Skip to main content
Log in

Advances in the Modulation of Cutaneous Wound Healing and Scarring

  • Mechanisms and Targets
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Cutaneous wounds inevitably heal with scars, which can be disfiguring and compromise function. In general, the greater the insult, the worse the scarring, although genetic make up, regional variations and age can influence the final result. Excessive scarring manifests as hypertrophic and keloid scars. At the other end of the spectrum are poorly healing chronic wounds, such as foot ulcers in diabetic patients and pressure sores. Current therapies to minimize scarring and accelerate wound healing rely on the optimization of systemic conditions, early wound coverage and closure of lacerations, and surgical incisions with minimal trauma to the surrounding skin. The possible benefits of topical therapies have also been assessed. Further major improvements in wound healing and scarring require an understanding of the molecular basis of this process. Promising strategies for modulating healing include the local administration of platelet derived growth factor (PDGF)-BB to accelerate the healing of chronic ulcers, and increasing the relative ratio of transforming growth factor (TGF)β-3 to TGFβ-1 and TGFβ-2 in order to minimize scarring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Ferguson MW, O’Kane S. Scar-free healing: from embryonic mechanisms to adult therapeutic intervention. Philos Trans R Soc Lond B Biol Sci 2004; 359(1445): 839–50

    Article  PubMed  CAS  Google Scholar 

  2. Martin P. Wound healing: aiming for perfect skin regeneration. Science 1997; 276(5309): 75–81

    Article  PubMed  CAS  Google Scholar 

  3. Clark RAF. Wound repair: overview and general considerations. In: Clark RAF, editor. The molecular and cellular biology of wound repair. 2nd ed. New York: Plenum Press, 1996: 3–50

    Google Scholar 

  4. Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med 1999; 341(10): 738–46

    Article  PubMed  CAS  Google Scholar 

  5. Furie B, Furie BC. Molecular and cellular biology of blood coagulation. N Engl J Med 1992; 326(12): 800–6

    Article  PubMed  CAS  Google Scholar 

  6. Gillitzer R, Goebeler M. Chemokines in cutaneous wound healing. J Leukoc Biol 2001; 69(4): 513–21

    PubMed  CAS  Google Scholar 

  7. Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 1994; 76(2): 301–14

    Article  PubMed  CAS  Google Scholar 

  8. Grose R, Hutter C, Bloch W, et al. A crucial role of beta 1 integrins for keratinocyte migration in vitro and during cutaneous wound repair. Development 2002; 129(9): 2303–15

    PubMed  CAS  Google Scholar 

  9. Grondahl-Hansen J, Lund LR, Ralfkiaer E, et al. Urokinase- and tissue-type plasminogen activators in keratinocytes during wound reepithelialization in vivo. J Invest Dermatol 1988; 90(6): 790–5

    Article  PubMed  CAS  Google Scholar 

  10. Steffensen B, Hakkinen L, Larjava H. Proteolytic events of wound-healing: coordinated interactions among matrix metalloproteinases (MMPs), integrins, and extracellular matrix molecules. Crit Rev Oral Biol Med 2001; 12(5): 373–98

    Article  PubMed  CAS  Google Scholar 

  11. Saarialho-Kere UK, Chang ES, Welgus HG, et al. Distinct localization of collagenase and tissue inhibitor of metalloproteinases expression in wound healing associated with ulcerative pyogenic granuloma. J Clin Invest 1992; 90(5): 1952–7

    Article  PubMed  CAS  Google Scholar 

  12. Salo T, Makela M, Kylmaniemi M, et al. Expression of matrix metalloproteinase-2 and -9 during early human wound healing. Lab Invest 1994; 70(2): 176–82

    PubMed  CAS  Google Scholar 

  13. Saarialho-Kere UK, Pentland AP, Birkedal-Hansen H, et al. Distinct populations of basal keratinocytes express stromelysin-1 and stromelysin-2 in chronic wounds. J Clin Invest 1994; 94(1): 79–88

    Article  PubMed  CAS  Google Scholar 

  14. Pilcher BK, Sudbeck BD, Dumin JA, et al. Collagenase-1 and collagen in epidermal repair. Arch Dermatol Res 1998; 290Suppl.: S37–46

    Article  PubMed  CAS  Google Scholar 

  15. Madlener M, Mauch C, Conca W, et al. Regulation of the expression of stromelysin-2 by growth factors in keratinocytes: implications for normal and impaired wound healing. Biochem J 1996 Dec 1; 320(Pt 2): 659–64

    PubMed  CAS  Google Scholar 

  16. Midwood KS, Williams LV, Schwarzbauer JE. Tissue repair and the dynamics of the extracellular matrix. Int J Biochem Cell Biol 2004; 36(6): 1031–7

    Article  PubMed  CAS  Google Scholar 

  17. Midwood KS, Valenick LV, Hsia HC, et al. Coregulation of fibronectin signaling and matrix contraction by tenascin-C and syndecan-4. Mol Biol Cell 2004; 15(12): 5670–7

    Article  PubMed  CAS  Google Scholar 

  18. Yamamoto N, Kiyosawa T, Arai K, et al. Dermal neoformation during skin wound healing as demonstrated using scanning electron microscopy. Ann Plast Surg 2004; 52(4): 398–406

    Article  PubMed  Google Scholar 

  19. Tonnesen MG, Feng X, Clark RA. Angiogenesis in wound healing. J Investig Dermatol Symp Proc 2000; 5(1): 40–6

    Article  PubMed  CAS  Google Scholar 

  20. Desmouliere A, Redard M, Darby I, et al. Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol 1995; 146(1): 56–66

    PubMed  CAS  Google Scholar 

  21. Greenhalgh DG. The role of apoptosis in wound healing. Int J Biochem Cell Biol 1998; 30(9): 1019–30

    Article  PubMed  CAS  Google Scholar 

  22. Akasaka Y, Ono I, Yamashita T, et al. Basic fibroblast growth factor promotes apoptosis and suppresses granulation tissue formation in acute incisional wounds. J Pathol 2004; 203(2): 710–20

