Skip to main content
Log in

Spotlight on Mycophenolate Mofetil in Solid Organ Transplantation

  • Adis Spotlight
  • Published:
Disease Management & Health Outcomes

Abstract

Most pharmacoeconomic studies of mycophenolate mofetil have focused on its use as part of maintenance immunosuppression for renal transplantation, involving short-term (3–12 months) time frames. In general, mycophenolate mofetil reduced the treatment costs for rejection episodes and graft failure which offset its higher drug acquisition cost compared with azathioprine.

Several cost analyses have been modeled on the large multicenter trials of adult renal transplant recipients. The use of mycophenolate mofetil was associated with either cost savings or no additional costs after 6 or 12 months in French, US and Canadian analyses of triple or quadruple immunosuppressant therapy. A further cost analysis utilizing a registry database of renal transplant recipients in the US found mycophenolate mofetil to be cost saving compared with azathioprine after 6.4 years when evaluating costs due to graft loss only.

Of the limited cost-effectiveness analyses with the drug, one US study modeled the 1- and 10-year cost effectiveness of mycophenolate mofetil and various other immunosuppressants used in combined regimens. Long-term use of mycophenolate mofetil was less cost effective than other regimens, but the use of long-term mycophenolate mofetil in high-risk patients was shown to be a relatively cost-effective strategy. In another US analysis comparing mycophenolate mofetil with azathioprine as part of quadruple therapy, mycophenolate mofetil was associated with slightly lower costs during the first year after renal transplantation as well as improved clinical outcomes.

In conclusion, pharmacoeconomic studies support the use of mycophenolate mofetil as part of immunosuppressant therapy in renal transplantation, at least in the short term. Although the cost effectiveness of mycophenolate mofetil in the long term is less clear, limited pharmacoeconomic data available appear promising. Among issues to be examined in future economic analyses in renal transplantation are the calcineurin-sparing potential of mycophenolate mofetil and the feasibility of using more efficient mycophenolate mofetil dosage regimens when using the drug on a long-term basis. Additional pharmacoeconomic analyses of mycophenolate mofetil are also needed in other types of solid organ transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. National Association of Health Authorities and Trusts. Organ Transplants. Health Serv J 1992 Aug 20; 102 (5316): 32.

    Google Scholar 

  2. Cogny-Van Weydevelt FI, Ngohou C, Pontefract R, et al. Hemodialysis and transplantation cost-effectiveness analysis. Transplant Proc 1996 Oct; 28(5): 2838.

    PubMed  CAS  Google Scholar 

  3. Karlberg I, Nyberg G. Cost-effectiveness studies of renal transplantation. Int J Technol Assess Health Care 1995 Summer; 11 (3): 611–22.

    Article  PubMed  CAS  Google Scholar 

  4. Evans RW, Kitzmann DJ. An economic analysis of kidney transplantation. Surg Clin North Am 1998 Feb; 78 (1): 149–74.

    Article  PubMed  CAS  Google Scholar 

  5. Lake JR, Gorman KJ, Esquivel CO, et al. The impact of immunosuppressive regimens on the cost of liver transplantation — results from the U.S. FK506 Multicenter Trial. Transplantation 1995 Nov 27; 60 (10): 1089–95.

    CAS  Google Scholar 

  6. Taylor M, Krahn P, Detsky A, et al. Costing study of liver transplantation in adults [abstract no. 1285]. Hepatology 1999 Oct; 30 (4 Pt 2): 482A.

  7. Evans RW, Manninen DL, Dong FB. An economic analysis of heart-lung transplantation: costs, insurance coverage, and reimbursement. J Thorac Cardiovasc Surg 1993 Jun; 105 (6): 972–8.

    PubMed  CAS  Google Scholar 

  8. Gartner SH, Sevick MA, Keenan RJ, et al. Cost-utility of lung transplantation: a pilot study. J Heart Lung Transplant 1997 Nov; 16 (11): 1129–34.

    PubMed  CAS  Google Scholar 

  9. Lenisa L, Castoldi R, Socci C, et al. Cost analysis of kidney-pancreas and kidneyislet transplant. Transplant Proc 1995 Dec; 27 (6): 3061–84.

    PubMed  CAS  Google Scholar 

  10. Shireman TI, Martin JE, Whiting JF. The cost of transplant graft maintenance following solid organ transplantation. Transplant Proc 2001; 33: 1920–1.

