Skip to main content
Log in

Management of Patients with Cystic Fibrosis

Defining the Role of Inhaled Tobramycin

  • Drugs in Disease Management
  • Published:
Disease Management and Health Outcomes

Abstract

Cystic fibrosis (CF) is a serious genetically inherited multisystem disease, characterised by symptoms of pancreatic insufficiency, meconium ileus, obstruction/absence of the vas deferens and chronic obstruction, infection and inflammation of the lower respiratory tract. Lung disease, specifically chronic infection caused by Pseudomonas aeruginosa, is the principal cause of morbidity and mortality in patients with CF.

Patients with CF require a specialised and integrated programme of care. Proper nutrition, airway clearance and antibacterial therapy are the key components of healthcare for these patients. Inhaled antibacterial therapy, which offers the theoretical benefits of high lung concentrations with minimal risk of systemic toxicity, is sometimes used in this patient group. Inhaled tobramycin, Colistin (or colistimethate) and β-lactam agents (with or without an aminoglycoside) have all been tested as suppressive antipseudomonal therapy, although they have yet to be compared in clinical trials. Recently, tobramycin solution for inhalation (TOBI®)1 has been developed in an attempt to improve on the extemporaneous preparations previously used for this purpose.

In patients with CF and confirmed P. aeruginosa infection, 3 courses of a 28-day on/28-day off regimen of inhaled tobramycin (TOBI®) significantly improved lung function versus placebo. Patients were permitted to receive other antibiotic treatment as needed. Improvement was sustained for up to 23 months in those who continued the regimen. Inhaled tobramycin also was associated with a 26% reduction in the likelihood of hospitalisation and a 36% reduction in the use of intravenous antipseudomonal antibiotics versus placebo.

Although the frequency of bacteria intrinsically resistant to tobramycin did not increase during therapy, fungi (Candida albicans and Aspergillus spp.) were isolated significantly more frequently among tobramycin than placebo recipients. Susceptibility to tobramycin declined steadily among P. aeruginosa during treatment, although the clinical significance of this is difficult to determine.

Inhaled tobramycin is generally well tolerated; tinnitus and alteration of the voice occurred in 3 and 13% of patients, respectively. No hearing loss or renal toxicity were reported after 23 months of therapy. Bronchospasm was observed in about 1 in 8 patients.

Conclusions: The inhaled formulation of tobramycin is distinguished by a large body of clinical data which should enable clinicians to use the agent appropriately in patients with CF and P. aeruginosa infection. Importantly, for each patient, the risks of hoarseness, fungal coinfection and acquisition cost should be weighed against the benefits of sustained improvement in lung function, reduced hospitalisation, reduced need for parenteral antipseudomonal agents, minimal systemic toxicity and a preservative-free formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rosenstein BJ, Zeitlin PL. Cystic fibrosis. Lancet 1998 Jan 24; 351:277–82

    Article  PubMed  CAS  Google Scholar 

  2. Pilewski JM, Frizzell RA. Role of CFTR in airway disease. Physiol Rev 1999 Jan; 79 Suppl. 1: S215–55

    PubMed  CAS  Google Scholar 

  3. Clinical Practice Guidelines for Cystic Fibrosis Committee. Clinical practice guidelines for cystic fibrosis. Bethesda (MA): Cystic Fibrosis Foundation, 1997

    Google Scholar 

  4. Canadian Task Force on the Periodic Health Examination. Periodic health examination, 1991 update: 4. Screening for cystic fibrosis. Can Med Assoc J 1991 Sep 15; 145: 629–35

    Google Scholar 

  5. Dodge JA, Morison S, Lewis PA, et al. Incidence, population, and survival of cystic fibrosis in the UK, 1968-95. UK Cystic Fibrosis Survey Management Committee. Arch Dis Child 1997 Dec; 77: 493–6

    Article  PubMed  CAS  Google Scholar 

  6. Kulczycki LL, Schauf V. Cystic fibrosis in blacks in Washington, DC: incidence and characteristics. Am J Dis Child 1974 Jan; 127: 64–7

    PubMed  CAS  Google Scholar 

  7. Colten HR. Cystic fibrosis. In: Wilson JD, Braunwald E, Isselbacher KJ, et al., editors. Harrison’s principles of internal medicine. 12th ed. vol. 2. New York: McGraw-Hill, Inc, 1991: 1072–8

