Skip to main content
Log in

Pathophysiology of Atherosclerotic Vascular Disease

  • Section 1: A Global Approach to Vascular Disease
  • Published:
Disease Management & Health Outcomes

Summary

Endothelium-derived relaxing factor is a potent endogenous vasodilator. This substance is now known to be nitric oxide, which is derived from the metabolism of L-arginine. This potent vasodilator also inhibits interactions of circulating blood elements with the vessel wall. Platelet adherence and aggregation, as well as monocyte adherence and infiltration, are regulated by this paracrine factor. By virtue of these characteristics, nitric oxide inhibits atherogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ross R. The pathogenesis of atherosclerosis. N Engl J Med 1986; 314: 488–500

    Article  PubMed  CAS  Google Scholar 

  2. Cybulsky MI, Gimbrone Jr MA. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science 1991; 251: 788–91

    Article  PubMed  CAS  Google Scholar 

  3. Berliner JA, Navab M, Fogelman AM, et al. Atherosclerosis: basic mechanisms. Oxidation, inflammation, and genetics. Circulation 1995; 91: 2488–96

    CAS  Google Scholar 

  4. Parhami F, Morrow AD, Balucan J, et al. Lipid oxidation products have opposite effects on calcifying vascular cell and bone cell differentiation. A possible explanation for the paradox of arterial calcification in osteoporotic patients. Arterioscler Thromb Vasc Biol 1997; 17: 680–7

    CAS  Google Scholar 

  5. Knox JB, Sukhova GK, Whittemore AD, et al. Evidence for altered balance between matrix metalloproteinases and their inhibitors in human aortic disease. Circulation 1997; 95: 205–12

    Article  PubMed  CAS  Google Scholar 

  6. European Working Group on Critical Leg Ischemia: second European consensus document on chronic critical leg ischemia. Circulation 1991; 84 Suppl. 4: IV-–1–IV-–26

    Google Scholar 

  7. Cooke JP, Candipan R. Vascular biology of restenosis: insights for therapeutic strategies. J Intervent Cardiol 1994; 6: 25–35

    Google Scholar 

  8. Moncada S, Higgs EA. Molecular mechanisms and therapeutic strategies related to nitric oxide. FASEB J 1995; 9: 1319–30

    PubMed  CAS  Google Scholar 

  9. Cohen RA. The role of nitric oxide and other endothelium-derived vasoactive substances in vascular disease. Prog Cardiovasc Dis 1995; XXXVIII(2): 105–28

    Article  Google Scholar 

  10. Kubes P, Suzuki M, Granger DN. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA 1991; 88: 4651–85

    Article  PubMed  CAS  Google Scholar 

  11. Johnson III G, Tsao PS, Mulloy D, et al. Cardioprotective effects of acidified sodium nitrite in myocardial ischemia with reperfusion. J Pharmacol Exp Ther 1990; 252: 35–41

    PubMed  CAS  Google Scholar 

  12. Bath PMW, Hassall DG, Gladwin A-M, et al. Nitric oxide and prostacyclin. Divergence of inhibitory effects on monocyte chemotaxis and adhesion to endothelium in vitro. Arterioscler Thromb 1991; 11: 254–60

    CAS  Google Scholar 

  13. Tsao PS, Lewis NP, Alpert S, et al. Exposure to shear stress alters endothelial adhesiveness: role of nitric oxide. Circulation 1995; 92: 3513–9

    Article  PubMed  CAS  Google Scholar 

  14. Zeiher AM, Fisslthaler B, Schray-Utz B, et al. Nitric oxide modulates expression of monocyte chemoattractant protein-a in cultured human endothelial cells. Circ Res 1995; 76: 980–6

    Article  PubMed  CAS  Google Scholar 

  15. Tsao PS, Buitrago R, Chan JR, et al. Fluid flow inhibits endothelial adhesiveness: nitric oxide and transcriptional regulation of VCAM-1. Circulation 1996; 94: 1682–9