    Article  PubMed  CAS  Google Scholar 

  23. Zhou Z, Wang J, Cao R, et al. Impaired angiogenesis, delayed wound healing and retarded tumor growth in perlecan heparan sulfate-deficient mice. Cancer Res 2004; 64(14): 4699–702

    Article  PubMed  CAS  Google Scholar 

  24. Levenson SM, Geever EF, Crowley LV, et al. The healing of rat skin wounds. Ann Surg 1965; 161: 293–308

    Article  PubMed  CAS  Google Scholar 

  25. Desmouliere A, Chaponnier C, Gabbiani G. Tissue repair, contraction, and the myofibroblast. Wound Repair Regen 2005; 13(1): 7–12

    Article  PubMed  Google Scholar 

  26. Darby I, Skalli O, Gabbiani G. Alpha-smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Lab Invest 1990; 63(1): 21–9

    PubMed  CAS  Google Scholar 

  27. Berry DP, Harding KG, Stanton MR, et al. Human wound contraction: collagen organization, fibroblasts, and myofibroblasts. Plast Reconstr Surg 1998; 102(1): 124–31

    Article  PubMed  CAS  Google Scholar 

  28. Men YD, Han YP, Tawil B, et al. Fibrinogen inhibits fibroblast-mediated contraction of collagen. Wound Repair Regen 2003; 11(5): 380–5

    Article  Google Scholar 

  29. Efron PA, Moldawer LL. Cytokines and wound healing: the role of cytokine and anticytokine therapy in the repair response. J Burn Care Rehabil 2004; 25(2): 149–60

    Article  PubMed  Google Scholar 

  30. Ross R. Platelet-derived growth factor. Annu Rev Med 1987; 38: 71–9

    Article  PubMed  CAS  Google Scholar 

  31. Rumalla VK, Borah GL. Cytokines, growth factors, and plastic surgery. Plast Reconstr Surg 2001; 108(3): 719–33

    Article  PubMed  CAS  Google Scholar 

  32. Marneros AG, Norris JE, Watanabe S, et al. Genome scans provide evidence for keloid susceptibility loci on chromosomes 2q23 and 7pll. J Invest Dermatol 2004; 122(5): 1126–32

    Article  PubMed  CAS  Google Scholar 

  33. Higgins PJ, Slack JK, Diegelmann RF, et al. Differential regulation of PAI-1 gene expression in human fibroblasts predisposed to a fibrotic phenotype. Exp Cell Res 1999; 248(2): 634–42

    Article  PubMed  CAS  Google Scholar 

  34. Tuan TL, Zhu JY, Sun B, et al. Elevated levels of plasminogen activator inhibitor-1 may account for the altered fibrinolysis by keloid fibroblasts. J Invest Dermatol 1996 May; 106(5): 1007–11

    Article  PubMed  CAS  Google Scholar 

  35. Zhang Q, Wu Y, Ann DK, et al. Mechanisms of hypoxic regulation of plasminogen activator inhibitor-1 gene expression in keloid fibroblasts. J Invest Dermatol 2003; 121(5): 1005–12

    Article  PubMed  CAS  Google Scholar 

  36. Beer TW, Baldwin HC, Goddard JR, et al. Angiogenesis in pathological and surgical scars. Hum Pathol 1998; 29(11): 1273–8

    Article  PubMed  CAS  Google Scholar 

  37. Kischer CW, Thies AC, Chvapil M. Perivascular myofibroblasts and microvascular occlusion in hypertrophic scars and keloids. Hum Pathol 1982 Sep; 13(9): 819–24

    Article  PubMed  CAS  Google Scholar 

  38. Lee TY, Chin GS, Kim WJ, et al. Expression of transforming growth factor beta 1, 2, and 3 proteins in keloids. Ann Plast Surg 1999; 43(2): 179–84

    PubMed  CAS  Google Scholar 

  39. Chin GS, Liu W, Peled Z, et al. Differential expression of transforming growth factor-beta receptors I and II and activation of Smad 3 in keloid fibroblasts. Plast Reconstr Surg 2001; 108(2): 423–9

    Article  PubMed  CAS  Google Scholar 

  40. Younai S, Nichter LS, Wellisz T, et al. Modulation of collagen synthesis by transforming growth factor-beta in keloid and hypertrophic scar fibroblasts. Ann Plast Surg 1994; 33(2): 148–51

    Article  PubMed  CAS  Google Scholar 

  41. Smith P, Mosiello G, Deluca L, et al. TGF-beta2 activates proliferative scar fibroblasts. J Surg Res 1999; 82(2): 319–23

    Article  PubMed  CAS  Google Scholar 

  42. Haisa M, Okochi H, Grotendorst GR. Elevated levels of PDGF alpha receptors in keloid fibroblasts contribute to an enhanced response to PDGF. J Invest Dermatol 1994; 103(4): 560–3

    Article  PubMed  CAS  Google Scholar 

  43. Hasegawa T, Nakao A, Sumiyoshi K, et al. IFN-gamma fails to antagonize fibrotic effect of TGF-beta on keloid-derived dermal fibroblasts. J Dermatol Sci 2003; 32(1): 19–24

    Article  PubMed  CAS  Google Scholar 

  44. Calderon M, Lawrence WT, Banes AJ. Increased proliferation in keloid fibroblasts wounded in vitro. J Surg Res 1996; 61(2): 343–7

    Article  PubMed  CAS  Google Scholar 

  45. Nakaoka H, Miyauchi S, Miki Y. Proliferating activity of dermal fibroblasts in keloids and hypertrophic scars. Acta Derm Venereol 1995; 75(2): 102–4

    PubMed  CAS  Google Scholar 

  46. Ladin DA, Hou Z, Patel D, et al. p53 and apoptosis alterations in keloids and keloid fibroblasts. Wound Repair Regen 1998; 6(1): 28–37

    Article  PubMed  CAS  Google Scholar 

  47. Saed GM, Ladin D, Olson J, et al. Analysis of p53 gene mutations in keloids using polymerase chain reaction-based single-strand conformational polymorphism and DNA sequencing. Arch Dermatol 1998; 134(8): 963–7