    Google Scholar 

  8. FitzSimmons SC. The changing epidemiology of cystic fibrosis [see comments]. J Pediatr 1993 Jan; 122: 1–9

    PubMed  CAS  Google Scholar 

  9. Doherty RA, Bradley LA, Haddow JE. Prenatal screening for cystic fibrosis: an updated perspective. Am J Obstet Gynecol 1997 Feb; 176: 268–70

    Article  PubMed  CAS  Google Scholar 

  10. Green MR, Weaver LT, Heeley AF, et al. Cystic fibrosis identified by neonatal screening: incidence, genotype, and early natural history. Arch Dis Child 1993; 68: 464–7

    Article  PubMed  CAS  Google Scholar 

  11. Wood BP. Cystic fibrosis: 1997. Radiology 1997 Jul; 204: 1–10

    PubMed  CAS  Google Scholar 

  12. Frederiksen B, Lanng S, Koch C, et al. Improved survival in the Danish center-treated cystic fibrosis patients: results of aggressive treatment. Pediatr Pulmonol 1996; 21: 153–8

    Article  PubMed  CAS  Google Scholar 

  13. Cystic Fibrosis Foundation PR. Annual Data Report 1997. Bethesda, MA

  14. Davis PB, Drumm M, Konstan MW. Cystic fibrosis. Am J Respir Crit Care Med 1996 Nov; 154: 1229–56

    PubMed  CAS  Google Scholar 

  15. Ramsey BW. Management of pulmonary disease in patients with cystic fibrosis. N Engl J Med 1996 Jul 18; 335: 179–88

    Article  PubMed  CAS  Google Scholar 

  16. Smith JJ. How defective ion transport may lead to lung disease in cystic fibrosis. Pediatr Pulmonol 1996; Suppl. 13: 183–4

    Google Scholar 

  17. Goldman MJ, Anderson GM, Stolzenberg ED, et al. Human β-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell 1997 Feb 21; 88(4): 553–60

    Article  PubMed  CAS  Google Scholar 

  18. Buret A, Cripps AW. The immunoevasive activities of Pseudomonas aeruginosa: relevance for cystic fibrosis. Am Rev Respir Dis 1993 Sep; 148: 793–805

    Article  PubMed  CAS  Google Scholar 

  19. Döring G. The role of proteinases from Pseudomonas aeruginosa and polymorphonuclear leukocytes in cystic fibrosis. Drugs Today 1997 Jul–Aug; 33: 393–403

    Google Scholar 

  20. Fiel SB. Clinical management of pulmonary disease in cystic fibrosis. Lancet 1993 Apr 24; 341: 1070–4

    Article  PubMed  CAS  Google Scholar 

  21. Denton M, Wilcox MH. Antimicrobial treatment of pulmonary colonization and infection by Pseudomonas aeruginosa in cystic fibrosis patients. J Antimicrob Chemother 1997 Oct; 40: 468–74

    Article  PubMed  CAS  Google Scholar 

  22. Gilligan PH. Microbiology of airway disease in patients with cystic fibrosis. Clin Microbiol Rev 1991 Jan; 4(1): 35–51

    PubMed  CAS  Google Scholar 

  23. Armstrong DS, Grimwood K, Carzino R, et al. Lower respiratory infection and inflammation in infants with newly diagnosed cystic fibrosis. BMJ 1995 Jun 17; 310: 1571–2

    Article  PubMed  CAS  Google Scholar 

  24. Winnie GB, Cowan RG. Respiratory tract colonization with Pseudomonas aeruginosa in cystic fibrosis: correlations between anti-Pseudomonas aeruginosa antibody levels and pulmonary function. Pediatr Pulmonol 1991; 10: 91–100

    Article  Google Scholar 

  25. Knowles MR, Gilligan PH, Boucher RC. Cystic fibrosis. In: Mandell GL, Bennett JE, Dolin R, editors. Principles and practice of infectious diseases. 4th ed. vol. I. New York: Churchill Livingstone Inc, 1995: 657–62