    Article  PubMed  CAS  Google Scholar 

  11. Canafax DM, Carleton BC, Matas AJ, et al. Effects of three immunosuppressive drug protocols on cadaver renal transplantation costs after 4 years of therapy. Transplant Proc 1993 Feb; 25 (1): 1692–3.

    PubMed  CAS  Google Scholar 

  12. Sharpies LD, Briggs A, Caine N, et al. A model for analyzing the cost of main clinical events after cardiac transplantation. Transplantation 1996 Sep 15; 62 (5): 615–21.

    Article  Google Scholar 

  13. Sharpies LD, Taylor GJ, Karnon J, et al. A model for analyzing the cost of the main clinical events after lung transplantation. J Heart Lung Transplant 2001 Apr; 20 (4): 474–82.

    Article  Google Scholar 

  14. Douzdjian V, Escobar F, Kupin WL, et al. Cost-utility analysis of living-donor kidney transplantation followed by pancreas transplantation versus simultaneous pancreas-kidney transplantation. Clin Transplant 1999 Feb; 13(1 Pt 1): 51–8.

    Article  PubMed  CAS  Google Scholar 

  15. Kim WR, Badley AD, Wiesner RH, et al. The economic impact of cytomegalovirus infection after liver transplantation. Transplantation 2000 Feb 15; 69 (3): 357–61.

    Article  PubMed  CAS  Google Scholar 

  16. Thamer M, Chan JK, Ray NF, et al. Drug use concomitant with cyclosporine immunosuppressive therapy for 3 years after renal transplantation. Am J Kidney Dis 1998 Feb; 31 (2): 283–92.

    Article  PubMed  CAS  Google Scholar 

  17. Baltzan MA, Shoker AS, Baltzan RB, et al. HLA-identity — long-term renal graft survival, acute vascular, chronic vascular, and acute interstitial rejection. Transplantation 1996 Mar 27; 61 (6): 881–5.

    Article  PubMed  CAS  Google Scholar 

  18. World Congress on Transplantation tackles multi-faceted transplant challenges: researchers focus on improving patient management and decreasing costs. Inpharma 1994 3 Sep: 953.

    Google Scholar 

  19. Martin JE, Fleck P, Schroeder TJ, et al. The cost of rejection in liver allograft recipients. Transplant Proc 1998 Jun; 30 (4): 1500–1.

    Article  PubMed  CAS  Google Scholar 

  20. Veenstra DL, Best JH, Hornberger J, et al. Incidence and cost of steroid side effects after renal transplantation. Transplant Proc 1999 Feb; 31: 301–2.

    Google Scholar 

  21. Manninen DL, Evans RW, Dugan MK, et al. The costs and outcome of kidney transplant graft failure. Transplant Proc 1991 Feb; 23 (1): 1312–4.

    PubMed  CAS  Google Scholar 

  22. Aswad S, Devera-Sales A, Zapanta R, et al. Costs for successful vs failed kidney transplantation: a two year follow-up. Transplant Proc 1993 Dec; 25 (6): 3069–70.

    PubMed  CAS  Google Scholar 

  23. Schnitzler MA, Craig KE, Woodward RS, et al. A contemporaneous comparison of MMF and AZA in the USRDS data base [abstract]. Am J Transplant 2001; 1 Suppl. 1: 354.

    Google Scholar 

  24. European Mycophenolate Mofetil Cooperative Study Group. Placebo-controlled study of mycophenolate mofetil combined with cyclosporin and corticosteroids for prevention of acute rejection. [see comments]. Lancet 1995 May 27; 345: 1321–5.

    Google Scholar 

  25. Tricontinental Mycophenolate Mofetil Renal Transplantation Study Group. A blinded, randomized clinical trial of mycophenolate mofetil for the prevention of acute rejection in cadaveric renal transplantation [see comments]. Transplantation 1996 Apr 15; 61 (7): 1029–37.

    Article  Google Scholar 

  26. Sollinger HW, on behalf of the U.S. Renal Transplant Mycophenolate Mofetil Study Group. Mycophenolate mofetil for the prevention of acute rejection in primary cadaveric renal allograft recipients. Transplantation 1995 Aug 15; 60 (3): 225–32.

    CAS  Google Scholar 

  27. European Mycophenolate Mofetil Cooperative Study Group. Mycophenolate mofetil in renal transplantation: 3-year results from the placebo-controlled trial. Transplantation 1999 Aug 15; 68 (3): 391–6.

    Article  Google Scholar 

  28. Mathew TH, Tricontinental Mycophenolate Mofetil Renal Transplantation Study Group. A blinded, long-term, randomized multicenter study of mycophenolate mofetil in cadaveric renal transplantation. Transplantation 1998 Jun 15; 65 (11): 1450–817.

