Skip to main content

Advertisement

Log in

Anticancer Therapy Targeting Telomeres and Telomerase

Current Status

  • Mechanisms and Targets
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Normal human somatic cells undergo telomeric attrition causing replicative senescence. Most immortal cancer cells cope with this by upregulating the active form of telomerase. Long-term inhibition of telomerase results in telomeric attrition and highly specific killing of cancer cells, in which the maintenance of telomere length is reliant on telomerase activity. Unfortunately, telomere erosion requires many cell divisions, possibly opening the way for acquired drug resistance. Recent attempts to solve this problem include the development of drugs that are more potent catalytic inhibitors, deny telomerase access to the telomere in situ, or affect telomere structure; some of these drugs have entered clinical trials. Combinations of these approaches may ultimately produce the best clinical results. This article reviews the latest results in both basic and applied telomere research that indicate the most promising avenues for future anticancer drug development in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I

Similar content being viewed by others

|References

  1. deLange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 2005 Sep 15; 19 (18): 2100–10

    PubMed  Google Scholar 

  2. Watson JD. Origin of concatemeric T7 DNA. Nature: New Biol 1972 Oct 18; 239 (94): 197–201

    CAS  Google Scholar 

  3. Makarov VL, Hirose Y, Langmore JP. Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell 1997 Mar 7; 88 (5): 657–66

    PubMed  CAS  Google Scholar 

  4. Lenain C, Bauwens S, Amiard S, et al. The Apollo 5′ exonuclease functions together with TRF2 to protect telomeres from DNA repair. Curr Biol 2006 Jul 11; 16 (13): 1303–10

    PubMed  CAS  Google Scholar 

  5. vanOverbeek M, deLange T. Apollo, an Artemis-related nuclease, interacts with TRF2 and protects human telomeres in S phase. Curr Biol 2006 Jul 11; 16 (13): 1295–302

    PubMed  Google Scholar 

  6. Masutomi K, Yu EY, Khurts S, et al. Telomerase maintains telomere structure in normal human cells. Cell 2003 Jul 25; 114 (2): 241–53

    PubMed  CAS  Google Scholar 

  7. Verdun RE, Crabbe L, Haggblom C, et al. Functional human telomeres are recognized as DNA damage in G2 of the cell cycle. Mol Cell 2005 Nov 23; 20 (4): 551–61

    PubMed  CAS  Google Scholar 

  8. Griffith JD, Comeau L, Rosenfield S, et al. Mammalian telomeres end in a large duplex loop. Cell 1999 May 14; 97 (4): 503–14

    PubMed  CAS  Google Scholar 

  9. Stansel RM, deLange T, Griffith JD. T-Loop assembly in vitro involves binding of TRF2 near the 3′ telomeric overhang. EMBO J 2001 Oct 1; 20 (19): 5532–40

    PubMed  CAS  Google Scholar 

  10. Kim NW, Piatyszek MA, Prowse KR, et al. Specific association of human telomerase activity with immortal cells and cancer. Science 1994 Dec 23; 266 (5193): 2011–5

    PubMed  CAS  Google Scholar 

  11. Nakamura TM, Morin GB, Chapman KB, et al. Telomerase catalytic subunit homologs from fission yeast and human. Science 1997 Aug 15; 277 (5328): 955–9

    PubMed  CAS  Google Scholar 

  12. Feng J, Funk WD, Wang SS, et al. The RNA component of human telomerase. Science 1995 Sep 1; 269 (5228): 1236–41

    CAS  Google Scholar 

  13. Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature 1990 May 31; 345 (6274): 458–60

    PubMed  CAS  Google Scholar 

  14. Hastie ND, Dempster M, Dunlop MG, et al. Telomere reduction in human colorectal carcinoma and with ageing. Nature 1990 Aug 30; 346 (6287): 866–8

    PubMed  CAS  Google Scholar 

  15. Allsopp RC, Chang E, Kashefi-Aazam M, et al. Telomere shortening is associated with cell division in vitro and in vivo. Exp Cell Res 1995 Sep; 220 (1): 194–200