    Article  PubMed  CAS  Google Scholar 

  48. Chodon T, Sugihara T, Igawa HH, et al. Keloid-derived fibroblasts are refractory to Fas-mediated apoptosis and neutralization of autocrine transforming growth factor-beta1 can abrogate this resistance. Am J Pathol 2000; 157(5): 1661–9

    Article  PubMed  CAS  Google Scholar 

  49. Funayama E, Chodon T, Oyama A, et al. Keratinocytes promote proliferation and inhibit apoptosis of the underlying fibroblasts: an important role in the patho-genesis of keloid. J Invest Dermatol 2003; 121(6): 1326–31

    Article  PubMed  CAS  Google Scholar 

  50. Phan TT, Lim IJ, Bay BH, et al. Differences in collagen production between normal and keloid-derived fibroblasts in serum-media co-culture with keloid-derived keratinocytes. J Dermatol Sci 2002; 29(1): 26–34

    Article  PubMed  CAS  Google Scholar 

  51. Lim IJ, Phan TT, Song C, et al. Investigation of the influence of keloid-derived keratinocytes on fibroblast growth and proliferation in vitro. Plast Reconstr Surg 2001; 107(3): 797–808

    Article  PubMed  CAS  Google Scholar 

  52. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 2003; 92(8): 827–39

    Article  PubMed  CAS  Google Scholar 

  53. Uchida G, Yoshimura K, Kitano Y, et al. Tretinoin reverses upregulation of matrix metalloproteinase-13 in human keloid-derived fibroblasts. Exp Dermatol 2003; 12 Suppl. 2: 35–42

    Article  Google Scholar 

  54. Yoshimoto H, Ishihara H, Ohtsuru A, et al. Overexpression of insulin-like growth factor-1 (IGF-I) receptor and the invasiveness of cultured keloid fibroblasts. Am J Pathol 1999; 154(3): 883–9

    Article  PubMed  CAS  Google Scholar 

  55. Wang R, Ghahary A, Shen Q, et al. Hypertrophie scar tissues and fibroblasts produce more transforming growth factor-betal mRNA and protein than normal skin and cells. Wound Repair Regen 2000; 8(2): 128–37

    Article  PubMed  CAS  Google Scholar 

  56. Akimoto S, Ishikawa O, Iijima C, et al. Expression of basic fibroblast growth factor and its receptor by fibroblast, macrophages and mast cells in hypertrophie scar. Eur J Dermatol 1999; 9(5): 357–62

    PubMed  CAS  Google Scholar 

  57. Ghahary A, Shen YJ, Nedelec B, et al. Enhanced expression of mRNA for insulinlike growth factor-1 in post-burn hypertrophie scar tissue and its fibrogenic role by dermal fibroblasts. Mol Cell Biochem 1995; 148(1): 25–32

    Article  PubMed  CAS  Google Scholar 

  58. Yamamoto T, Hartmann K, Eckes B, et al. Role of stem cell factor and monocyte chemoattractant protein-1 in the interaction between fibroblasts and mast cells in fibrosis. J Dermatol Sci 2001; 26(2): 106–11

    Article  PubMed  CAS  Google Scholar 

  59. Dasu MR, Hawkins HK, Barrow RE, et al. Gene expression profiles from hypertrophic scar fibroblasts before and after IL-6 stimulation. J Pathol 2004; 202(4): 476–85

    Article  PubMed  CAS  Google Scholar 

  60. Ghahary A, Shen YJ, Nedelec B, et al. Collagenase production is lower in post-burn hypertrophic scar fibroblasts than in normal fibroblasts and is reduced by insulin-like growth factor-1. J Invest Dermatol 1996; 106(3): 476–81

    Article  PubMed  CAS  Google Scholar 

  61. Garner WL. Epidermal regulation of dermal fibroblast activity. Plast Reconstr Surg 1998; 102(1): 135–9

    Article  PubMed  CAS  Google Scholar 

  62. Messen FB, Andriessen MP, Schalkwijk J, et al. Keratinocyte-derived growth factors play a role in the formation of hypertrophic scars. J Pathol 2001; 194(2): 207–16

    Article  Google Scholar 

  63. Garg HG, Siebert JW, Garg A, et al. Inseparable iduronic acid-containing proteog-lycan PG (IdoA) preparations of human skin and post-burn scar tissues: evidence for elevated levels of PG (IdoA)-I in hypertrophie scar by N-terminal sequencing. Carbohydr Res 1996; 284(2): 223–8

    Article  PubMed  CAS  Google Scholar 

  64. Scott PG, Dodd CM, Tredget EE, et al. Chemical characterization and quantification of proteoglycans in human post-burn hypertrophie and mature scars. Clin Sci (Lond) 1996; 90(5): 417–25

    CAS  Google Scholar 

  65. Scott PG, Dodd CM, Tredget EE, et al. Immunohistochemical localization of the proteoglycans decorin, biglycan and versican and transforming growth factor-beta in human post-burn hypertrophie and mature scars. Histopathology 1995; 26(5): 423–31

    Article  PubMed  CAS  Google Scholar 

  66. Yamaguchi Y, Mann DM, Ruoslahti E. Negative regulation of transforming growth factor-beta by the proteoglycan decorin. Nature 1990 Jul 19; 346(6281): 281–4

    Article  PubMed  CAS  Google Scholar 

  67. Sayani K, Dodd CM, Nedelec B, et al. Delayed appearance of decorin in healing burn scars. Histopathology 2000; 36(3): 262–72

    Article  PubMed  CAS  Google Scholar 

  68. Castagnoli C, Trombotto C, Ariotti S, et al. Expression and role of IL-15 in postburn hypertrophic scars. J Invest Dermatol 1999; 113(2): 238–45

    Article  PubMed  CAS  Google Scholar 

  69. Younai S, Venters G, Vu S, et al. Role of growth factors in scar contraction: an in vitro analysis. Ann Plast Surg 1996; 36(5): 495–501

    Article  PubMed  CAS  Google Scholar 

  70. Nedelec B, Ghahary A, Scott PG, et al. Control of wound contraction: basic and clinical features. Hand Clin 2000; 16(2): 289–302