    Google Scholar 

  26. Høiby N. Isolation and treatment of cystic fibrosis patients with lung infections caused by Pseudomonas (Burkholderia) cepacia and multiresistant Pseudomonas aeruginosa. Neth J Med 1995 Jun; 46: 280–7

    Article  PubMed  Google Scholar 

  27. Henry RL, Mellis CM, Petrovic L. Mucoid Pseudomonas aeruginosa is a marker of poor survival in cystic fibrosis. Pediatr Pulmonol 1992; 12: 158–61

    Article  PubMed  CAS  Google Scholar 

  28. Thomassen MJ, Demko CA, Klinger JD, et al. Pseudomonas cepacia colonization among patients with cystic fibrosis: a new opportunist. Am Rev Respir Dis 1985; 131: 791–6

    PubMed  CAS  Google Scholar 

  29. Burns JL, Emerson J, Stapp JR, et al. Microbiology of sputum from patients at cystic fibrosis centers in the United States. Clin Infect Dis 1998 Jul; 27: 158–63

    Article  PubMed  CAS  Google Scholar 

  30. Hiatt P. The role of viral infections in cystic fibrosis. Pediatr Pulmonol 1992 Sep; Suppl. 8: 118–9

    Google Scholar 

  31. Williams MT. Chest physiotherapy and cystic fibrosis. Why is the most effective form of treatment still unclear? Chest 1994 Dec; 106: 1872–82

    Article  PubMed  CAS  Google Scholar 

  32. Boas SR. Exercise recommendations for individuals with cystic fibrosis. Sports Med 1997 Jul; 24: 17–37

    Article  PubMed  CAS  Google Scholar 

  33. Cropp GJ. Effectiveness of bronchodilators in cystic fibrosis. Am J Med 1996 Jan 29; 100 Suppl. 1A: 19S–29S

    Article  PubMed  CAS  Google Scholar 

  34. Zach MS. The role of recombinant human DNase in the treatment of patients with cystic fibrosis: many promises, more problems. Thorax 1996 Jul; 51: 750–5

    Article  PubMed  CAS  Google Scholar 

  35. Conway SP, Littlewood JM. rhDNase in cystic fibrosis. Br J Hosp Med 1997 Apr 16; 57: 371–2

    PubMed  CAS  Google Scholar 

  36. Bryson HM, Sorkin EM. Dornase alfa: a review of its pharmacological properties and therapeutic potential in cystic fibrosis. Drugs 1994 Dec; 48: 894–906

    Article  PubMed  CAS  Google Scholar 

  37. Wiesemann HG, Steinkamp G, Ratjen F, et al. Placebo-controlled, double-blind, randomized study of aerosolized tobramycin for early treatment of Pseudomonas aeruginosa colonization in cystic fibrosis. Pediatr Pulmonol 1998 Feb; 25: 88–92

    Article  PubMed  CAS  Google Scholar 

  38. Littlewood JM, Miller MG, Ghoneim AT, et al. Nebulised colomycin for early Pseudomonas colonisation in cystic fibrosis. Lancet 1985 Apr 13: 865

    Article  Google Scholar 

  39. Valerius NH, Koch C, Høiby N. Prevention of chronic Pseudomonas aeruginosa colonisation in cystic fibrosis by early treatment. Lancet 1991 Sep 21; 338: 725–6

    Article  PubMed  CAS  Google Scholar 

  40. Vazquez C, Municio M, Corera L, et al. Early treatment of Pseudomonas aeruginosa colonization in cystic fibrosis. Acta Paediatr 1993; 82: 308–9

    Article  PubMed  CAS  Google Scholar 

  41. Frederiksen B, Koch C, Høiby N. Antibiotic treatment of initial colonization with Pseudomonas aeruginosa postpones chronic infection and prevents deterioration of pulmonary function in cystic fibrosis. Pediatr Pulmonol 1997; 23: 330–5

    Article  PubMed  CAS  Google Scholar 

  42. Smith AL, Doersbuk C, Goldmann D, et al. Comparison of a β-lactam alone versus β-lactam and an aminoglycoside for pulmonary exacerbation in cystic fibrosis. J Pediatr 1999; 134:413–21

