Skip to main content
Log in

New Trends in Patient Monitoring

  • Review Article
  • Published:
Disease Management and Health Outcomes

Abstract

The monitoring of vital signs is a basic task that has been carried out on patients that are admitted into specialized units, such as coronary care units, intensive care units and operating rooms. There is now a good deal of interest in the ever-increasing possibility of such monitoring being extended further, outside the hospital setting (e.g. to the patient’s home). We point out some of the aspects that have most significantly affected the evolution of monitoring systems, and identify some of the most important lines of research and improvement: endowing systems with greater intelligence (conditioned to a good degree by considerable advances at the level of sub-symbolic processing); the introduction of standards for the representation and transmission of monitoring information; ubiquity, in both the possibility of monitoring patients in any location and situation, and the capability of accessing this monitoring information. We end by presenting a line of research into intelligent ubiquitous monitoring developed by the authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. According to 1998 data, just six companies controlled 70% of the world’s patient instrumentation market ($US2200 million): Agilent (a division of Hewlett-Packard), SpaceLabs Medical, Marquette (a division of General Electric), Nellcor (a division of Mallinckrodt), Siemens and Datex-Ohmeda (a division of Instrumentarium) [source: http://www.virtualanesthesia-textbook.com/vat/monitoring.html#standard].

References

  1. Dertouzos ML. What will be: how the new world of information will change our lives. New York: HarperEdge Publishers, 1997.

    Google Scholar 

  2. Mora FA, Passariello G, Carrault G, et al. Intelligent patient monitoring and management systems: a review. IEEE Eng Med Biol Mag 1993; 12 (4): 23–33.

    Article  Google Scholar 

  3. Frost & Sullivan. European alternate site patient monitoring equipment markets 1998 [online]. Available from URL: http://www.frost.com [Accessed 2002 Apr 8].

  4. Martin-Jadraque L. La unidad coronaria. Tratamiento del infarto agudo de miocardio no complicado. Protection del miocardio isquémico. Donetsk, Ukraine: Norma, 1981: 612.

  5. Einthoven W. Un nuveau galvanomètre. Arch Neerl Sci Exactes Nat 1901; 6: 625–33.

    Google Scholar 

  6. Grandis SL. Instrumentation for coronary care. Cambridge, UK: Cambridge University Press, 1981.

    Google Scholar 

  7. Pipberger HV. The present state of ECG data processing. What has been accomplished in thirty years? In: Blum BI, Duncan K, editors. A history of medical informatics. New York: ACM Press, 1990: 278–87.

    Google Scholar 

  8. Pipberger HV, Freis ED, Taback L, et al. Preparation of electrocardiographic data for analysis by digital electronic computer. Circulation 1960; 21: 413–8.

    Article  PubMed  CAS  Google Scholar 

  9. Caceres CA, Steinberg CA, Abraham S, et al. Computer extraction of electrocardiographic parameters. Circulation 1962; 25: 356–62.

    Article  PubMed  CAS  Google Scholar 

  10. Stallmann FW, Pipberger HV. Automatic recognition of electrocardiographic waves by digital computer. Circ Res 1961; 9: 1138–43.

    Article  PubMed  CAS  Google Scholar 

  11. Tompkins WJ, Webster JG. Design of microcomputer-based medical instrumentation. Englewood Cliffs (NJ): Prentice-Hall, 1981.

    Google Scholar 

  12. Landucci L, Macerata A, Marchesi C, et al. Real time computer based electrocardiographic and hemodynamic monitoring in CCU. Med Informatics 1978: 325–39.

    Google Scholar 

  13. Drazen EL. Use of computerized monitoring systems in intensive care. Comput Cardiol 1981; 8: 323–5.

    Google Scholar 

  14. Weinfurt P. A new software driven patient monitoring system. Comput Cardiol 1984; 11: 435–7.

    Google Scholar 

  15. Patel VL, Kushniruk AW. Human-computer interaction in health care. In: van Bemmel JH, Mussen MA, editors. Handbook of medical informatics. Heidelberg: Springer-Verlag, 1997: 473–93.

