Skip to main content
Log in

Potassium Channels in T Lymphocytes

Therapeutic Targets for Autoimmune Disorders?

  • Drug Mechanisms and Targets
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Human peripheral blood T lymphocytes possess two types of K+ channels: the voltage-gated Kv1.3 and the calcium-activated IKCa1 channels. The use of peptidyl inhibitors of Kv1.3 and IKCa1 indicated that these channels are involved in the maintenance of membrane potential and that they play a crucial role in Ca2+ signaling during T-cell activation. Thus, in vitro blockade of Kv1.3 and IKCa1 leads to inhibition of cytokine production and lymphocyte proliferation. These observations prompted several groups of investigators in academia and pharmaceutical companies to characterize the expression of Kv1.3 and IKCa1 in different subsets of human T lymphocytes and to evaluate their potential as novel targets for immunosuppression. Recent in vivo studies showed that chronically activated T lymphocytes involved in the pathogenesis of multiple sclerosis present unusually high expression of Kv1.3 channels and that the treatment with selective Kv1.3 inhibitors can either prevent or ameliorate the symptoms of the disease. In this model of multiple sclerosis, blockade of IKCa1 channels had no effect alone, but improved the response to Kv1.3 inhibitors. In addition, the expression of Kv1.3 and IKCa1 channels in human cells is very restricted, which makes them attractive targets for a more cell-specific and less harmful action than what is typically obtained with classical immunosuppressants. Studies using high-throughput toxin displacement, 86Rb-efflux screening or membrane potential assays led to the identification of non-peptidyl small molecules with high affinity for Kv1.3 or IKCa1 channels. Analysis of structure-function relationships in Kv1.3 and IKCa1 channels helped define the binding sites for channel blockers, allowing the design of a new generation of small molecules with selectivity for either Kv1.3 or IKCa1, which could help the development of new drugs for safer treatment of auto-immune diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Table I

Similar content being viewed by others

References

  1. DeCoursey TE, Chandy KG, Gupta S, et al. Voltage-gated K+ channels in human T lymphocytes: a role in mitogegenesis? Nature 1984; 307: 465–8

    Article  PubMed  CAS  Google Scholar 

  2. Matteson DR, Deutsch C. K channels in T lymphocytes: a patch clamp study using monoclonal antibody adhesion. Nature 1984; 307: 468–71

    Article  PubMed  CAS  Google Scholar 

  3. Cahalan MD, Chandy KG, De Coursey TE, et al. A voltage-gated potassium channel in human T lympohocytes. J Physiol (Lond) 1985; 358: 197–237

    CAS  Google Scholar 

  4. Schlichter L, Sidell N, Hagiwara S. K channels are expressed early in human T-cell devolopment. Proc Natl Acad Sci U S A 1986; 83: 5625–9

    Article  PubMed  CAS  Google Scholar 

  5. Chandy KG, DeCoursey TE, Cahalan MD, et al. Voltage-gated potassium channels are required for human T lymphocyte activation. J Exp Med 1984; 160: 369–85

    Article  PubMed  CAS  Google Scholar 

  6. Douglass J, Osborne PB, Cai YC, et al. Characterization and functional expression of a rat genomic DNA clone encoding a lymphocyte potassium channel. J Immunol 1990; 144: 4841–50

    PubMed  CAS  Google Scholar 

  7. Grissmer S, Dethlefs B, Wasmuth JJ, et al. Expression and chromosomal localization of a lymphocyte K+ channel gene. Proc Natl Acad Sci U S A 1990; 87: 9411–5

    Article  PubMed  CAS  Google Scholar 

  8. Cai YC, Osborne PB, North RA, et al. Characterization and functional expression of genomic DNA encoding the human lyphocyte type n potassium channel. DNA Cell Biol 1992; 11: 163–72

    Article  PubMed  CAS  Google Scholar 

  9. Mackinnon R. Determination of the subunit stoichiometry of a voltage-activated potassium channel. Nature 1991; 350: 232–5

    Article  PubMed  CAS  Google Scholar 

  10. Kavanaugh MP, Hurst RS, Yakel J, et al. Multiple subunits of a voltage-dependent potassium channel contribute to the binding site for tetraethylammonium. Neuron 1992; 8: 493–7

    Article  PubMed  CAS  Google Scholar 

  11. Helms LMH, Felix JP, Bugianesi RM, et al. Margatoxin binds to a homomultimer of K v 1.3 channels in jurkat cells: comparison with Kv 1.3 expressed in CHO cells. Biochemistry 1997; 36: 3737–44

    Article  PubMed  CAS  Google Scholar 

  12. Spencer RH, Sokolov Y, Li H, et al. Purification, visualization, and biophysical characterization of Kv1.3 tetramers. J Biol Chem 1997; 272: 2389–95

    Article  PubMed  CAS  Google Scholar 

  13. Koch RO, Wanner SG, Koschak A, et al. Complex subinit assembly of neuronal voltage-gated K+ channels. J Biol Chem 1997; 247(44): 27577–81

    Article  Google Scholar 

  14. Koschak A, Bugianesi RM, Mitterdorfer J, et al. Subunit composition of brain voltage-gated potassium channels determined by hongotoxin-1, a novel peptide derived from Centruroides limbatus venom. J Biol Chem 1998; 273: 2639–707

    Article  PubMed  CAS  Google Scholar 

  15. Grissmer S, Nguyen AN, Cahalan MD. Calcium-activated potassium channels in resting and activated human T lymphocytes: expression levels, calcium dependence, ion selectivity, and pharmacology. J Gen Physiol 1993; 102: 601–30