    PubMed  CAS  Google Scholar 

  71. Moulin V, Larochelle S, Langlois C, et al. Normal skin wound and hypertrophic scar myofibroblasts have differential responses to apoptotic inductors. J Cell Physiol 2004; 198(3): 350–8

    Article  PubMed  CAS  Google Scholar 

  72. Fausto N. Liver regeneration. J Hepatol 2000; 32(1 Suppl.): 19–31

    Article  PubMed  CAS  Google Scholar 

  73. Cowin AJ, Brosnan MP, Holmes TM, et al. Endogenous inflammatory response to dermal wound healing in the fetal and adult mouse. Dev Dyn 1998; 212(3): 385–93

    Article  PubMed  CAS  Google Scholar 

  74. Martin P, D’Souza D, Martin J, et al. Wound healing in the PU.1 null mouse: tissue repair is not dependent on inflammatory cells. Curr Biol 2003; 13(13): 1122–8

    Article  PubMed  CAS  Google Scholar 

  75. Lorenz HP, Whitby DJ, Longaker MT, et al. Fetal wound healing: the ontogeny of scar formation in the non-human primate. Ann Surg 1993; 217(4): 391–6

    Article  PubMed  CAS  Google Scholar 

  76. Longaker MT, Whitby DJ, Jennings RW, et al. Fetal diaphragmatic wounds heal with scar formation. J Surg Res 1991; 50(4): 375–85

    Article  PubMed  CAS  Google Scholar 

  77. Lin RY, Adzick NS. The role of the fetal fibroblast and transforming growth factor-beta in a model of human fetal wound repair. Semin Pediatr Surg 1996; 5(3): 165–74

    PubMed  CAS  Google Scholar 

  78. de Larco JE, Todaro GJ. Growth factors from murine sarcoma virus-transformed cells. Proc Natl Acad Sci U S A 1978; 75(8): 4001–5

    Article  PubMed  Google Scholar 

  79. Roberts AB, Lamb LC, Newton DL, et al. Transforming growth factors: isolation of polypeptides from virally and chemically transformed cells by acid/ethanol extraction. Proc Natl Acad Sci U S A 1980; 77(6): 3494–8

    Article  PubMed  CAS  Google Scholar 

  80. Anzano MA, Roberts AB, Smith JM, et al. Sarcoma growth factor from conditioned medium of virally transformed cells is composed of both type alpha and type beta transforming growth factors. Proc Natl Acad Sci U S A 1983; 80(20): 6264–8

    Article  PubMed  CAS  Google Scholar 

  81. Massague J. The TGF-beta family of growth and differentiation factors. Cell 1987; 49(4): 437–8

    Article  PubMed  CAS  Google Scholar 

  82. Sporn MB, Roberts AB, Wakefield LM, et al. Some recent advances in the chemistry and biology of transforming growth factor-beta. J Cell Biol 1987; 105(3): 1039–45

    Article  PubMed  CAS  Google Scholar 

  83. Piez KA, Sporn MB. The transforming growth factor-βs: past, present and future. In: Piez KA, Sporn MB, editors. Transforming growth factor-βs: chemistry, biology and therapeutics. Annals NY Acad Sciences 1990; 593: 1–6

    Google Scholar 

  84. O’Kane S, Ferguson MW. Transforming growth factor betas and wound healing. Int J Biochem Cell Biol 1997; 29(1): 63–78

    Article  PubMed  Google Scholar 

  85. Sporn MB, Roberts AB, Shull JH, et al. Polypeptide transforming growth factors isolated from bovine sources and used for wound healing in vivo. Science 1983; 219(4590): 1329–31

    Article  PubMed  CAS  Google Scholar 

  86. Roberts AB, Sporn MB, Assoian RK, et al. Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci U S A 1986; 83(12): 4167–71

    Article  PubMed  CAS  Google Scholar 

  87. Whitby DJ, Ferguson MW. Immunohistochemical localization of growth factors in fetal wound healing. Dev Biol 1991; 147(1): 207–15

    Article  PubMed  CAS  Google Scholar 

  88. Shah M, Foreman DM, Ferguson MW. Neutralisation of TGF-beta 1 and TGF-beta 2 or exogenous addition of TGF-beta 3 to cutaneous rat wounds reduces scarring. J Cell Sci 1995; 108(Pt 3): 985–1002

    PubMed  CAS  Google Scholar 

  89. Lin RY, Sullivan KM, Argenta PA, et al. Exogenous transforming growth factor-beta amplifies its own expression and induces scar formation in a model of human fetal skin repair. Ann Surg 1995; 222(2): 146–54

    Article  PubMed  CAS  Google Scholar 

  90. Hsu M, Peled ZM, Chin GS, et al. Ontogeny of expression of transforming growth factor-beta 1 (TGF-beta 1), TGF-beta 3, and TGF-beta receptors I and II in fetal rat fibroblasts and skin. Plast Reconstr Surg 2001; 107(7): 1787–94

    Article  PubMed  CAS  Google Scholar 

  91. Soo C, Beanes SR, Hu FY, et al. Ontogenetic transition in fetal wound transforming growth factor-beta regulation correlates with collagen organization. Am J Pathol 2003; 163(6): 2459–76

    Article  PubMed  CAS  Google Scholar 

  92. Martin P, Dickson MC, Millan FA, et al. Rapid induction and clearance of TGF beta 1 is an early response to wounding in the mouse embryo. Dev Genet 1993; 14(3): 225–38

    Article  PubMed  CAS  Google Scholar 

  93. Massague J, Cheifetz S, Boyd FT, et al. TGF-beta receptors and TGF-beta binding proteoglycans: recent progress in identifying their functional properties. Ann N Y Acad Sci 1990; 593: 59–72

    Article  PubMed  CAS  Google Scholar 

  94. Massague J. TGF-beta signal transduction. Annu Rev Biochem 1998; 67: 753–91

    Article  PubMed  CAS  Google Scholar 

  95. Cowin AJ, Holmes TM, Brosnan P, et al. Expression of TGF-beta and its receptors in murine fetal and adult dermal wounds. Eur J Dermatol 2001; 11(5): 424–31

