: Vogelstein B, Kinzler KW, editors. The genetic basis of human cancer. 1st ed. New York (NY): McGraw-Hill, 1998: 592–3.

    Google Scholar 

  29. Aetna™. Coverage policy bulletin number: 0140. Subject: Genetic Testing. Available from URL: http://www.aetna.com/cpb/data/CPBA01240.html [Accessed 2003 Feb 26].

  30. Holm VA, Cassidy SB, Butler MG, et al. Prader-Willi syndrome: consensus diagnostic criteria. Pediatrics 1993; 91: 398–402.

    PubMed  CAS  Google Scholar 

  31. Richer LP, Shevell MI, Miller SP. Diagnostic profile of neonatal hypotonia: an 11-year study. Pediatr Neurol 2001; 25: 32–7.

    Article  PubMed  CAS  Google Scholar 

  32. ASHG/ACMG report. Diagnostic testing for Prader-Willi and Angelman syndromes: report of the ASHG/ACMG Test and Technology Transfer Committee. Am J Hum Genet 1996; 58: 1085–8.

    Google Scholar 

  33. Henneman L, Bramsen I, Van Os TA, et al. Attitudes toward reproductive issues and carrier testing among adult patients and parents of children with cystic fibrosis (CF). Prenat Diagn 2001; 21: 1–9.

    Article  PubMed  CAS  Google Scholar 

  34. van der Riet AA, van Hout BA, Rutten FF. Cost effectiveness of DNA diagnosis for four monogenic diseases. J Med Genet 1997; 34: 741–5.

    Article  PubMed  Google Scholar 

  35. Aylsworth AS. Genetic counseling for patients with birth defects. Pediatr Clin North Am 1992; 39: 229–53.

    PubMed  CAS  Google Scholar 

  36. Roth KS. Newborn metabolic screening: a search for “nature’s experiments”. South Med J 1986; 79: 47–54.

    Article  PubMed  CAS  Google Scholar 

  37. American Academy of Pediatrics. Committee on Genetics. Health supervision for children with Down syndrome. Pediatrics 2001; 107: 442–9.

    Article  Google Scholar 

  38. Cassidy SB, Allanson JE. Management of genetic syndromes. 1st ed. New York (NY): Wiley-Liss, 2001.

    Google Scholar 

  39. Emery J, Watson E, Rose P, et al. A systematic review of the literature exploring the role of primary care in genetic services. Fam Pract 1999; 16: 426–45.

    Article  PubMed  CAS  Google Scholar 

  40. Chen S, Ferrone FA, Wetzel R. Huntington’s disease age-of-onset linked to polyglutamine aggregation nucleation. Proc Natl Acad Sci U S A 2002; 99: 11884–9.

    Article  PubMed  CAS  Google Scholar 

  41. Rubinsztein DC, Leggo J, Coles R, et al. Phenotypic characterization of individuals with 30–40 CAG repeats in the Huntington disease (HD) gene reveals HD cases with 36 repeats and apparently normal elderly patients with 36–39 repeats. Am J Hum Genet 1996; 59: 16–22.

    PubMed  CAS  Google Scholar 

  42. Wiggins S, Whyte P, Huggins M, et al. The psychological consequences of predictive testing for Huntington’s disease. Canadian collaborative study of predictive testing. N Engl J Med 1992; 327: 1401–5.

    Article  PubMed  CAS  Google Scholar 

  43. Broadstock M, Michie S, Marteau T. Psychological consequences of predictive genetic testing: a systematic review. Eur J Hum Genet 2000; 8: 731–8.

    Article  PubMed  CAS  Google Scholar 

  44. Burson CM, Markey KR. Genetic counseling issues in predictive genetic testing for familial adult-onset neurologic diseases. Semin Pediatr Neurol 2001; 8: 177–86.

    Article  PubMed  CAS  Google Scholar 

  45. Brose MS, Rebbeck TR, Calzone KA, et al. Cancer risk estimates for BRCA1 mutation carriers identified in a risk evaluation program. J Natl Cancer Inst 2002; 94: 1365–72.

    Article  PubMed  CAS  Google Scholar 

  46. Grann VR, Jacobson JS, Thomason D, et al. Effect of prevention strategies on survival and quality-adjusted survival of women with BRCA1/2 mutations: an updated decision analysis. J Clin Oncol 2002; 20: 2520–9.

    Article  PubMed  Google Scholar 

  47. Scheuer L, Kauff N, Robson M, et al. Outcome of preventive surgery and screening for breast and ovarian cancer in BRCA mutation carriers. J Clin Oncol 2002; 20: 1260–8.

    Article  PubMed  Google Scholar 

  48. Moller P, Borg A, Evans DG, et al. Survival in prospectively ascertained familial breast cancer: analysis of a series stratified by tumour characteristics, BRCA mutations and oophorectomy. Int J Cancer 2002; 101: 555–9.