    Article  PubMed  CAS  Google Scholar 

  43. Toso C, Williams DM, Noone PG. Inhaled antibiotics in cystic fibrosis: a review. Ann Pharmacother 1996 Jul–Aug; 30: 840–50

    PubMed  CAS  Google Scholar 

  44. Rosenfeld M, Cohen M, Ramsey B. Aerosolized antibiotics for bacterial lower airway infections: principles, efficacy, and pitfalls. Infect Dis Clin Pract 1998 Feb; 7: 66–79

    Article  Google Scholar 

  45. Touw DJ, Brimicombe RW, Hodson ME, et al. Inhalation of antibiotics in cystic fibrosis. EurRespir J 1995 Sep; 8:1594–604

    CAS  Google Scholar 

  46. MacLusky I, Levison H, Gold R, et al. Inhaled antibiotics in cystic fibrosis: is there a therapeutic effect? J Pediatr 1986; 108(2): 861–5

    PubMed  CAS  Google Scholar 

  47. Cystic Fibrosis Foundation. Consensus conference: use of aerosolized antibiotics in CF patients. vol. VIII.:, 1997. Section 1

  48. Ramsey BW, Pepe MS, Quan JM, et al. Intermittent administration of inhaled tobramycin in patients with cystic fibrosis. N Engl J Med 1999 Jan 7; 340: 23–30

    Article  PubMed  CAS  Google Scholar 

  49. Ramsey BW, Smith AL. Aerosolized tobramycin in patients with cystic fibrosis. N Engl J Med 1993 Nov 25; 22: 1659–660

    Google Scholar 

  50. MacLusky IB, Gold R, Corey M, et al. Long-term effects of inhaled tobramycin in patients with cystic fibrosis colonized with Pseudomonas aeruginosa. Pediatr Pulmonol 1989; 7: 42–8

    Article  PubMed  CAS  Google Scholar 

  51. Ramsey BW, Dorkin HL, Eisenberg JD, et al. Efficacy of aerosolized tobramycin in patients with cystic fibrosis. N Engl J Med 1993 Jun 17; 328: 1740–6

    Article  PubMed  CAS  Google Scholar 

  52. Hodson ME, Penketh ARL, Batten JC. Aerosol carbenicillin and gentamicin treatment of Pseudomonas aeruginosa infection in patients with cystic fibrosis. Lancet 1981 Nov 21: 1137–9

    Article  Google Scholar 

  53. Burns JL, Van Dalfsen JM, Shawar RM, et al. Effect of chronic intermittent administration of inhaled tobramycin on respiratory microbial flora in patients with cystic fibrosis. J Infect Dis 1999; 179: 1190–6

    Article  PubMed  CAS  Google Scholar 

  54. Jensen T, Pedersen SS, Garne S, et al. Colistin inhalation therapy in cystic fibrosis patients with chronic Pseudomonas aeruginosa lung infection. J Antimicrob Chemother 1987; 19: 831–8

    Article  PubMed  CAS  Google Scholar 

  55. Stead RJ, Hodson ME, Batten JC. Inhaled ceftazidime compared with gentamicin and carbenicillin in older patients with cystic fibrosis infected with Pseudomonas aeruginosa. Br J Dis Chest 1987; 81: 272–9

    Article  PubMed  CAS  Google Scholar 

  56. Canadian Cystic Fibrosis Foundation. Canadian consensus statement on aerosolised antibiotics in cystic fibrosis, 1999 May

  57. Feeley TW, du Moulin GC, Hedley-Whyte J, et al. Aerosol polymixin and pneumonia in seriously ill patients. N Engl J Med 1975; 293(10): 471–5

    Article  PubMed  CAS  Google Scholar 

  58. Nikolaizik WH, Jenni-Galovi V, Schoni MH. Bronchial constriction after nebulized tobramycin preparations and saline in patients with cystic fibrosis. Eur J Pediatr 1996 Jul; 155: 608–11

    Article  PubMed  CAS  Google Scholar 

  59. Adeboyeku D, McKenzie D, Hodson ME. Areview of one years date of first-dose challenges of inhaled antibiotics in adult cystic fibrosis (CF) patients [abstract]. 12th Annual North American Cystic Fibrosis Conference, 1998 Oct 15–18; Montreal, 20