    PubMed  CAS  Google Scholar 

  96. Lovvorn III HN, Cheung DT, Nimni ME, et al. Relative distribution and cross-linking of collagen distinguish fetal from adult sheep wound repair. J Pediatr Surg 1999; 34(1): 218–23

    Article  PubMed  Google Scholar 

  97. Moulin V, Plamondon M. Differential expression of collagen integrin receptor on fetal vs adult skin fibroblasts: implication in wound contraction during healing. Br J Dermatol 2002; 147(5): 886–92

    Article  PubMed  CAS  Google Scholar 

  98. Park JC, Park BJ, Suh H, et al. Comparative study on motility of the cultured fetal and neonatal dermal fibroblasts in extracellular matrix. Yonsei Med J 2001; 42(6): 587–94

    PubMed  CAS  Google Scholar 

  99. Dang CM, Beanes SR, Lee H, et al. Scarless fetal wounds are associated with an increased matrix metalloproteinase-to-tissue-derived inhibitor of metal-loproteinase ratio. Plast Reconstr Surg 2003; 111(7): 2273–85

    Article  PubMed  Google Scholar 

  100. Lee HG, Eun HC. Differences between fibroblasts cultured from oral mucosa and normal skin: implication to wound healing. J Dermatol Sci 1999; 21(3): 176–82

    Article  PubMed  CAS  Google Scholar 

  101. Sumi Y, Muramatsu H, Hata K, et al. Secretory leukocyte protease inhibitor is a novel inhibitor of fibroblast-mediated collagen gel contraction. Exp Cell Res 2000; 256(1): 203–12

    Article  PubMed  CAS  Google Scholar 

  102. Shah M, Foreman DM, Ferguson MW. Control of scarring in adult wounds by neutralising antibody to transforming growth factor beta. Lancet 1992; 339(8787): 213–4

    Article  PubMed  CAS  Google Scholar 

  103. Shah M, Foreman DM, Ferguson MW. Neutralising antibody to TGF-beta 1,2 reduces cutaneous scarring in adult rodents. J Cell Sci 1994; 107(Pt 5): 1137–57

    PubMed  CAS  Google Scholar 

  104. Brahmatewari J, Serafini A, Serralta V, et al. The effects of topical transforming growth factor-beta 2 and anti-transforming growth factor-beta 2,3 on scarring in pigs. J Cutan Med Surg 2000; 4(3): 126–31

    PubMed  CAS  Google Scholar 

  105. Choi BM, Kwak HJ, Jun CD, et al. Control of scarring in adult wounds using antisense transforming growth factor-beta 1 oligodeoxynucleotides. Immunol Cell Biol 1996; 74(2): 144–50

    Article  PubMed  CAS  Google Scholar 

  106. Shah M, Revis D, Herrick S, et al. Role of elevated plasma transforming growth factor-betal levels in wound healing. Am J Pathol 1999; 154(4): 1115-24

    Article  PubMed  CAS  Google Scholar 

  107. Liu W, Chua C, Wu X, et al. Inhibiting scar formation in rat wounds by adenovirus-mediated overexpression of truncated TGF-beta receptor II. Plast Reconstr Surg 2005; 115(3): 860–70

    Article  PubMed  CAS  Google Scholar 

  108. Soo C, Hu FY, Zhang X, et al. Differential expression of fibromodulin, a transforming growth factor-beta modulator, in fetal skin development and scarless repair. Am J Pathol 2000; 157(2): 423–33

    Article  PubMed  CAS  Google Scholar 

  109. Beanes SR, Dang C, Soo C, et al. Down-regulation of decorin, a transforming growth factor-beta modulator, is associated with scarless fetal wound healing. J Pediatr Surg 2001; 36(11): 1666–71

    Article  PubMed  CAS  Google Scholar 

  110. Scheid A, Wenger RH, Schaffer L, et al. Physiologically low oxygen concentrations in fetal skin regulate hypoxia-inducible factor 1 and transforming growth factor-beta3. FASEB J 2002; 16(3): 411–3

    PubMed  CAS  Google Scholar 

  111. Ono I, Yamashita T, Hida T, et al. Combined administration of basic fibroblast growth factor protein and the hepatocyte growth factor gene enhances the regeneration of dermis in acute incisional wounds. Wound Repair Regen 2004; 12(1): 67–79

    Article  PubMed  Google Scholar 

  112. Ono I, Yamashita T, Hida T, et al. Local administration of hepatocyte growth factor gene enhances the regeneration of dermis in acute incisional wounds. J Surg Res 2004; 120(1): 47–55

    Article  PubMed  CAS  Google Scholar 

  113. Ha X, Li Y, Lao M, et al. Effect of human hepatocyte growth factor on promoting wound healing and preventing scar formation by adenovirus-mediated gene transfer. Chin Med J (Engl) 2003; 116(7): 1029–33

    CAS  Google Scholar 

  114. Wilgus TA, Vodovotz Y, Vittadini E, et al. Reduction of scar formation in full-thickness wounds with topical celecoxib treatment. Wound Repair Regen 2003; 11(1): 25–34

    Article  PubMed  Google Scholar 

  115. Kossi J, Peltonen J, Uotila P, et al. Differential effects of hexoses and sucrose, and platelet-derived growth factor isoforms on cyclooxygenase-1 and -2 mRNA expression in keloid, hypertrophic scar and granulation tissue fibroblasts. Arch Dermatol Res 2001; 293(3): 126–32

    Article  PubMed  CAS  Google Scholar 

  116. Tanaka H, Okada T, Konishi H, et al. The effect of reactive oxygen species on the biosynthesis of collagen and glycosaminoglycans in cultured human dermal fibroblasts. Arch Dermatol Res 1993; 285(6): 352–5

    Article  PubMed  CAS  Google Scholar 

  117. Baumann LS, Spencer J. The effects of topical vitamin E on the cosmetic appearance of scars. Dermatol Surg 1999; 25(4): 311–5

    Article  PubMed  CAS  Google Scholar 

  118. Jenkins M, Alexander JW, MacMillan BG, et al. Failure of topical steroids and vitamin E to reduce postoperative scar formation following reconstructive surgery. J Burn Care Rehabil 1986; 7(4): 309–12