    PubMed  CAS  Google Scholar 

  16. Munro J, Steeghs K, Morrison V, et al. Human fibroblast replicative senescence can occur in the absence of extensive cell division and short telomeres. Oncogene 2001 Jun 14; 20 (27): 3541–52

    PubMed  CAS  Google Scholar 

  17. Frenck Jr RW, Blackburn EH, Shannon KM. The rate of telomere sequence loss in human leukocytes varies with age. Proc Natl Acad Sci U S A 1998 May 12; 95 (10): 5607–10

    PubMed  CAS  Google Scholar 

  18. Stewart SA, Ben-Porath I, Carey VJ, et al. Erosion of the telomeric single-strand overhang at replicative senescence. Nat Genet 2003 Apr; 33 (4): 492–6

    PubMed  CAS  Google Scholar 

  19. Zhu XD, Niedernhofer L, Kuster B, et al. ERCC1/XPF removes the 3′ overhang from uncapped telomeres and represses formation of telomeric DNA-containing double minute chromosomes. Mol Cell 2003 Dec; 12 (6): 1489–98

    PubMed  CAS  Google Scholar 

  20. Chai W, Shay JW, Wright WE. Human telomeres maintain their overhang length at senescence. Mol Cell Biol 2005 Mar; 25 (6): 2158–68

    PubMed  CAS  Google Scholar 

  21. d’Adda di Fagagna F, Reaper PM, Clay-Farrace L, et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 2003 Nov 13; 426 (6963): 194–8

    Google Scholar 

  22. Herbig U, Jobling WA, Chen BP, et al. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21 (CIPl), but not pl6 (INK4a). Mol Cell 2004 May 21; 14 (4): 501–13

    PubMed  CAS  Google Scholar 

  23. Takai H, Smogorzewska A, de Lange T. DNA damage foci at dysfunctional telomeres. Curr Biol 2003 Sep 2; 13 (17): 1549–56

    PubMed  CAS  Google Scholar 

  24. Karlseder J, Broccoli D, Dai Y, et al. p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 1999 Feb 26; 283 (5406): 1321–5

    PubMed  CAS  Google Scholar 

  25. Webley K, Bond JA, Jones CJ, et al. Posttranslational modifications of p53 in replicative senescence overlapping but distinct from those induced by DNA damage. Mol Cell Biol 2000 Apr; 20 (8): 2803–8

    PubMed  CAS  Google Scholar 

  26. Stein GH, Dulic V. Origins of G1 arrest in senescent human fibroblasts. Bioessays 1995 Jun; 17 (6): 537–43

    PubMed  CAS  Google Scholar 

  27. Eller MS, Liao X, Liu S, et al. A role for WRN in telomere-based DNA damage responses. Proc Natl Acad Sci U S A 2006 Oct 10; 103 (41): 15073–8

    PubMed  CAS  Google Scholar 

  28. Rudolph KL, Millard M, Bosenberg MW, et al. Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nat Genet 2001 Jun; 28 (2): 155–9

    PubMed  CAS  Google Scholar 

  29. Bartkova J, Rezaei N, Liontos M, et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 2006 Nov 30; 444 (7119): 633–7

    PubMed  CAS  Google Scholar 

  30. Bartkova J, Horejsi Z, Koed K, et al. DNA damage response as a candidate anticancer barrier in early human tumorigenesis. Nature 2005 Apr 14; 434 (7035): 864–70

    PubMed  CAS  Google Scholar 

  31. Jacobs JJ, de Lange T. Significant role for pl6INK4a in p53-independent telomeredirected senescence. Curr Biol 2004 Dec 29; 14 (24): 2302–8

    PubMed  CAS  Google Scholar 

  32. Counter CM, Avilion AA, LeFeuvre CE, et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J 1992 May; 11 (5): 1921–9

    PubMed  CAS  Google Scholar 

  33. Artandi SE, DePinho RA. Mice without telomerase: what can they teach us about human cancer? Nat Med 2000 Aug; 6 (8): 852–5

    PubMed  CAS  Google Scholar 

  34. Defendi V, Naimski P, Steinberg ML. Human cells transformed by SV40 revisited: the epithelial cells. J Cell Physiol 1982; 2: 131–40