    Article  PubMed  CAS  Google Scholar 

  29. US Renal Transplant Mycophenolate Mofetil Study Group. Mycophenolate mofetil in cadaveric renal transplantation. Am J Kidney Dis 1999 Aug; 34 (2): 296–303.

    Article  Google Scholar 

  30. Takemoto SK. Maintenance immunosuppression. Clin Transpl 2000, 481–95.

  31. Oppenheimer F. Steroid withdrawal in renal transplant recipients. Transplant Proc 2000; 32 Suppl. 1A: 14S–5S.

    Article  PubMed  CAS  Google Scholar 

  32. Kobashigawa J, Miller L, Renlund D, et al. A randomized active-controlled trial of mycophenolate mofetil in heart transplant recipients. Mycophenolate Mofetil Investigators. Transplantation 1998 Aug 27; 66 (4): 507–15.

    CAS  Google Scholar 

  33. Mele TS, Halloran PF. The use of mycophenolate mofetil in transplant recipients. Immunopharmacology 2000; 47: 215–45.

    Article  PubMed  CAS  Google Scholar 

  34. Wiesner R, Rabkin J, Klintmalm G, et al. A randomized double-blind comparative study of mycophenolate mofetil and azathioprine in combination with cyclosporine and corticosteroids in primary liver transplant recipients. Liver Transpl 2001 May; 7 (5): 442–50.

    Article  PubMed  CAS  Google Scholar 

  35. Squifflet JP, Backman L, Claesson K, et al. Dose optimization of mycophenolate mofetil when administered with a low dose of tacrolimus in cadaveric renal transplant recipients. Transplantation 2001 Jul 15; 72 (1): 63–9.

    Article  PubMed  CAS  Google Scholar 

  36. Miller J, Mendez R, Pirsch JD, et al. Safety and efficacy of tacrolimus in combination with mycophenolate mofetil (MMF) in cadaveric renal transplant recipients. Transplantation 2000 Mar 15; 69 (5): 875–80.

    Article  PubMed  CAS  Google Scholar 

  37. Halloran P, Ahsan N, Johnson C, et al. 3 year follow-up of randomized multicenter kidney transplant study comparing tacrolimus (TAC) + azathioprine (AZA) vs cyclosporine modified (CSA) + mycophenolate mofetil (MMF) vs TAC+MMF [abstract]. Am J Transplant 2001; 1 Suppl. 1: 405.

    Google Scholar 

  38. Ahsan N, Johnson C, Gonwa T, et al. Randomized trial of tacrolimus plus mycophenolate mofetil or azathioprine versus cyclosporine oral solution (modified) plus mycophenolate mofetil after cadaveric kidney transplantation: results at 2 years. Transplantation 2001 Jul 27; 72 (2): 245–50.

    Article  PubMed  CAS  Google Scholar 

  39. Meiser BM, Pfeiffer M, Schmidt D, et al. The efficacy of the combination of tacrolimus and mycophenolate mofetil for prevention of acute myocardial rejection is dependent on routine monitoring of mycophenolic acid trough acid levels. Transplant Proc 1999; 31: 84–7.

    Article  PubMed  CAS  Google Scholar 

  40. Meiser BM, Pfeiffer M, Schmidt D, et al. Combination therapy with tacrolimus and mycophenolate mofetil following cardiac transplantation: importance of mycophenolic acid therapeutic drug monitoring. J Heart Lung Transplant 1999 Feb; 18 (2): 143–9.

    Article  PubMed  CAS  Google Scholar 

  41. Forni A, Faggian G, Luciani GB, et al. Acute cardiac ongoing rejection: comparison between different strategies. Transplant Proc 2001 May; 33 (3): 2395–7.

    Article  PubMed  CAS  Google Scholar 

  42. Klupp J, Glanemann M, Bechstein WO, et al. Mycophenolate mofetil in combination with tacrolimus versus Neoral after liver transplantation. Transplant Proc 1999; 31: 1113–4.

    Article  PubMed  CAS  Google Scholar 

  43. Jain A, Kashyap R, Kramer D, et al. Prospective randomized trial of tacrolimus and prednisone versus tacrolimus, prednisone, and mycophenolate mofetil: complete report on 350 primary adult liver transplantations. Transplant Proc 2001 Feb-2001 31; 33: 1342–4.