    Article  PubMed  CAS  Google Scholar 

  119. Mustoe TA, Cooter RD, Gold MH, et al. International clinical recommendations on scar management. Plast Reconstr Surg 2002; 110(2): 560–71

    Article  PubMed  Google Scholar 

  120. Kischer CW, Shetlar MR, Shetlar CL. Alteration of hypertrophic scars induced by mechanical pressure. Arch Dermatol 1975; 111(1): 60–4

    Article  PubMed  CAS  Google Scholar 

  121. Reno F, Sabbatini M, Lombardi F, et al. In vitro mechanical compression induces apoptosis and regulates cytokines release in hypertrophic scars. Wound Repair Regen 2003; 11(5): 331–6

    Article  PubMed  Google Scholar 

  122. Berman B, Flores F. The treatment of hypertrophic scars and keloids. Eur J Dermatol 1998; 8(8): 591–6

    PubMed  CAS  Google Scholar 

  123. Malaker K, Vijayraghavan K, Hodson I, et al. Retrospective analysis of treatment of unresectable keloids with primary radiation over 25 years. Clin Oncol (R Coll Radiol) 2004 Jun; 16(4): 290–8.

    Article  CAS  Google Scholar 

  124. Simman R, Alani H, Williams F. Effect of mitomycin C on keloid fibroblasts: an in vitro study. Ann Plast Surg 2003; 50(1): 71–6

    Article  PubMed  Google Scholar 

  125. Uppal RS, Khan U, Kakar S, et al. The effects of a single dose of 5-fluorouracil on keloid scars: a clinical trial of timed wound irrigation after extralesional excision. Plast Reconstr Surg 2001; 108(5): 1218–24

    Article  PubMed  CAS  Google Scholar 

  126. Manuskiatti W, Fitzpatrick RE. Treatment response of keloidal and hypertrophic sternotomy scars: comparison among intralesional corticosteroid, 5-fluorouracil, and 585-nm flashlamp-pumped pulsed-dye laser treatments. Arch Dermatol 2002; 138(9): 1149–55

    Article  PubMed  CAS  Google Scholar 

  127. Nanda S, Reddy BS. Intralesional 5-fluorouracil as a treatment modality of keloids. Dermatol Surg 2004; 30(1): 54–6

    Article  PubMed  Google Scholar 

  128. Muzaffar AR, Rafols F, Masson J, et al. Keloid formation after syndactyly reconstruction: associated conditions, prevalence, and preliminary report of a treatment method. J Hand Surg [Am] 2004; 29(2): 201–8

    Article  Google Scholar 

  129. Ahn ST, Monafo WW, Mustoe TA. Topical silicone gel: a new treatment for hypertrophic scars. Surgery 1989; 106(4): 781–6

    PubMed  CAS  Google Scholar 

  130. Dockery GL, Nilson RZ. Treatment of hypertrophic and keloid scars with SILAS-TIC Gel Sheeting. J Foot Ankle Surg 1994; 33(2): 110–9

    PubMed  CAS  Google Scholar 

  131. Gold MH, Foster TD, Adair MA, et al. Prevention of hypertrophic scars and keloids by the prophylactic use of topical silicone gel sheets following a surgical procedure in an office setting. Dermatol Surg 2001; 27(7): 641–4

    Article  PubMed  CAS  Google Scholar 

  132. Hanasono MM, Lum J, Carroll LA, et al. The effect of silicone gel on basic fibroblast growth factor levels in fibroblast cell culture. Arch Facial Plast Surg 2004; 6(2): 88–93

    Article  PubMed  Google Scholar 

  133. Ricketts CH, Martin L, Faria DT, et al. Cytokine mRNA changes during the treatment of hypertrophic scars with silicone and nonsilicone gel dressings. Dermatol Surg 1996; 22(11): 955–9

    Article  PubMed  CAS  Google Scholar 

  134. Hinman CD, Maibach H. Effect of air exposure and occlusion on experimental human skin wounds. Nature 1963; 200: 377–8

    Article  PubMed  CAS  Google Scholar 

  135. Chang CC, Kuo YF, Chiu HC, et al. Hydration, not silicone, modulates the effects of keratinocytes on fibroblasts. J Surg Res 1995; 59(6): 705–11

    Article  PubMed  CAS  Google Scholar 

  136. Nowak KC, McCormack M, Koch RJ. The effect of superpulsed carbon dioxide laser energy on keloid and normal dermal fibroblast secretion of growth factors: a serum-free study. Plast Reconstr Surg 2000; 105(6): 2039–48

    Article  PubMed  CAS  Google Scholar 

  137. Wittenberg GP, Fabian BG, Bogomilsky JL, et al. Prospective, single-blind, randomized, controlled study to assess the efficacy of the 585-nm flashlamp-pumped pulsed-dye laser and silicone gel sheeting in hypertrophic scar treatment. Arch Dermatol 1999; 135(9): 1049–55

    Article  PubMed  CAS  Google Scholar 

  138. Dalkowski A, Fimmel S, Beutler C, et al. Cryotherapy modifies synthetic activity and differentiation of keloidal fibroblasts in vitro. Exp Dermatol 2003; 12(5): 673–81

    Article  PubMed  CAS  Google Scholar 

  139. Zouboulis CC, Blume U, Buttner P, et al. Outcomes of cryosurgery in keloids and hypertrophic scars: a prospective consecutive trial of case series. Arch Dermatol 1993; 129(9): 1146–51

    Article  Google Scholar 

  140. Serini G, Gabbiani G. Mechanisms of myofibroblast activity and phenotypic modulation. Exp Cell Res 1999; 250(2): 273–83

    Article  PubMed  CAS  Google Scholar 

  141. Desmouliere A, Geinoz A, Gabbiani F, et al. Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue my-ofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 1993; 122(1): 103–11

    Article  Google Scholar 

  142. Hinz B, Mastrangelo D, Iselin CE, et al. Mechanical tension controls granulation tissue contractile activity and myofibroblast differentiation. Am J Pathol 2001; 159(3): 1009–20