    CAS  Google Scholar 

  35. Romanov SR, Kozakiewicz BK, Holst CR, et al. Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes. Nature 2001 Feb 1; 409 (6820): 633–7

    PubMed  CAS  Google Scholar 

  36. Counter CM, Meyerson M, Eaton EN, et al. Telomerase activity is restored in human cells by ectopic expression of hTERT (hEST2), the catalytic subunit of telomerase. Oncogene 1998 Mar 5; 16 (9): 1217–22

    PubMed  CAS  Google Scholar 

  37. Bryan TM, Englezou A, Gupta J, et al. Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J 1995 Sep 1; 14 (17): 4240–8

    PubMed  CAS  Google Scholar 

  38. Argilla D, Chin K, Singh M, et al. Absence of telomerase and shortened telomeres have minimal effects on skin and pancreatic carcinogenesis elicited by viral oncogenes. Cancer Cell 2004 Oct; 6 (4): 373–85

    PubMed  CAS  Google Scholar 

  39. Bryan TM, Englezou A, Dalla-Pozza L, et al. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat Med 1997 Nov; 3 (11): 1271–4

    PubMed  CAS  Google Scholar 

  40. Hakin-Smith V, Jellinek DA, Levy D, et al. Alternative lengthening of telomeres and survival in patients with glioblastoma multiforme. Lancet 2003 Mar 8; 361 (9360): 836–8

    PubMed  CAS  Google Scholar 

  41. Bednarek A, Budunova I, Slaga TJ, et al. Increased telomerase activity in mouse skin premalignant progression. Cancer Res 1995 Oct 15; 55 (20): 4566–9

    PubMed  CAS  Google Scholar 

  42. Gonzalez-Suarez E, Samper E, Ramirez A, et al. Increased epidermal tumors and increased skin wound healing in transgenic mice overexpressing the catalytic subunit of telomerase, mTERT, in basal keratinocytes. EMBO J 2001 Jun 1; 20 (11): 2619–30

    PubMed  CAS  Google Scholar 

  43. Stewart SA, Hahn WC, O’Connor BF, et al. Telomerase contributes to tumorigenesis by a telomere length-independent mechanism. Proc Natl Acad Sci U S A 2002 Oct 1; 99 (20): 12606–11

    PubMed  CAS  Google Scholar 

  44. Chang S, Khoo CM, Naylor ML, et al. Telomere-based crisis: functional differences between telomerase activation and ALT in tumor progression. Genes Dev 2003 Jan 1; 17 (1): 88–100

    PubMed  CAS  Google Scholar 

  45. Trapp S, Parcells MS, Kamil JP, et al. A virus-encoded telomerase RNA promotes malignant T cell lymphomagenesis. J Exp Med 2006 May 15; 203 (5): 1307–17

    PubMed  CAS  Google Scholar 

  46. Geserick C, Tejera A, Gonzalez-Suarez E, et al. Expression of mTert in primary murine cells links the growth-promoting effects of telomerase to transforming growth factor-beta signaling. Oncogene 2006 Jul 20; 25 (31): 4310–9

    PubMed  CAS  Google Scholar 

  47. Stampfer MR, Garbe J, Levine G, et al. Expression of the telomerase catalytic subunit, hTERT, induces resistance to transforming growth factor beta growth inhibition in pl6INK4A (−) human mammary epithelial cells. Proc Natl Acad Sci U S A 2001 Apr 10; 98 (8): 4498–503

    PubMed  CAS  Google Scholar 

  48. Lindvall C, Hou M, Komurasaki T, et al. Molecular characterization of human telomerase reverse transcriptase-immortalized human fibroblasts by gene expression profiling: activation of the epiregulin gene. Cancer Res 2003 Apr 15; 63 (8): 1743–7

    PubMed  CAS  Google Scholar 

  49. Smith LL, Coller HA, Roberts JM. Telomerase modulates expression of growthcontrolling genes and enhances cell proliferation. Nature Cell Biol 2003 May; 5 (5): 474–9

    PubMed  CAS  Google Scholar 

  50. Li S, Crothers J, Haqq CM, et al. Cellular and gene expression responses involved in the rapid growth inhibition of human cancer cells by RNA interferencemediated depletion of telomerase RNA. J Biol Chem 2005 Jun 24; 280 (25): 23709–17