    Article  PubMed  CAS  Google Scholar 

  49. Meijers-Heijboer H, van Geel B, van Putten WL, et al. Breast cancer after prophylactic bilateral mastectomy in women with a BRCA1 or BRCA2 mutation. N Engl J Med 2001; 345: 159–64.

    Article  PubMed  CAS  Google Scholar 

  50. Rebbeck TR, Lynch HT, Neuhausen SL, et al. The Prevention and Observation of Surgical End Points Study Group. Prophylactic oophorectomy in carriers of BRCA1 or BRCA2 mutations. N Engl J Med 2002; 346: 1616–22.

    Article  PubMed  Google Scholar 

  51. Kauff ND, Satagopan JM, Robson ME, et al. Risk-reducing salpingo-oophorectomy in women with BRCA1 or BRCA2 mutation. N Engl J Med 2002; 346: 1609–15.

    Article  PubMed  Google Scholar 

  52. Chlebowski RT, Col N, Winer EP, et al. American Society of Clinical Oncology Breast Cancer Technology Assessment Working Group. American Society of Clinical Oncology technology assessment of pharmacologic interventions for breast cancer risk reduction including tamoxifen, raloxifene, and aromatase inhibition. J Clin Oncol 2002; 20: 3328–43.

    Article  PubMed  CAS  Google Scholar 

  53. King MC, Wieand S, Hale K, et al. National Surgical Adjuvant Breast and Bowel Project. Tamoxifen and breast cancer incidence among women with inherited mutations in BRCA1 and BRCA2: National Surgical Adjuvant Breast and Bowel Project (NSABP-P1) breast cancer prevention trial. JAMA 2001; 286: 2251–6.

    Article  PubMed  CAS  Google Scholar 

  54. Narod SA, Brunet JS, Ghadirian P, et al. Hereditary Breast Cancer Clinical Study Group. Tamoxifen and risk of contralateral breast cancer in BRCA1 and BRCA2 mutation carriers: a case-control study. Hereditary Breast Cancer Clinical Study Group. Lancet 2000; 356: 1876–81.

    Article  PubMed  CAS  Google Scholar 

  55. Michalski ST, Porter J, Pauli RM. Costs and consequences of comprehensive stillbirth analysis. Am J Obstet Gynecol 2002; 186: 1027–34.

    Article  PubMed  Google Scholar 

  56. Gollust SE, Hull SC, Wilfond BS. Limitations of direct-to-consumer advertising for clinical genetic testing. JAMA 2002; 288: 1762–7.

    Article  PubMed  Google Scholar 

  57. Neumann-Held EM. Can it be a “sin” to understand disease? On “genes” and “eugenics” and an “unconnected connection.” Med Health Care Philos 2001; 4: 5–17.

    PubMed  CAS  Google Scholar 

  58. Jones S. Genetics in medicine: real promises, unreal expectations: one scientist’s advice to policymakers in the United Kingdom and United States. New York (NY): Millbank Memorial Fund, 2000.

    Google Scholar 

  59. Bumol TF, Watanabe AM. Genetic information, genomic technologies and the future of drug discovery. JAMA 2001; 285: 551–5.

    Article  PubMed  CAS  Google Scholar 

  60. Phillips KA, Veenstra DL, Oren E, et al. Potential role of pharmacogenomics in reducing adverse drug reactions: a systematic review. JAMA 2001; 286: 2270–9.

    Article  PubMed  CAS  Google Scholar 

  61. Lakkis MM, DeCristofaro MF, Ahr HJ, et al. Application of toxicogenomics to drug development. Expert Rev Mol Diagn 2002; 2: 337–45.

    Article  PubMed  CAS  Google Scholar 

  62. Pindolia VK, Zarowitz BJ. Imatinib mesylate, the first molecularly targeted gene suppressor. Pharmacotherapy 2002; 22: 1249–65.

    Article  PubMed  CAS  Google Scholar 

  63. Cohen MH, Moses ML, Pazdur R. Gleevec™ for the treatment of chronic myelogenous leukemia: US Food and Drug Administration regulatory mechanisms, accelerated approval and orphan drug status. Oncologist 2002; 7: 390–2.

    Article  PubMed  Google Scholar 

  64. Dagher R, Cohen M, Williams G, et al. Approval summary: imatinib mesylate in the treatment of metastatic and/or unresectable malignant gastrointestinal stromal tumors. Clin Cancer Res 2002; 8: 3034–8.

    PubMed  CAS  Google Scholar 

  65. Hochhaus A, Kreil S, Corbin AS, et al. Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia 2002; 16: 2190–6.

    Article  PubMed  CAS  Google Scholar 

  66. Veenstra DL, Higashi MK, Phillips KA. Assessing the cost-effectiveness of pharmacogenomics [abstract]. AAPS PharmSci 2000; 2: E29.