    Article  PubMed  CAS  Google Scholar 

  143. Tomasek JJ, Gabbiani G, Hinz B, et al. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 2002; 3(5): 349–63

    Article  PubMed  CAS  Google Scholar 

  144. van Zuijlen PP, Ruurda JJ, van Veen HA, et al. Collagen morphology in human skin and scar tissue: no adaptations in response to mechanical loading at joints. Burns 2003; 29(5): 423–31

    Article  PubMed  Google Scholar 

  145. Waiden JL, Garcia H, Hawkins H, et al. Both dermal matrix and epidermis contribute to an inhibition of wound contraction. Ann Plast Surg 2000; 45(2): 162–6

    Article  Google Scholar 

  146. Waldorf H, Fewkes J. Wound healing. Adv Dermatol 1995; 10: 77–96

    PubMed  CAS  Google Scholar 

  147. Atiyeh BS, Ioannovich J, Al-Amm CA, et al. Management of acute and chronic open wounds: the importance of moist environment in optimal wound healing. Curr Pharm Biotechnol 2002; 3(3): 179–95

    Article  PubMed  CAS  Google Scholar 

  148. Wiechula R. The use of moist wound-healing dressings in the management of split-thickness skin graft donor sites: a systematic review. Int J Nurs Pract 2003; 9(2): S9–S17

    Article  PubMed  Google Scholar 

  149. Svensjo T, Pomahac B, Yao F, et al. Accelerated healing of full-thickness skin wounds in a wet environment. Plast Reconstr Surg 2000; 106(3): 602–12

    Article  PubMed  CAS  Google Scholar 

  150. Lobmann R, Ambrosch A, Schultz G, et al. Expression of matrix-metal-loproteinases and their inhibitors in the wounds of diabetic and non-diabetic patients. Diabetologia 2002; 45(7): 1011–6

    Article  PubMed  CAS  Google Scholar 

  151. Ladwig GP, Robson MC, Liu R, et al. Ratios of activated matrix metal-loproteinase-9 to tissue inhibitor of matrix metalloproteinase-1 in wound fluids are inversely correlated with healing of pressure ulcers. Wound Repair Regen 2002; 10(1): 26–37

    Article  PubMed  Google Scholar 

  152. Loots MA, Renter SB, Au FL, et al. Fibroblasts derived from chronic diabetic ulcers differ in their response to stimulation with EGF, IGF-I, bFGF and PDGF-AB compared to controls. Eur J Cell Biol 2002; 81(3): 153–60

    Article  CAS  Google Scholar 

  153. Xue M, Thompson P, Kelso I, et al. Activated protein C stimulates proliferation, migration and wound closure, inhibits apoptosis and upregulates MMP-2 activity in cultured human keratinocytes. Exp Cell Res 2004; 299(1): 119–27

    Article  PubMed  CAS  Google Scholar 

  154. Jackson CJ, Xue M, Thompson P, et al. Activated protein C prevents inflammation yet stimulates angiogenesis to promote cutaneous wound healing. Wound Repair Regen 2005; 13(3): 284–94

    Article  PubMed  Google Scholar 

  155. Antony S, Terrazas S. A retrospective study: clinical experience using vacuum-assisted closure in the treatment of wounds. J Natl Med Assoc 2004; 96(8): 1073–7

    PubMed  Google Scholar 

  156. Dieu T, Leung M, Leong J, et al. Too much vacuum-assisted closure. ANZ J Surg 2003; 73(12): 1057–60

    Article  PubMed  Google Scholar 

  157. Loree S, Dompmartin A, Penven K, et al. Is vacuum assisted closure a valid technique for debriding chronic leg ulcers? J Wound Care 2004; 13(6): 249–52

    PubMed  CAS  Google Scholar 

  158. Argenta LC, Morykwas MJ. Vacuum-assisted closure: a new method for wound control and treatment: clinical experience. Ann Plast Surg 1997; 38(6): 563–76

    Article  PubMed  CAS  Google Scholar 

  159. Morykwas MJ, Argenta LC, Shelton-Brown El, et al. Vacuum-assisted closure: a new method for wound control and treatment: animal studies and basic foundation. Ann Plast Surg 1997; 38(6): 553–62

    Article  PubMed  CAS  Google Scholar 

  160. Saxena V, Hwang CW, Huang S, et al. Vacuum-assisted closure: microdeformations of wounds and cell proliferation. Plast Reconstr Surg 2004; 114(5): 1086–96

    PubMed  Google Scholar 

  161. Ross R. Platelet-derived growth factor. Lancet 1989; I(8648): 1179–82

    Article  Google Scholar 

  162. Greenhalgh DG. The role of growth factors in wound healing. J Trauma 1996; 41(1): 159–67

    Article  PubMed  CAS  Google Scholar 

  163. Meyer-Ingold W, Eichner W. Platelet-derived growth factor. Cell Biol Int 1995; 19(5): 389–98

    Article  PubMed  CAS  Google Scholar 

  164. Hart CE, Forstrom JW, Kelly JD, et al. Two classes of PDGF receptor recognize different isoforms of PDGF. Science 1988; 240(4858): 1529–31

    Article  PubMed  CAS  Google Scholar 

  165. LeGrand EK. Preclinical promise of becaplermin (rhPDGF-BB) in wound healing. Am J Surg 1998; 176(2A Suppl.): 48S–54S

    Article  PubMed  CAS  Google Scholar 

  166. Pierce GF, Mustoe TA, Senior RM, et al. In vivo incisional wound healing augmented by platelet-derived growth factor and recombinant c-sis gene homodimeric proteins. J Exp Med 1988; 167(3): 974–87

    Article  PubMed  CAS  Google Scholar 

  167. Greenhalgh DG, Sprugel KH, Murray MJ, et al. PDGF and FGF stimulate wound healing in the genetically diabetic mouse. Am J Pathol 1990; 136(6): 1235–46

    PubMed  CAS  Google Scholar 

  168. Grotendorst GR, Martin GR, Pencev D, et al. Stimulation of granulation tissue formation by platelet-derived growth factor in normal and diabetic rats. J Clin Invest 1985; 76(6): 2323–9

    Article  PubMed  CAS  Google Scholar 

  169. Pierce GF, Mustoe TA, Altrock BW, et al. Role of platelet-derived growth factor in wound healing. J Cell Biochem 1991; 45(4): 319–26