    PubMed  CAS  Google Scholar 

  51. Soder AI, Hoare SF, Muir S, et al. Amplification, increased dosage and in situ expression of the telomerase RNA gene in human cancer. Oncogene 1997 Mar 6; 14 (9): 1013–21

    PubMed  CAS  Google Scholar 

  52. Zhang A, Zheng C, Lindvall C, et al. Frequent amplification of the telomerase reverse transcriptase gene in human tumors. Cancer Res 2000 Nov 15; 60 (22): 6230–5

    PubMed  CAS  Google Scholar 

  53. Wu KJ, Grandori C, Amacker M, et al. Direct activation of TERT transcription by c-MYC. Nat Genet 1999 Feb; 21 (2): 220–4

    PubMed  CAS  Google Scholar 

  54. Gewin L, Myers H, Kiyono T, et al. Identification of a novel telomerase repressor that interacts with the human papillomavirus type-16 E6/E6-AP complex. Genes Dev 2004 Sep 15; 18 (18): 2269–82

    PubMed  CAS  Google Scholar 

  55. Lin SY, Elledge SJ. Multiple tumor suppressor pathways negatively regulate telomerase. Cell 2003 Jun 27; 113 (7): 881–9

    PubMed  CAS  Google Scholar 

  56. Rahman R, Latonen L, Wiman KG. hTERT antagonizes p53-induced apoptosis independently of telomerase activity. Oncogene 2005 Feb 17; 24 (8): 1320–7

    PubMed  CAS  Google Scholar 

  57. Artandi SE, Chang S, Lee SL, et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 2000 Aug 10; 406 (6796): 641–5

    PubMed  CAS  Google Scholar 

  58. Bodnar AG, Ouellette M, Frolkis M, et al. Extension of life-span by introduction of telomerase into normal human cells. Science 1998 Jan 16; 279 (5349): 349–52

    PubMed  CAS  Google Scholar 

  59. Hahn WC, Stewart SA, Brooks MW, et al. Inhibition of telomerase limits the growth of human cancer cells. Nat Med 1999 Oct; 5 (10): 1164–70

    PubMed  CAS  Google Scholar 

  60. Herbert B, Pitts AE, Baker SI, et al. Inhibition of human telomerase in immortal human cells leads to progressive telomere shortening and cell death. Proc Natl Acad Sci U S A 1999 Dec 7; 96 (25): 14276–81

    PubMed  CAS  Google Scholar 

  61. Djojosubroto MW, Chin AC, Go N, et al. Telomerase antagonists GRN163 and GRN163L inhibit tumor growth and increase chemosensitivity of human hepatoma. Hepatology 2005 Nov; 42 (5): 1127–36

    PubMed  CAS  Google Scholar 

  62. Ozawa T, Gryaznov SM, Hu LJ, et al. Antitumor effects of specific telomerase inhibitor GRN163 in human glioblastoma xenografts. Neuro-oncol 2004 Jul; 6 (3): 218–26

    PubMed  CAS  Google Scholar 

  63. Wang ES, Wu K, Chin AC, et al. Telomerase inhibition with an oligonucleotide telomerase template antagonist: in vitro and in vivo studies in multiple myeloma and lymphoma. Blood 2004 Jan 1; 103 (1): 258–66

    PubMed  CAS  Google Scholar 

  64. Blasco MA, Lee HW, Hande MP, et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 1997 Oct 3; 91 (1): 25–34

    PubMed  CAS  Google Scholar 

  65. Roth A, Yssel H, Pene J, et al. Telomerase levels control the lifespan of human T lymphocytes. Blood 2003 Aug 1; 102 (3): 849–57

    PubMed  Google Scholar 

  66. Vulliamy T, Marrone A, Goldman F, et al. The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature 2001 Sep 27; 413 (6854): 432–5

    PubMed  CAS  Google Scholar 

  67. Vulliamy T, Marrone A, Szydlo R, et al. Disease anticipation is associated with progressive telomere shortening in families with dyskeratosis congenita due to mutations in TERC. Nat Genet 2004 May; 36 (5): 447–9