    Article  PubMed  CAS  Google Scholar 

  67. Alison MR, Poulsom R, Forbes S, et al. An introduction to stem cells. J Pathol 2002; 197: 419–23.

    Article  PubMed  Google Scholar 

  68. Kaji EH, Leiden JM. Gene and stem cell therapies. JAMA 2001; 285: 545–50.

    Article  PubMed  CAS  Google Scholar 

  69. Bishop AE, Buttery LDK, Polack JM. Embryonic stem cells. J Pathol 2002; 197: 424–9.

    Article  PubMed  Google Scholar 

  70. Gardner RL. Stem cells: potency, plasticity and public perception. J Anat 2002; 200: 277–82.

    Article  PubMed  CAS  Google Scholar 

  71. Wilson C, Nilsen G. Genetics and genomics: transforming health and health care. Institute for the Future 2000. Available from URL: http://www.iftf.org [Accessed 2003 Feb 26].

  72. Mulligan RC. The basic science of gene therapy. Science 1993; 260: 926–32.

    Article  PubMed  CAS  Google Scholar 

  73. Resnik DB, Langer PJ. Human germline gene therapy reconsidered. Hum Gene Ther 2001; 12: 1449–58.

    Article  PubMed  CAS  Google Scholar 

  74. Primhak RA, Tanner MS. Alpha-1 antitrypsin deficiency. Arch Dis Child 2001; 85: 2–5.

    Article  PubMed  CAS  Google Scholar 

  75. Buckley RH. Primary cellular immunodeficiencies. J Allergy Clin Immunol 2002; 109: 747–57.

    Article  PubMed  CAS  Google Scholar 

  76. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000; 288: 669–72.

    Article  PubMed  CAS  Google Scholar 

  77. Herzog RW, Hagstrom JN. Gene therapy for hereditary hematological disorders. Am J Pharmacogenomics 2001; 1: 137–44.

    Article  PubMed  CAS  Google Scholar 

  78. Dettweiler U, Simon P. Points to consider for ethics committees in human gene therapy trials. Bioethics 2001; 15: 491–500.

    Article  PubMed  CAS  Google Scholar 

  79. Daily dispatches from the 2001 convention of the American Association for the Advancement of Science (AAAS), by Reason Science correspondent Ronald Bailey. Available from URL: http://www.reason.com/rb/aaas-2001.shtml.

  80. McGlennen RC. Miniaturization technologies for molecular diagnostics. Clin Chem 2001; 47: 393–402.

    PubMed  CAS  Google Scholar 

  81. Sinclair A. Genetics 101: detecting mutations in human genes. CMAJ 2002; 167: 275–9.

    PubMed  Google Scholar 

  82. Sheffield LJ. The hunt for new genes and polymorphisms that can control the response to drugs. Pharmacogenomics 2002; 3: 679–86.

    Article  PubMed  CAS  Google Scholar 

  83. Brandt A, Schleithoff L, Jurkat-Rott K, et al. Screening of the ryanodine receptor gene in 105 malignant hyperthermia families: novel mutations and concordance with the in vitro contraction test. Hum Mol Genet 1999; 8: 2055–62.

    Article  PubMed  CAS  Google Scholar 

  84. Kirchheiner J, Meineke I, Muller G, et al. Contributions of CYP2D6, CYP2C9 and CYP2C19 to the biotransformation of E- and Z-doxepin in healthy volunteers. Pharmacogenomics 2002; 12: 571–80.

    Article  CAS  Google Scholar 

  85. Dahl ML. Cytochrome p450 phenotyping/genotyping in patients receiving antipsychotics: useful aid to prescribing? Clin Pharmacokinet 2002; 41: 453–70.

    Article  PubMed  CAS  Google Scholar 

  86. NIH News Advisory [online]. Available from URL: http://www.nih.gov/news/pr/oct2002/nhgri-29.htm [Accessed 2003 Mar 20].

  87. Pokorski RJ. Insurance underwriting in the genetic era. Am J Hum Genet 1997; 60: 205–16.

    PubMed  CAS  Google Scholar 

  88. Health Talk. The future of medicine [online]. Available from URL: http://www.washingtonpost.com/wp-srv/liveonline/health/healthtalk/health122899.htm [Accessed 2003 Feb 26].

  89. Hager M, editor. The implications of genetics for health professional education. Proceedings of a conference chaired by Leon Eisenberg, MD. New York (NY): Josiah Macy Jr Foundation, 1999.

  90. Syngal S, Fox EA, Li C, et al. Interpretation of genetic test results for hereditary nonpolyposis colorectal cancer: implications for clinical predisposition testing. JAMA 1999; 282: 247–53.