    Google Scholar 

  16. Edwards J. 3-tier server/client at work. Rev ed. New York: John Wiley and Sons, 1999.

    Google Scholar 

  17. CEN/TC251 prENV 1064. Standard communications protocol for computerassisted electrocardiography. October 2000 [online]. Available from URL: http://www.standards.nhsia.nhs.uk/centc251/wgiv/pdf/censcp019.pdf [Accessed 2001 Jun 1].

  18. About HL7. Available from URL: http://www.W7.org/about/ [Accessed 2002 Apr 10].

  19. Nelwan S, Meij S, Fuchs K, et al. Ubiquitous access to real-time patient monitoring data. Comput Cardiol 1997; 24: 271–4.

    Google Scholar 

  20. Block E, Nuutinen L, Ballast B. Optimization of alarms: a study on alarm limits, alarm sounds, and false alarms, intended to reduce annoyance. J Clin Monit Comput 1999; 15: 75–83.

    Article  PubMed  Google Scholar 

  21. Gaba DM, Maxwell M, De Anda A. Anesthetic mishaps: breaking the chain of accident evolution. Anesthesiology 1987; 66 (5): 670–6.

    Article  PubMed  CAS  Google Scholar 

  22. Jungk A, Thull B, Rau G. Intelligent alarms for anaesthesia monitoring based on a fuzzy logic approach. In: Barro S, Marin R, editors. Fuzzy logic in medicine. Springer series on studies in fuzziness and soft computing. Heidelberg: Physica Verlag, 2001. In press.

    Google Scholar 

  23. Van de AJ. Intelligent alarms in anesthesia: a real time expert system application [dissertation]. Eindhoven, Holland: Eindhoven University of Technology, 1990.

    Google Scholar 

  24. Lowe A, Harrison M, Jones R. Diagnostic monitoring in anaesthesia using fuzzy trend templates for matching temporal patterns. Artif Intell Med 1999; 16: 183–99.

    Article  PubMed  CAS  Google Scholar 

  25. Daskalov IK, Christov II. Automatic detection of the electrocardiogram T-wave end. Med Biol Eng Comput 1999; 37: 348–53.

    Article  PubMed  CAS  Google Scholar 

  26. Glover JR, Periklis YK, Jansen BH. Knowledge-based interpretation of bioelectric signals. IEEE Eng Med Biol Mag 1990 Mar; 9: 51–4.

    Google Scholar 

  27. Papp Z, Pézeli G, Bagó B, et al. Intelligent medical instruments. IEEE Eng Med Biol Mag 1988 Jun; 7: 18–23.

    Google Scholar 

  28. Uckun S. Intelligent systems in patient monitoring and therapy measurement: a survey of research projects. Int J Clin Monit Comput 1994; 11: 241–53.

    Article  PubMed  CAS  Google Scholar 

  29. Dawant BM. Knowledge-based systems for intelligent patient monitoring and management in critical care environments. In: Bronzino JD, editor. The biomedical engineering handbook. Boca Raton (FL): CRC Press, Inc., 1995: 2746–56.

    Google Scholar 

  30. Silipo R, Marchesi C. Composite neural network architecture for extensive long term ECG analysis. Proc Comput Cardiol 1996: 13–6.

  31. Steimann F. The interpretation of time-varying data with DiaMon-1. Artif Intell Med 1996; 8: 343–57.

    Article  PubMed  CAS  Google Scholar 

  32. Coiera EW. Intelligent monitoring and control of dynamic physiological systems. Artif Intell Med 1993; 5: 1–8.

    Article  PubMed  CAS  Google Scholar 

  33. Bratko I, Mozetic I, Laurac N. KARDIO: a study in deep and qualitative knowledge for expert systems. Cambridge (MA): MIT Press, 1989.

    Google Scholar 

  34. King PH, Bao W, Zheng J, et al. The capnogram analyzer: a real-time expert system. Comput Clin Med 1988: 5.

  35. Hamscher W, Console L, de Kleer J, editors. Readings in model-based diagnosis. San Mateo (CA): Morgan Kaufmann, 1992.