    Article  PubMed  CAS  Google Scholar 

  44. Mycophenolate Mofetil Acute Renal Rejection Study Group. Mycophenolate mofetil for the treatment of a first acute renal allograft rejection [published erratum appears in Transplantation 1998 Apr 15; 65 (7): following table of contents]. Transplantation 1998 Jan 27; 65 (2): 235–41.

    Google Scholar 

  45. Mycophenolate Mofetil Acute Renal Rejection Study Group. Mycophenolate mofetil for the treatment of a first acute renal allograft rejection: three-year follow-up. Transplantation 2001 Apr 27; 71 (8): 1091–7.

    Article  Google Scholar 

  46. Mycophenolate Mofetil Renal Refractory Rejection Study Group. Mycophenolate mofetil for the treatment of refractory, acute, cellular renal transplant rejection. Transplantation 1996 Mar 15; 61 (6): 722–9.

    Google Scholar 

  47. Curtis JJ, Pascual M, Kalil R, et al. Effect of reducing cyclosporine dose by 50% in stable renal transplant recipients in the mycophenolate (MMF) era: a randomized controlled trial. American Journal of Transplantation 2001; 1 Suppl. 1: 246.

    Google Scholar 

  48. McGrath JS, Shehata M. Chronic allograft nephropathy: prospective randomised trial of cyclosporin withdrawal and mycophenolate mofetil or tacrolimus substitution. Transplant Proc 2001 May; 33 (3): 2193–5.

    Article  PubMed  CAS  Google Scholar 

  49. de Sevaux RGL, Smak Gregoor PH, Hene RJ, et al. A controlled trial comparing two doses of cyclosporine in conjunction with mycophenolate mofetil and corticosteroids. J Am Soc Nephrol 2001 Aug; 12 (8): 1750–7.

    PubMed  Google Scholar 

  50. Smak-Gregoor PJH, van Gelder T, van Besouw NM, et al. Randomized study on the conversion of treatment with cyclosporine to azathioprine or mycophenolate mofetil followed by dose reduction [see comments]. Transplantation 2000 Jul 15; 70 (1): 143–8.

    PubMed  CAS  Google Scholar 

  51. Schnuelle P, van der Heide JH, Tegzess A, et al. Open randomized trial comparing early withdrawal of either cyclosporine or mycophenolate mofetil in stable renal transplant recipients initially treated with a triple drug regimen. J Am Soc Nephrol 2002 Feb; 13 (2): 536–43.

    PubMed  CAS  Google Scholar 

  52. Houde I, Isenring P, Boucher D, et al. Mycophenolate mofetil, an alternative to cyclosporine A for long-term immunosuppression in kidney transplantation? Transplantation 2000 Oct 27; 70 (8): 1251–3.

    Article  PubMed  CAS  Google Scholar 

  53. Basara N, Kiehl MG, Blau W, et al. Mycophenolate mofetil in the treatment of acute and chronic GVHD in hematopoietic stem cell transplant patients: four years of experience. Transplant Proc 2001; 33: 2121–3.

    Article  PubMed  CAS  Google Scholar 

  54. CellCept product information [web page]. Available from URL: http://www.rocheusa.com/products/cellcept/pi.html [Accessed 2002 May 22].

  55. Bardsley-Elliot A, Noble S, Foster RH. Mycophenolate mofetil: a review of its use in the management of solid organ transplantation. Biodrugs 1999 Nov; 12 (5): 363–410.

    Article  PubMed  CAS  Google Scholar 

  56. Behrend M. Adverse gastrointestinal effects of mycophenolate mofetil: aetiology, incidence and management. Drug Saf 2001; 24 (9): 645–63.

    Article  PubMed  CAS  Google Scholar 

  57. Baker GM, Martin JE, Jang R, et al. Pharmacoeconomic analysis of mycophenolate mofetil versus azathioprine in primary cadaveric renal transplantation. Transplant Proc 1998; 30: 4082–4.

    Article  PubMed  CAS  Google Scholar 

  58. Deierhoi MH, Gupta S, Hudson SL, et al. Cost considerations and the use of mycophenolate mofetil in renal transplantation [abstract]. Transplantation 1998 Oct 27; 66 (8): S5.

    Article  Google Scholar 

  59. Wuthrich RP, Weinreich T, Ambuhl PM, et al. Reduced kidney transplant rejection rate and pharmacoeconomic advantage of mycophenolate mofetil. Nephrol Dial Transplant 1999; 14: 394–9.