    Article  PubMed  CAS  Google Scholar 

  170. Pierce GF, Brown D, Mustoe TA. Quantitative analysis of inflammatory cell influx, procollagen type I synthesis, and collagen cross-linking in incisional wounds: influence of PDGF-BB and TGF-beta 1 therapy. J Lab Clin Med 1991; 117(5): 373–82

    PubMed  CAS  Google Scholar 

  171. Breitbart AS, Laser J, Parrett B, et al. Accelerated diabetic wound healing using cultured dermal fibroblasts retrovirally transduced with the platelet-derived growth factor B gene. Ann Plast Surg 2003; 51(4): 409–14

    Article  PubMed  Google Scholar 

  172. Uhl E, Rosken F, Sirsjo A, et al. Influence of platelet-derived growth factor on microcirculation during normal and impaired wound healing. Wound Repair Regen 2003; 11(5): 361–7

    Article  PubMed  Google Scholar 

  173. Steed DL. Clinical evaluation of recombinant human platelet-derived growth factor for the treatment of lower extremity diabetic ulcers. Diabetic Ulcer Study Group. J Vasc Surg 1995; 21(1): 71–8

    CAS  Google Scholar 

  174. Wieman TJ, Smiell JM, Su Y. Efficacy and safety of a topical gel formulation of recombinant human platelet-derived growth factor-BB (becaplermin) in patients with chronic neuropathic diabetic ulcers: a phase III randomized placebo-controlled double-blind study. Diabetes Care 1998; 21(5): 822–7

    Article  PubMed  CAS  Google Scholar 

  175. d’Hemecourt PA, Smiell JM, Karim MR. Sodium carboxymethylcellulose aqueous-based gel vs becaplermin gel in patients with nonhealing lower extremity diabetic foot ulcers. Wounds 1998; 10: 69–75

    Google Scholar 

  176. Smiell JM, Wieman TJ, Steed DL, et al. Efficacy and safety of becaplermin (recombinant human platelet-derived growth factor-BB) in patients with nonhealing, lower extremity diabetic ulcers: a combined analysis of four randomized studies. Wound Repair Regen 1999; 7(5): 335–46

    Article  PubMed  CAS  Google Scholar 

  177. Perry BH, Sampson AR, Schwab BH, et al. A meta-analytic approach to an integrated summary of efficacy: a case study of becaplermin gel. Control Clin Trials 2002; 23(4): 389–408

    Article  PubMed  Google Scholar 

  178. Balfour JA. Becaplermin. Biodrugs 1999; 11(5): 359–64

    Article  PubMed  CAS  Google Scholar 

  179. Mustoe TA, Cutler NR, Allman RM, et al. A phase II study to evaluate recombinant platelet-derived growth factor-BB in the treatment of stage 3 and 4 pressure ulcers. Arch Surg 1994; 129(2): 213–9

    Article  PubMed  CAS  Google Scholar 

  180. Robson MC, Phillips LG, Thomason A, et al. Recombinant human platelet-derived growth factor-BB for the treatment of chronic pressure ulcers. Ann Plast Surg 1992; 29(3): 193–201

    Article  PubMed  CAS  Google Scholar 

  181. Keswani SG, Katz AB, Lim FY, et al. Adenoviral mediated gene transfer of PDGF-B enhances wound healing in type I and type II diabetic wounds. Wound Repair Regen 2004; 12(5): 497–504

    Article  PubMed  Google Scholar 

  182. Yao F, Eriksson E. Gene therapy in wound repair and regeneration. Wound Repair Regen 2000; 8(6): 443–51

    Article  PubMed  CAS  Google Scholar 

  183. Isner JM, Baumgartner I, Rauh G, et al. Treatment of thromboangiitis obliterans (Buerger’s disease) by intramuscular gene transfer of vascular endothelial growth factor: preliminary clinical results. J Vasc Surg 1998; 28(6): 964–73

    Article  PubMed  CAS  Google Scholar 

  184. Woodley DT, Peterson HD, Herzog SR, et al. Burn wounds resurfaced by cultured epidermal autografts show abnormal reconstitution of anchoring fibrils. JAMA 1988; 259(17): 2566–71

    Article  PubMed  CAS  Google Scholar 

  185. Nanchahal J, Dover R, Otto WR. Allogeneic skin substitutes applied to burns patients. Burns 2002; 28(3): 254–7

    Article  PubMed  CAS  Google Scholar 

  186. Jones I, James SE, Rubin P, et al. Upward migration of cultured autologous keratinocytes in Integra artificial skin: a preliminary report. Wound Repair Regen 2003; 11(2): 132–8

    Article  PubMed  Google Scholar 

  187. Jones I, Currie L, Martin R. A guide to biological skin substitutes. Br J Plast Surg 2002 Apr; 55(3): 185–93

    Article  PubMed  CAS  Google Scholar 

  188. Phillips TJ, Manzoor J, Rojas A, et al. The longevity of a bilayered skin substitute after application to venous ulcers. Arch Dermatol 2002; 138(8): 1079–81

    Article  PubMed  Google Scholar 

  189. Falanga V, Sabolinski M. A bilayered living skin construct (APLIGRAF®) accelerates complete closure of hard-to-heal venous ulcers. Wound Repair Regen 1999 Jul–Aug; 7(4): 201–7

    Article  PubMed  CAS  Google Scholar 

  190. Otto WR, Nanchahal J, Lu QL, et al. Survival of allogeneic cells in cultured organotypic skin grafts. Plast Reconstr Surg 1995; 96(1): 166–76

    Article  PubMed  CAS  Google Scholar 

  191. Falanga V. The chronic wound: impaired healing and solutions in the context of wound bed preparation. Blood Cells Mol Dis 2004; 32(1): 88–94

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors received no funding to assist with the preparation of this article and have no conflicts of interest directly relevant to its contents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagdeep Nanchahal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, MC., Nanchahal, J. Advances in the Modulation of Cutaneous Wound Healing and Scarring. BioDrugs 19, 363–381 (2005). https://doi.org/10.2165/00063030-200519060-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-200519060-00004

Keywords

Navigation