    Google Scholar 

  60. Beasley R, Fishwick D, Miles JF, et al. Preservatives in nebulizer solutions: risks without benefit. Pharmacotherapy 1998; 18(1): 130–9

    PubMed  CAS  Google Scholar 

  61. Webb AK, Dodd ME. Nebulised antibiotics for adults with cystic fibrosis. Thorax 1997 Apr; 52 Suppl. 2: S69–71

    Article  PubMed  Google Scholar 

  62. Pathogenesis Corporation. TOBI (tobramycin solution for inhalation) international prescribing information

  63. Smith AL, Ramsey B. Aerosol administration of antibiotics. Pediatr Pulmonol Suppl. 1995; 11: 68–9

    Article  PubMed  CAS  Google Scholar 

  64. Baltch AL, Smith RP, Ritz W. Comparative antimicrobial activity of FK037, cefpirome, ceftazidime and cefepime against aminoglycoside-sensitive and aminoglycoside-resistant Pseudomonas aeruginosa and Pseudomonas spp. Chemotherapy Basel 1994; 40: 391–8

    Article  CAS  Google Scholar 

  65. Chin N-X, Neu HC. Synergy of new C-3 substituted Cephalosporins and tobramycin against Pseudomonas aeruginosa and Pseudomonas cepacia. Diagn Microbiol Infect Dis 1989; 12: 343–9

    Article  PubMed  CAS  Google Scholar 

  66. Bertrou A, Marty N, Henry S, et al. In vitro bactericidal activity of tobramycin and amikacin alone and in combination against isolates of Pseudomonas aeruginosa from patients with cystic fibrosis [in French]. Pathol Biol Paris 1990; 38(5): 366–75

    PubMed  CAS  Google Scholar 

  67. Benmebarek D, Lapointe JR. In vitro activity of biapenem vs imipenem, in combination with tobramycin, in cystic fibrosis P. aeruginosa [abstract no. 1204]. Can J Infect Dis 1995 Jul; 6 Suppl. C: 329C

    Google Scholar 

  68. Baltch AL, Ritz W, Smith RP. Comparative antibacterial activity of aztreonam (AZ), piperacillin (Pip), ceftazidime (CZ), Ciprofloxacin (Cip) and tobramycin (TB), singly and in combination, against recent isolates of Pseudomonas aeruginosa (P.a.), Klebsiella pneumoniae (K.pn.) and Serratia marcescens (S.m.) [abstract no. E38]. Proceedings of the 34th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1994 Oct 4–7; Orlando (FL), 51

    Google Scholar 

  69. Shawar RM, Van Dalfsen JM, MacLeod DL, et al. Comparison of the activity of tobramycin and 6 other antimicrobials against Pseudomonas aeruginosa from cystic fibrosis patients at 69 US centers (1995-1996) [abstract]. 12th Annual North American Cystic Fibrosis Conference; 1998 Oct 15–18; Montreal

    Google Scholar 

  70. Ichimiya T, Yamasaki T, Nasu M. In-vitro effects of antimicrobial agents on Pseudomonas aeruginosa biofilm formation. J Antimicrob Chemother 1994; 34: 331–41

    Article  PubMed  CAS  Google Scholar 

  71. Slavin KA, Tureen J. Prolonged post-antibiotic effect with high concentrations of tobramycin in mucoid Pseudomonas aeruginosa from patients with cystic fibrosis [abstract no. E-146]. Proceedings of the Interscience Conference on Antimicrobial Agents and Chemotherapy; 1997 Sep 28–Oct 1; Toronto, 140

    Google Scholar 

  72. Mendelman PM, Smith AL, Levy J, et al. Aminoglycoside penetration, inactivation, and efficacy in cystic fibrosis sputum. Am Rev Respir Dis 1985; 132: 761–5

    PubMed  CAS  Google Scholar 

  73. Ciufu O, Johansen HK, Jensen T, et al. Meropenem is superior to other antibiotics against multiresistant P. aeruginosa and B. cepacia strains from cystic fibrosis patients [abstract no. 677]. Proceedings of the 7th European Congress of Clinical Microbiology and Infectious Diseases; 1995 Mar 26–30; Vienna, 131