    Article  PubMed  CAS  Google Scholar 

  60. Wuthrich RP, Weinreich T, Schwarzkopf AK, et al. Postmarketing evaluation of mycophenolate mofetil-based triple therapy immunosuppression compared with a conventional azathioprine-based regimen reveals enhanced efficacy and early pharmacoeconomic benefit after renal transplantation. Transplant Proc 1998; 30: 4096–7.

    Article  PubMed  CAS  Google Scholar 

  61. Suleymanlar G, Tuncer M, Sarikaya M, et al. The cost effectiveness of mycophenolate mofetil in the first year after living related renal transplantation. Transplant Proc 2001 Aug; 33 (5): 2780–1.

    Article  PubMed  CAS  Google Scholar 

  62. Kam I, Wachs ME, Bak T, et al. Mycophenolate mofetil does not lower the incidence or cost of rejection, use of OKT3, or improve survival after liver transplantation and rapid (14D) steroid withdrawal [abstract]. Hepatology 2000 Oct; 32 (Pt 2): 342.

  63. Khosla UM, Martin JE, Baker GM, et al. One-year, single-center cost analysis of mycophenolate mofetil versus azathioprine following cadaveric renal transplantation. Transplant Proc 1999; 31: 274–5.

    Article  PubMed  CAS  Google Scholar 

  64. Louis-Touizer C, Nuijten MJC, Bayle F, et al. Economic contribution of prophylactic immunosuppressive therapy with mofetil mycofenolate in renal cadaveric transplant recipients [in French]. Presse Med 1996 Nov 2; 25: 1577–82.

    PubMed  CAS  Google Scholar 

  65. Schnitzler MA, Woodward RS, Lowell JA, et al. Ten-year cost effectiveness of alternative immunosuppression regimens in cadaveric renal transplantation. Transplant Proc 1999; 31 Suppl. B: 19S–21S.

    Article  PubMed  CAS  Google Scholar 

  66. Keowin PA, Sullivan SD, Best JH, et al. Economic evaluation of mycophenolate mofetil (MMF) for prevention of acute graft rejection after cadaveric renal transplantation in Canada [web page]. Available from URL: http://www.a-s-t.org/abstracts97/py355613.htm [Accessed 2001 Oct 25].

  67. Seikaly MG. Mycophenolate mofetil — is it worth the cost? The in-favor opinion [see comments]. Pediatr. Transplant 1999; 3: 79–82.

    Article  PubMed  CAS  Google Scholar 

  68. Schnitzler MA, Craig KE, Woodward RS, et al. Cost savings for lifetime immunosuppression from MMF in cadaveric renal transplant [abstract]. Am J Transplant 2001; 1 Suppl. 1: 272.

    Google Scholar 

  69. Sullivan SD, Garrison Jr. LP, Best JH, et al. The cost effectiveness of mycophenolate mofetil in the first year after primary cadaveric transplant. J Am Soc Nephrol 1997; 8: 1592–8.

    PubMed  CAS  Google Scholar 

  70. Sakamaki H, Ikeda S, Noguchi N, et al. Cost-effectiveness analysis of mycophenolate mofetil treatment for intractable acute rejection in renal transplantation recipients. Value Health 1999 May–1999 30; 2 (3): 204–5.

    Article  Google Scholar 

Download references

Acknowledgements

The full text article in PharmacoEconomics 2002; 20 (10): 675–713 was reviewed by: M. Behrend, Abteilung Thoraxchirurgie, Universitatsklinikum Freiburg, Freiburg, Germany; D. E. Eckhoff, Department of Surgery, Division of Transplantation, University of Alabama at Birmingham, Birmingham, Alabama, USA; P. F. Halloran, Division of Nephrology and Immunology, University of Alberta Hospitals, Edmonton, Alberta, Canada; P. J. H. Smak Gregoor, Department of Internal Medicine, University Hospital Rotterdam, Rotterdam, Netherlands; S. D. Sullivan, Pharmaceutical Outcomes Research and Policy Program, Department of Pharmacy, University of Washington, Seattle, Washington, USA; R.P. Wuthrich, Division of Nephrology, University Hospital Rorschacherstrasse 95, Zurich, Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greg L. Plosker.

Additional information

This Spotlight is derived from abstract and summary text of an Adis Pharmacoeconomic Drug Evaluation originally published in full in PharmacoEconomics 2002; 20 (10): 675–713

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young, M., Plosker, G.L. Spotlight on Mycophenolate Mofetil in Solid Organ Transplantation. Dis-Manage-Health-Outcomes 10, 805–809 (2002). https://doi.org/10.2165/00115677-200210120-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00115677-200210120-00006

Keywords

Navigation