    PubMed  CAS  Google Scholar 

  68. Dokal I. Dyskeratosis congenita in all its forms. Br J Haematol 2000 Sep; 110 (4): 768–79

    PubMed  CAS  Google Scholar 

  69. Lundblad V, Blackburn EH. An alternative pathway for yeast telomere maintenance rescues est1-senescence. Cell 1993 Apr 23; 73 (2): 347–60

    PubMed  CAS  Google Scholar 

  70. Rizki A, Lundblad V. Defects in mismatch repair promote telomerase-independent proliferation. Nature 2001 Jun 7; 411 (6838): 713–6

    PubMed  CAS  Google Scholar 

  71. Damm K, Hemmann U, Garin-Chesa P, et al. A highly selective telomerase inhibitor limiting human cancer cell proliferation. EMBO J 2001 Dec 17; 20 (24): 6958–68

    PubMed  CAS  Google Scholar 

  72. Bechter OE, Zou Y, Walker W, et al. Telomeric recombination in mismatch repair deficient human colon cancer cells after telomerase inhibition. Cancer Res 2004 May 15; 64 (10): 3444–51

    PubMed  CAS  Google Scholar 

  73. Elmore LW, Di X, Dumur C, et al. Evasion of a single-step, chemotherapy-induced senescence in breast cancer cells: implications for treatment response. Clin Cancer Res 2005 Apr 1; 11 (7): 2637–43

    PubMed  CAS  Google Scholar 

  74. Xue W, Zender L, Miething C, et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 2007 Feb 8; 445 (7128): 656–60

    PubMed  CAS  Google Scholar 

  75. El-Daly H, Kull M, Zimmermann S, et al. Selective cytotoxicity and telomere damage in leukemia cells using the telomerase inhibitor BIBR1532. Blood 2005 Feb 15; 105 (4): 1742–9

    PubMed  CAS  Google Scholar 

  76. Gonzalez-Suarez E, Samper E, Flores JM, et al. Telomerase-deficient mice with short telomeres are resistant to skin tumorigenesis. Nat Genet 2000 Sep; 26 (1): 114–7

    PubMed  CAS  Google Scholar 

  77. Cayuela ML, Flores JM, Blasco MA. The telomerase RNA component Terc is required for the tumour-promoting effects of Tert overexpression. EMBO Rep 2005 Mar; 6 (3): 268–74

    PubMed  CAS  Google Scholar 

  78. Sarin KY, Cheung P, Gilison D, et al. Conditional telomerase induction causes proliferation of hair follicle stem cells. Nature 2005 Aug 18; 436 (7053): 1048–52

    PubMed  CAS  Google Scholar 

  79. Asai A, Oshima Y, Yamamoto Y, et al. A novel telomerase template antagonist (GRN163) as a potential anticancer agent. Cancer Res 2003 Jul 15; 63 (14): 3931–9

    PubMed  CAS  Google Scholar 

  80. Herbert BS, Geliert GC, Hochreiter A, et al. Lipid modification of GRN163, an N3′→P5′ thio-phosphoramidate oligonucleotide, enhances the potency of telomerase inhibition. Oncogene 2005 Aug 4; 24 (33): 5262–8

    PubMed  CAS  Google Scholar 

  81. Akiyama M, Hideshima T, Shammas MA, et al. Effects of oligonucleotide N3′→P5′ thio-phosphoramidate (GRN163) targeting telomerase RNA in human multiple myeloma cells. Cancer Res 2003 Oct 1; 63 (19): 6187–94

    PubMed  CAS  Google Scholar 

  82. Dikmen ZG, Geliert GC, Jackson S, et al. In vivo inhibition of lung cancer by GRN163L: a novel human telomerase inhibitor. Cancer Res 2005 Sep 1; 65 (17): 7866–73

    PubMed  CAS  Google Scholar 

  83. Hochreiter AE, Xiao H, Goldblatt EM, et al. Telomerase template antagonist GRN163L disrupts telomere maintenance, tumor growth, and metastasis of breast cancer. Clin Cancer Res 2006 May 15; 12 (10): 3184–92