    Article  PubMed  CAS  Google Scholar 

  91. ACMG Laboratory Practice Committee Working Group. ACMG recommendations for standards for interpretation of sequence variations. Genet Med 2000; 2: 302–3.

    Article  Google Scholar 

  92. Bachman RP, Schoen EJ. Managed genetic care in a large HMO. HMO Pract 1996 Jun; 10 (2): 54–8.

    PubMed  CAS  Google Scholar 

  93. Gutman S. The role of Food and Drug Administration regulation of in-vitro diagnostic devices: applications to genetic testing. Clin Chem 1999; 45: 746–9.

    PubMed  CAS  Google Scholar 

  94. American College of Medical Genetics. Standards and guidelines for clinical Genetics laboratories. 2nd ed. 1999 [online]. Available from URL: http://www.faseb.org/genetics/acmg/stds/stdsmenu.htm [Accessed 2003 Feb 26].

  95. Guyatt G. Gene patents threaten public access: straight Goods. Available from URL: http://www.straightgoods.ca/ViewFeature.cfm?.REF=241 [Accessed 2003 Feb 26].

  96. Arguments: “patents on genes” (long version) [online]. Available from URL: http://www.wz-berlin.de/ipr-dialogue/argumentations/hgr/LV_Patents_Genes.htm [Accessed 2003 Feb 26].

  97. Maguire P. How direct-to-consumer advertising is putting the squeeze on physicians [online]. ACP-ASIM Observer March 1999. Available from URL: http://www.acponline.org/journals/news/mar99/squeeze.htm [Accessed 2003 Feb 26].

  98. Agovino T. Genetic tests to get marketing push [online]. Miami Herald 2002 Jun 6. Available from URL: http://www.miami.com/mld/miami/business/3408198.htm [Accessed 2003 Feb 26].

  99. Encinosa W. The economics of regulatory mandates on the HMO market. J Health Econ 2001; 20: 85–107.

    Article  PubMed  CAS  Google Scholar 

  100. Anderlik MR, Rothstein MA. Privacy and confidentiality of genetic information: what rules for the new science? Annu Rev Genomics Hum Genet 2001; 2: 401–33.

    Article  PubMed  CAS  Google Scholar 

  101. Hall MA, Rich SS. Laws restricting health insurers’ use of genetic information: impact on genetic discrimination. Am J Hum Genet 2000; 66: 293–307.

    Article  PubMed  CAS  Google Scholar 

  102. Watson MS, Greene CL. Points to consider in preventing unfair discrimination based on genetic disease risk: a position statement of the American College of Medical Genetics. Genet Med 2001; 3: 436–7.

    Article  PubMed  CAS  Google Scholar 

  103. Hall MA, Rich SS. Patients’ fear of genetic discrimination by health insurers: the impact of legal protections. Genet Med 2000; 2: 214–21.

    Article  PubMed  CAS  Google Scholar 

  104. Testimony of John W. Rowe, M.D., Chairman and CEO, Aetna Inc. before the House Judiciary Subcommittee on the Constitution [online]. Available from URL: http://www.aetna.com/news/2002/pr_20020912.htm [Accessed 2003 Feb 20].

  105. EEOC petitions court to ban genetic testing of railroad workers in first EEOC case challenging genetic testing under Americans with Disabilities Act [press release, Washington, DC, February 2001]. Available from URL: http://www.eeoc.gov/press/2-9-01-c.html [Accessed 2003 Feb 20].

  106. EEOC settles ADA suit against BNSF for genetic bias [press release] Available from URL: http://www.eeoc.gov/press/4-18-01.html [Accessed 2003 Feb 20].

  107. Luke RT. Health care in the United States: current and future challenges. Manag Care 2001; 10 Suppl. 10: 2–6.

    PubMed  CAS  Google Scholar 

  108. Burke W, Atkins D, Gwinn M, et al. Genetic test evaluation: information needs of clinicians, policy-makers and the public [online]. Available from URL: http://www.cdc.gov/genomics/hugenet/GENEtest.htm [Accessed 2003 Feb 20].

  109. National Coalition for Health Professional Education in Genetics [online]. Available from URL: http://www.nchpeg.org/ [Accessed 2003 Feb 20].

Download references

Acknowledgements

The author received no outside funding for the preparation of this manuscript. He has no specific conflicts of interest. He currently chairs the Committee on the Economics of Genetic Services of the American College of Medical Genetics based in Bethesda, Maryland, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc S. Williams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, M.S. Can Genomics Deliver on the Promise of Improved Outcomes and Reduced Costs?. Dis-Manage-Health-Outcomes 11, 277–290 (2003). https://doi.org/10.2165/00115677-200311050-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00115677-200311050-00001

Keywords

Navigation