    Google Scholar 

  74. MacDonald NE. Pseudomonas aeruginosa and cystic fibrosis: antibiotic therapy and the science behind the magic. Can J Infect Dis 1997 Nov–Dec; 8: 335–42

    PubMed  CAS  Google Scholar 

  75. Trancassini M, Brenciaglia MI, Ghezzi MC, et al. Modification of Pseudomonas aeruginosa virulence factors by sub-inhibitory concentrations of antibiotics. J Chemother 1992; 4(2): 78–81

    PubMed  CAS  Google Scholar 

  76. Grimwood K, To M, Rabin HR, et al. Inhibition of Pseudomonas aeruginosa exoenzyme expression by subinhibitory antibiotic concentrations. Antimicrob Agents Chemother 1989; 33(1): 41–7

    Article  PubMed  CAS  Google Scholar 

  77. Geers TA, Baker NR. The effect of sublethal levels of antibiotics of the pathogenicity of Pseudomonas aeruginosa for tracheal tissue. J Antimicrob Chemother 1987; 19: 569–78

    Article  PubMed  CAS  Google Scholar 

  78. Cantin A, Woods DE. Protection by antibiotics against myeloperoxidase-dependent cytotoxicity to lung epithelial cells in vitro. J Clin Invest 1993 Jan; 91: 38–45

    Article  PubMed  CAS  Google Scholar 

  79. Hurley JC, Miller GH, Smith AL. Mechanism of amikacin resistance in Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Diagn Microbiol Infect Dis 1995; 22: 331–6

    Article  PubMed  CAS  Google Scholar 

  80. Miller GH, Sabatelli FJ, Hare RS, et al. The most frequent aminoglycoside resistance mechanisms — changes with time and geographic area: a reflection of aminoglycoside usage patterns? Clin Infect Dis 1997; 242 Suppl. 1: S46–62

    Article  Google Scholar 

  81. Barclay ML, Begg EJ, Chambers ST, et al. Adaptive resistance to tobramycin in Pseudomonas aeruginosa lung infection in cystic fibrosis. J Antimicrob Chemother 1996; 37: 1155–64

    Article  PubMed  CAS  Google Scholar 

  82. Ramsey BW, Quan JM, Otto KL, et al. Long-term efficacy and safety of inhaled tobramycin (TOBI) in patients with cystic fibrosis [abstract]. 12th Annual North American Cystic Fibrosis Conference, 1998 Oct 15–18; Montreal

    Google Scholar 

  83. Ramsey BW, Schaeffler B, Montgomery AB, et al. Survival and lung function during 2 years treatment with intermittent inhaled tobramycin in CF patients [abstract no. 237 and poster]. Neth J Med 1999; 54 Suppl.: S83–4

    Article  Google Scholar 

  84. Kylstra JW, Bowman CM, Meyer U, et al. Who benefits more? An age-stratified analysis of lung function and weight gain in CF patients using inhaled tobramycin [abstract no 236 and poster]. Neth J Med 1999; 54 Suppl.: S83

    Article  Google Scholar 

  85. LeLorier J, Birnbaum H, Perreault S, et al. Savings in direct medical costs produced by a change to tobramycin solution for inhalation in children with cystic fibrosis [abstract]. European Cystic Fibrosis Conference; 1999 Jun 9–12; The Hague

    Google Scholar 

  86. Tobramycin sulfate. In: McEvoy GK, editor. AHFS drug information 1999. Bethesda (MD): American Society of Health-System Pharmacists, 1999: 81-3

  87. Touw DJ, Vinks AATMM, Mouton JW, et al. Pharmacokinetic optimisation of antibacterial treatment in patients with cystic fibrosis: current practice and suggestions for future directions. Clin Pharmacokinet 1998 Dec; 35: 437–59

    Article  PubMed  CAS  Google Scholar 

  88. Brown K, Rosenthal M, Bush A. Fatal invasive aspergillosis in an adolescent with cystic fibrosis. Pediatr Pulmonol 1999; 27: 130–3

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harriet M. Lamb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamb, H.M., Goa, K.L. Management of Patients with Cystic Fibrosis. Dis-Manage-Health-Outcomes 6, 93–108 (1999). https://doi.org/10.2165/00115677-199906020-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00115677-199906020-00005

Keywords

Navigation