    PubMed  CAS  Google Scholar 

  84. Jackson SR, Zhu CH, Paulson V, et al. Antiadhesive effects of GRN163L, an oligonucleotide N3′→P5′ thio-phosphoramidate targeting telomerase. Cancer Res 2007 Feb 1; 67 (3): 1121–9

    PubMed  CAS  Google Scholar 

  85. Geron’s GRN163L headed to phase I clinical trials in lung cancer patients [online]. Available from URL: http://cancerfocus.net/node/223[Accessed 2007 Oct 25]

  86. Geron Corporation announces multiple presentations on its telomerase inhibitor drug GRN1631 at the AACR 2005 annual meeting. Press release [online]. Available from URL: http://www.geron.com/pressview.asp?id=710[Accessed 2007 Oct 25]

  87. Strahl C, Blackburn EH. Effects of reverse transcriptase inhibitors on telomere length and telomerase activity in two immortalized human cell lines. Mol Cell Biol 1996 Jan; 16 (1): 53–65

    PubMed  CAS  Google Scholar 

  88. Naasani I, Scimiya H, Yamori T, et al. FJ5002: a potent telomerase inhibitor identified by exploiting the disease-oriented screening program with COMPARE analysis. Cancer Res 1999 Aug 15; 59 (16): 4004–11

    PubMed  CAS  Google Scholar 

  89. Scimiya H, Oh-Hara T, Suzuki T, et al. Telomere shortening and growth inhibition of human cancer cells by novel synthetic telomerase inhibitors MST-312, MST-295, and MST-1991. Mol Cancer Ther 2002 Jul; 1 (9): 657–65

    Google Scholar 

  90. Smogorzewska A, de Lange T. Regulation of telomerase by telomeric proteins. Annu Rev Biochem 2004; 73: 177–208

    PubMed  CAS  Google Scholar 

  91. Holt SE, Aisner DL, Baur J, et al. Functional requirement of p23 and Hsp90 in telomerase complexes. Genes Dev 1999 Apr 1; 13 (7): 817–26

    PubMed  CAS  Google Scholar 

  92. Scimiya H, Sawada H, Muramatsu Y, et al. Involvement of 14-3-3 proteins in nuclear localization of telomerase. EMBO J 2000 Jun 1; 19 (11): 2652–61

    Google Scholar 

  93. Scimiya H, Muramatsu Y, Ohishi T, et al. Tankyrase 1 as a target for telomeredirected molecular cancer therapeutics. Cancer Cell 2005 Jan; 7 (1): 25–37

    Google Scholar 

  94. Blackburn EH. Telomere states and cell fates. Nature 2000 Nov 2; 408 (6808): 53–6

    PubMed  CAS  Google Scholar 

  95. Mo Y, Gan Y, Song S, et al. Simultaneous targeting of telomeres and telomerase as a cancer therapeutic approach. Cancer Res 2003 Feb 1; 63 (3): 579–85

    PubMed  CAS  Google Scholar 

  96. Parkinson GN, Lee MP, Neidle S. Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 2002 Jun 20; 417 (6891): 876–80

    PubMed  CAS  Google Scholar 

  97. Burger AM, Dai F, Schultes CM, et al. The G-quadruplex-interactive molecule BRACO-19 inhibits tumor growth, consistent with telomere targeting and interference with telomerase function. Cancer Res 2005 Feb 15; 65 (4): 1489–96

    PubMed  CAS  Google Scholar 

  98. Grand CL, Han H, Munoz RM, et al. The cationic porphyrin TMPyP4 downregulates c-MYC and human telomerase reverse transcriptase expression and inhibits tumor growth in vivo. Mol Cancer Ther 2002 Jun; 1 (8): 565–73

    PubMed  CAS  Google Scholar 

  99. Shin-ya K, Wierzba K, Matsuo K, et al. Telomestatin, a novel telomerase inhibitor from Streptomyces anulatus. J Amer Chem Soc 2001 Feb 14; 123 (6): 1262–3