    Google Scholar 

  36. Console L, Torasso P. On the co-operation between abductive and temporal reasoning in medical diagnosis. Artif Intell Med 1991; 3 (6): 291–311.

    Article  Google Scholar 

  37. Long W. Temporal reasoning for diagnosis in a causal probabilistic knowledge base. Artif Intell Med 1996; 8 (3): 193–216.

    Article  PubMed  CAS  Google Scholar 

  38. Gamper J, Nejdl W. Abstract temporal diagnosis in medical domains. Artif Intell Med 1997; 10: 209–34.

    Article  PubMed  CAS  Google Scholar 

  39. Shortliffe EH. Computer based medical consultations: MYCIN. New York: Elsevier North Holland Inc., 1976.

    Google Scholar 

  40. Newell A, Simon HA. Human problem solving. Englewood Cliffs (NJ): Prentice Hall, 1972.

    Google Scholar 

  41. Hood ST, Mason KP. Knowledge-based systems for real-time applications. In: Quinlan JR, editor. Applications of expert systems. London: Turing Institute Press in cooperation with Addison-Wesley Publishing Company, 1986: 102–19.

  42. Hayes-Roth B, Washington R, Ash D, et al. Guardian: a prototype intelligent agent for intensive-care monitoring. Artif Intell Med 1992; 4: 165–85.

    Article  Google Scholar 

  43. Norris PR, Dawant BM. The SIMON architecture: distributing data, tasks, and knowledge in intelligent ICU monitoring systems. Proceedings of the Workshop on Computers in Anaesthesia and Intensive Care: Knowledge-Based Information Management; 1999 Jun 20; Aalborg, Denmark.

  44. Hayes-Roth B, Larsson JE. A domain-specific software architecture for a class of intelligent patient monitoring systems. J Experimental Theoretical Artif Intell 1996; 8 (2): 149–71.

    Article  Google Scholar 

  45. Shahar Y, Musen M. RESUME: A temporal-abstraction system for patient monitoring. Comput Biomed Res 1993; 26: 255–73.

    Article  PubMed  CAS  Google Scholar 

  46. Klein GA, Calderwood R. Decision models: some lessons from the field. IEEE Trans Sys Man Cyb 1991; 21 (5): 1018–26.

    Article  Google Scholar 

  47. Bellazzi R, Larissa C, Riva A. Temporal abstractions for interpreting diabetic patients monitoring data. Intell Data Analysis 1998; 2: 97–122.

    Article  Google Scholar 

  48. Shahar Y, Musen MA. Knowledge—based temporal abstraction in clinical domains. Artif Intell Med 1996; 8: 267–98.

    Article  PubMed  CAS  Google Scholar 

  49. Shahar Y. A framework for knowledge-based temporal abstraction. Artif Intell 1997; 90 (1–2): 79–133.

    Article  Google Scholar 

  50. Manders EJ, Dawant BM. Design of a dynamically reconfigurable critical care monitor. Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 1997 Oct 30–Nov 2; Chicago.

  51. Calvelo D, Chambrin MC, Pomorski D, et al. Towards symbolization using datadriven extraction of local trends for ICU monitoring. Artif Intell Med 2000; 19: 203–23.

    Article  PubMed  CAS  Google Scholar 

  52. Saridis GN. Analytic formulation of the principle of increasing precision with decreasing intelligent for intelligent machines. Automática 1989; 25 (3): 461–7.

    Article  Google Scholar 

  53. Teodorescu HN, Kandel A, Jain LC. Fuzzy and neuro-fuzzy systems in medicine. Boca Raton (FL): CRC Press, 1999.

    Google Scholar 

  54. Hudson DL, Cohen ME. Neural networks and artificial intelligence for biomedical engineering. Piscataway (NJ): IEEE Press Series in Biomedical Engineering, 2000.

    Google Scholar 

  55. Barro S, Marin R, editors. Fuzzy logic in medicine. Springer-Verlag series studies in fuzziness and soft computing. Heidelberg: Physica-Verlag, 2001.