    Article  PubMed  CAS  Google Scholar 

  16. Tsao PS, Wang BY, Buitrago R, et al. Nitric oxide regulates monocyte chemotactic protein-1. Circulation 1997; 96: 934–40

    Article  PubMed  CAS  Google Scholar 

  17. Peng HB, Libby P, Liao JK. Induction and stabilisation of 1 kappa B alpha by nitric oxide mediates inhibition of NF-kappa B. J Biol Chem 1995; 270: 14214–9

    Article  PubMed  CAS  Google Scholar 

  18. Garg UC, Hassid A. Nitric oxide-generating vasodilators and 8-bromocyclic guanosine monophosphate inhibit nitrogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 1989; 83: 1774–7

    Article  PubMed  CAS  Google Scholar 

  19. Wang BY, Candipan RC, Arjomandi M, et al. Arginine restores NO activity and inhibits monocyte accumulation after vascular injury in hypercholesterolemic rabbits. J Am Coll Cardiol 1996; 28: 1573–9

    Article  PubMed  CAS  Google Scholar 

  20. von der Leyen HE, Gibbons GH, Morishita R, et al. Gene therapy inhibiting neointimal vascular lesion: in vivo transfer of endothelial cell nitric oxide synthase gene. Proc Natl Acad Sci USA 1995; 92: 1137–41

    Article  PubMed  Google Scholar 

  21. Schwarzacher SP, Lim TT, Wang BY, et al. Local intramural delivery of L-arginine enhances nitric oxide generation and inhibits lesion formation after balloon angioplasty. Circulation 1997; 95: 1863–9

    Article  PubMed  CAS  Google Scholar 

  22. Cooke JP, Tsao PS. Cytoprotective effects of nitric oxide. Circulation 1993; 88: 2151–4

    Article  Google Scholar 

  23. Cooke JP, Andon NA, Girerd XJ, et al. Arginine restores cholinergic relaxation of hypercholesterolemic rabbit thoracic aorta. Circulation 1991; 83: 1057–62

    Article  PubMed  CAS  Google Scholar 

  24. Cooke JP, Dzau VJ. Derangements of the nitric oxide synthase pathway, L-arginine, and cardiovascular disease [editorial]. Circulation 1997; 95: 379–82

    Article  Google Scholar 

  25. Cooke JP, Singer AH, Tsao P, et al. Anti-atherogenic effects of L-arginine in the hypercholesterolemic rabbit. J Clin Invest 1992; 90: 1168–72

    Article  PubMed  CAS  Google Scholar 

  26. Wang B, Singer A, Tsao P, et al. Dietary arginine prevents atherogenesis in the coronary artery of the hypercholesterolemic rabbit. J Am Coll Cardiol 1994; 23: 452–8

    Article  PubMed  CAS  Google Scholar 

  27. Tsao P, McEvoy LM, Drexler H, et al. Enhanced endothelial adhesiveness in hypercholesterolemia is attenuated by L-arginine. Circulation 1994; 89: 2176–82

    Article  PubMed  CAS  Google Scholar 

  28. Candipan RC, Wang B, Buitrago R, et al. Regression or progression: dependency upon vascular nitric oxide. Arterioscler Thromb Vasc Biol 1996; 16: 44–50

    Article  PubMed  CAS  Google Scholar 

  29. Ohara Y, Petersen TE, Harrison DG. Hypercholesterolemia increases endothelial Superoxide anion production. J Clin Invest 1993; 91: 2546–51

    Article  PubMed  CAS  Google Scholar 

  30. Marui N, Offerman MK, Swerlick R, et al. Vascular cell adhesion molecule-1 (VCAM-1) gene transcription and expression are regulated through an antioxidant-sensitive mechanism in human vascular endothelial cells. J Clin Invest 1993; 92: 1866–72

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooke, J.P., Bhatnagar, R. Pathophysiology of Atherosclerotic Vascular Disease. Dis-Manage-Health-Outcomes 2 (Suppl 1), 1–8 (1997). https://doi.org/10.2165/00115677-199700021-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00115677-199700021-00003

Keywords

Navigation