    CAS  Google Scholar 

  100. Tahara H, Shin-Ya K, Scimiya H, et al. G-Quadruplex stabilization by telomestatin induces TRF2 protein dissociation from telomeres and anaphase bridge formation accompanied by loss of the 3′ telomeric overhang in cancer cells. Oncogene 2006 Mar 23; 25 (13): 1955–66

    PubMed  CAS  Google Scholar 

  101. Neidle S, Parkinson G. Telomere maintenance as a target for anticancer drug discovery. Nat Rev Drug Discov 2002 May; 1 (5): 383–93

    PubMed  CAS  Google Scholar 

  102. Rezler EM, Bearss DJ, Hurley LH. Telomeres and telomerases as drug targets. Curr Opin Pharmacol 2002 Aug; 2 (4): 415–23

    PubMed  CAS  Google Scholar 

  103. Gomez D, Paterski R, Lemarteleur T, et al. Interaction of telomestatin with the telomeric single-strand overhang. J Biol Chem 2004 Oct 1; 279 (40): 41487–94

    PubMed  CAS  Google Scholar 

  104. Fukuda H, Katahira M, Tsuchiya N, et al. Unfolding of quadruplex structure in the G-rich strand of the minisatellite repeat by the binding protein UP1. Proc Nat1 Acad Sci U S A 2002 Oct 1; 99 (20): 12685–90

    CAS  Google Scholar 

  105. Rha SY, Izbicka E, Lawrence R, et al. Effect of telomere and telomerase interactive agents on human tumor and normal cell lines. Clin Cancer Res 2000 Mar; 6 (3): 987–93

    PubMed  CAS  Google Scholar 

  106. Kim MY, Gleason-Guzman M, Izbicka E, et al. The different biological effects of telomestatin and TMPyP4 can be attributed to their selectivity for interaction with intramolecular or intermolecular G-quadruplex structures. Cancer Res 2003 Jun 15; 63 (12): 3247–56

    PubMed  CAS  Google Scholar 

  107. Gomez D, Wenner T, Brassart B, et al. Telomestatin-induced telomere uncapping is modulated by POT1 through G-overhang extension in HT1080 human tumor cells. J Biol Chem 2006 Dec 15; 281 (50): 38721–9

    PubMed  CAS  Google Scholar 

  108. Smogorzewska A, deLange T. Different telomere damage signaling pathways in human and mouse cells. EMBO J 2002 Aug 15; 21 (16): 4338–48

    PubMed  CAS  Google Scholar 

  109. Maida Y, Kyo S, Kanaya T, et al. Direct activation of telomerase by EGF through Ets-mediated transactivation of TERT via MAP kinase signaling pathway. Oncogene 2002 Jun 13; 21 (26): 4071–9

    PubMed  CAS  Google Scholar 

  110. Suenaga M, Yamaguchi A, Soda H, et al. Antiproliferative effects of gefitinib are associated with suppression of E2F-1 expression and telomerase activity. Anticancer Res 2006 Sep-Oct; 26 (5A): 3387–91

    PubMed  CAS  Google Scholar 

  111. Hansen NJ, Wylie RC, Phipps SM, et al. The low-toxicity 9-cis UAB30 novel retinoid down-regulates the DNA methyltransferases and has anti-telomerase activity in human breast cancer cells. Int J Oncol 2007 Mar; 30 (3): 641–50

    PubMed  CAS  Google Scholar 

  112. Zhou C, Boggess JF, Bae-Jump V, et al. Induction of apoptosis and inhibition of telomerase activity by arsenic trioxide (As2O3) in endometrial carcinoma cells. Gynecol Oncol 2007 Apr; 105 (1): 218–22

    PubMed  CAS  Google Scholar 

  113. Zhou C, Gehrig PA, Whang YE, et al. Rapamycin inhibits telomerase activity by decreasing the hTERT mRNA level in endometrial cancer cells. Mol Cancer Ther 2003 Aug; 2 (8): 789–95

    PubMed  CAS  Google Scholar 

  114. Lindkvist A, Ivarsson K, Jernberg-Wiklund H, et al. Interferon-induced sensitization to apoptosis is associated with repressed transcriptional activity of the hTERT promoter in multiple myeloma. Biochem Biophys Res Commun 2006 Mar 24; 341 (4): 1141–8