    Google Scholar 

  56. Zadeh LA. Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Systems 1997; 90: 111–27.

    Article  Google Scholar 

  57. Shortliffe EH. The adolescence of AI in medicine: will the field come of age in the’ 90s? Artif Intell Med 1992; 5: 93–106.

    Article  Google Scholar 

  58. Dojat M, Miksch S, Hunter J. Editorial: knowledge-based information management in intensive care and anesthesia. Artif Intell Med 2000; 19: 185–7.

    Article  PubMed  Google Scholar 

  59. Barro S, Presedo J, Castro D, et al. Intelligent telemonitoring of critical-care patients: a system for providing detailed, real-time knowledge available any time from any location. IEEE Eng Med Biol Mag 1999; 18 (4): 80–8.

    Article  PubMed  CAS  Google Scholar 

  60. Presedo J, Castro D, Vila J, et al. Wireless interface for monitored patients in Coronary Care Units [on CD-ROM]. Proceedings of the 2000 World Congress on Medical Physics and Biomedical Engineering and the 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2000 Jul 23–28; Chicago.

  61. Vila J, Presedo J, Fernández-Delgado M, et al. SUTIL: intelligent ischemia monitoring system. Int J Med Informatics 1997; 47 (3): 193–214.

    Article  CAS  Google Scholar 

  62. Moody GB, Mark RG. The MIT-BIH arrhythmia database on CDROM and software for use with it. Comput Cardiol 1990; 17: 185–8.

    Google Scholar 

  63. Barro S, Fernández-Delgado M, Vila J, et al. An adaptive neural network for the classification of electrocardiographic patterns on multichannel ECG. IEEE Eng Med Biol Mag 1998; 17 (1): 45–55.

    Article  PubMed  CAS  Google Scholar 

  64. Fernández-Delgado M, Barro S. MART: multichannel ART-based neural network. IEEE Trans Neural Networks 1998; 9 (1): 139–50.

    Article  Google Scholar 

  65. Felix P, Fraga S, Marin R, et al. Trend detection based on fuzzy temporal profile model. Artif Intell Engineering 1999; 13 (4): 341–9.

    Article  Google Scholar 

  66. Félix P, Barro S, Fraga S, et al. A fuzzy model for pattern recognition in the evolution of patients. In: Barro S, Marin R, editors. Fuzzy logic in medicine. Heidelberg: Physica-Verlag. In press.

  67. Kinsella A. Home telecare in the United States. J Telemed Telecare 1998; 4: 195–200.

    Article  PubMed  CAS  Google Scholar 

  68. Ruggiero C, Sacile R, Giacomini M. Home telecare. J Telemed Telecare 1999; 5: 11–7.

    Article  PubMed  CAS  Google Scholar 

  69. Sixsmith AJ. An evaluation of an intelligent home monitoring system. J Telemed Telecare 2000; 6: 63–72.

    Article  PubMed  CAS  Google Scholar 

  70. Silva Cunha JP, Baptista M, Ribeiro A, et al. Telecardio: especificação técnica e funcional do demonstrador de telecardiologia. Internal report. Portugal: IN-ESC, INESCTEL and DID/CET, 1998.

  71. Bai J, Zhang Y, Shen D, et al. A portable ECG and blood pressure telemonitoring system. IEEE Eng Med Biol Mag 1999; 18 (4): 63–70.

    Article  PubMed  CAS  Google Scholar 

  72. Kong KY, Ng CY, Ong K. Web-based monitoring of real-time ECG data. Comput Cardiol 2000; 27: 189–92.

    Google Scholar 

Download references

Acknowledgements

This work has been supported by Spanish Comisión Interministerial para la Ciencia y la Tecnología (CICyT) and Xunta de Galicia under projects TIC2000-0873-C02-01 and PGIDT00PXI20612PR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senén Barro B.S. and Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barro, S., Presedo, J., Félix, P. et al. New Trends in Patient Monitoring. Dis-Manage-Health-Outcomes 10, 291–306 (2002). https://doi.org/10.2165/00115677-200210050-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00115677-200210050-00003

Keywords

Navigation