    PubMed  CAS  Google Scholar 

  115. He H, Xia HH, Wang JD, et al. Inhibition of human telomerase reverse transcriptase by nonsteroidal antiinflammatory drugs in colon carcinoma. Cancer 2006 Mar 15; 106 (6): 1243–9

    PubMed  CAS  Google Scholar 

  116. Goytisolo FA, Samper E, Martin-Caballero J, et al. Short telomeres result in organismal hypersensitivity to ionizing radiation in mammals. J Exp Med 2000 Dec 4; 192 (11): 1625–36

    PubMed  CAS  Google Scholar 

  117. Lee KH, Rudolph KL, Ju YJ, et al. Telomere dysfunction alters the chemotherapeutic profile of transformed cells. Proc Natl Acad Sci U S A 2001 Mar 13; 98 (6): 3381–6

    PubMed  CAS  Google Scholar 

  118. Incles CM, Schultes CM, Kelland LR, et al. Acquired cellular resistance to flavopiridol in a human colon carcinoma cell line involves up-regulation of the telomerase catalytic subunit and telomere elongation: sensitivity of resistant cells to combination treatment with a telomerase inhibitor. Mol Pharmacol 2003 Nov;64 (5): 1101–8

    PubMed  CAS  Google Scholar 

  119. McCaul JA, Gordon KE, Clark LJ, et al. Telomerase inhibition and the future management of head-and-neck cancer. Lancet Oncol 2002 May; 3 (5): 280–8

    PubMed  CAS  Google Scholar 

  120. Shay JW, Wright WE. Telomerase: a target for cancer therapeutics. Cancer Cell 2002 Oct; 2 (4): 257–65

    PubMed  CAS  Google Scholar 

  121. Singh M, Johnson L. Using genetically engineered mouse models of cancer to aid drug development: an industry perspective. Clin Cancer Res 2006 Sep 15; 12 (18): 5312–28

    PubMed  CAS  Google Scholar 

  122. Lou H, Dean M. Targeted therapy for cancer stem cells: the patched pathway and ABC transporters. Oncogene 2007 Feb 26; 26 (9): 1357–60

    PubMed  CAS  Google Scholar 

  123. Kipling D, Cooke HJ. Hypervariable ultra-long telomeres in mice. Nature 1990 Sep 27; 347 (6291): 400–2

    PubMed  CAS  Google Scholar 

  124. Hockemeyer D, Daniels JP, Takai H, et al. Recent expansion of the telomeric complex in rodents: two distinct POT1 proteins protect mouse telomeres. Cell 2006 Jul 14; 126 (1): 63–77

    PubMed  CAS  Google Scholar 

  125. Horikawa I, Chiang YJ, Patterson T, et al. Differential cis-regulation of human versus mouse TERT gene expression in vivo: identification of a human-specific repressive element. Proc Natl Acad Sci U S A 2005 Dec 20; 102 (51): 18437–42

    PubMed  CAS  Google Scholar 

  126. Prowse KR, Greider CW. Developmental and tissue-specific regulation of mouse telomerase and telomere length. Proc Natl Acad Sci U S A 1995 May 23; 92 (11): 4818–22

    PubMed  CAS  Google Scholar 

  127. Nagase H, Bryson S, Cordell H, et al. Distinct genetic loci control development of benign and malignant skin tumours in mice. Nat Genet 1995 Aug; 10 (4): 424–9

    PubMed  CAS  Google Scholar 

  128. Liu Y, Snow BE, Hande MP, et al. The telomerase reverse transcriptase is limiting and necessary for telomerase function in vivo. CurrBiol 2000 Nov 16; 10 (22): 1459–62

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr Caroline Fitchett for her critical review of the manuscript. The work in Professor Parkinson’s laboratory is supported by the European Union (Framework 6 MOL CANCER MED LSHCCT-2004-502943) and Queen Mary University of London, School of Dentistry. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Kenneth Parkinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parkinson, E.K., Minty, F. Anticancer Therapy Targeting Telomeres and Telomerase. BioDrugs 21, 375–385 (2007). https://doi.org/10.2165/00063030-200721060-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-200721060-00005

Keywords

Navigation