    Article  PubMed  CAS  Google Scholar 

  16. Logsdon NJ, Kang J, Togo JA, et al. A novel gene, hKCa4, encodes the calcium-activated potassium channel in human T lymphocytes. J Biol Chem 1997; 272: 32723–6

    Article  PubMed  CAS  Google Scholar 

  17. Ishii TM, Silvia C, Hirschberg B, et al. A human intermediate conductance calcium-activated potassium channel. Proc Natl Acad Sci U S A 1997; 94: 11651–6

    Article  PubMed  CAS  Google Scholar 

  18. Cahalan MD, Wulff H, Chandy KG. Molecular properties and physiological roles of ion channels in the immune system. J Clin Immunol 2001; 21: 235–52

    Article  PubMed  CAS  Google Scholar 

  19. Xia XM, Fakler B, Rivard A, et al. Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature 1998; 395: 503–7

    Article  PubMed  CAS  Google Scholar 

  20. Fanger CM, Ghanshani S, Logsdon NJ, et al. Calmodulin mediates calcium-dependent activation of the intermediate conductance KCa channel, IKCal. J Biol Chem 1999; 274: 5746–54

    Article  PubMed  CAS  Google Scholar 

  21. Kreusch A, Pfaffinger PJ, Stevens CF, et al. Crystal structure of the tetramerization domain of the Shaker potassium channel. Nature 1998; 392: 945–8

    Article  PubMed  CAS  Google Scholar 

  22. Minor D, Lin Y, Mobley B, et al. The polar T1 interface is linked to conformational changes that open the voltage-gated potassium channel. Cell 2000; 102: 657–70

    Article  PubMed  CAS  Google Scholar 

  23. Nakahira K, Shi G, Rhodes K, et al. Selective interaction of voltage-gated K+ channel beta-subunits with alpha-subunits. J Biol Chem 1996; 271: 7084–9

    Article  PubMed  CAS  Google Scholar 

  24. Autieri M, Belkowski S, Constantinescu C, et al. Lymphocyte-specific inducible expression of potassium channel beta subunits. J Neuroimmunol 1997; 77: 8–16

    Article  PubMed  CAS  Google Scholar 

  25. Gulbis J, Zhou M, Mann S, et al. Structure of the cytoplasmic beta subunit-T1 assembly of voltage-dfependent K+ channels. Science 2000; 289: 123–7

    Article  PubMed  CAS  Google Scholar 

  26. Shi G, Nakahira K, Hammond S, et al. Beta subunits promote K+ channel surface expression through effects on early biosynthesis. Neuron 1996; 16: 843–52

    Article  PubMed  CAS  Google Scholar 

  27. Gong J, Xu J, Bezanilla M, et al. Differential stimulation of PKC phosphorylation of potassium channels by ZIP1 and ZIP2. Science 1999; 285: 1565–9

    Article  PubMed  CAS  Google Scholar 

  28. Hanada T, Lin L, Chandy KG, et al. Human homologue of drosophila discs large tumor suppressor binds to p56lck tyrosine kinase and Shaker type Kv1.3 potassium channel in T lymphocytes. J Biol Chem 1997; 272: 26899–904

    Article  PubMed  CAS  Google Scholar 

  29. Panyi G, Bagdany M, Bodnar A, et al. Colocalization and nonrandom distribution of Kv1.3 potassium channels and CD3 molecules in the plasma membrane of human T-lymphocytes. Proc Natl Acad Sci U S A 2003; 100: 2592–7

    Article  PubMed  CAS  Google Scholar 

  30. Matkó J. K+ channels and T-cell synapses: the molecular background for efficient immunomodulation is shaping up. Trends Pharmacol Sci 2003 Aug; 24(8): 385–9

    Article  PubMed  CAS  Google Scholar 

  31. DeCoursey TE, Chandy KG, Gupta S, et al. Voltage-dependent ion channels in T-lymphocytes. J Neuroimmunol 1985; 10: 71–95

    Article  PubMed  CAS  Google Scholar 

  32. Ehring GR, Kerschbaum HH, Eder C, et al. A nongenomic mechanism for progesterone-mediated immunosuppression: inhibition of K+ channels, Ca2+ signaling, and gene expression in T lymphocytes. J Exp Med 1998; 188(9): 1593–602

    Article  PubMed  CAS  Google Scholar 

  33. Garcia ML, Galves A, Garcia-Calvo M, et al. Use of toxins to study potassium channels. J Bioenerg Biomembr 1991; 23(4): 615–46

    Article  PubMed  CAS  Google Scholar 

  34. Garcia ML, Hanner M, Kaczorowski GJ. Scorpion toxins: tools for studying K+ channels. Toxicon 1998; 36(11): 1641–50

    Article  PubMed  CAS  Google Scholar 

  35. Kaczorowski GJ, Garcia ML. Pharmacology of voltage-gated and calcium-activated potassium channels. Curr Opin Chem Biol 1999; 3(4): 448–58

    Article  PubMed  CAS  Google Scholar 

  36. Price M, Lee SC, Deutsch C. Charybdotoxin inhibits proliferation and interleukin 2 production in human peripheral blood lymphocytes. Proc Natl Acad Sci U S A 1989; 86: 10171–5

    Article  PubMed  CAS  Google Scholar 

  37. Sands SB, Lewis RS, Cahalan MD. Charybdotoxin blocks voltage-gate K+ channels in human and murine T lymphocytes. J Gen Physiol 1989; 93: 1061–74

    Article  PubMed  CAS  Google Scholar 

  38. Leonard RJ, Garcia ML, Slaughter RS, et al. Selective blockers of voltage-gated K+ channels depolarize human T lymphocytes: mechanism of the antiproliferative effect of charybdotoxin. Proc Natl Acad Sci U S A 1992; 89: 10094–8

    Article  PubMed  CAS  Google Scholar 

  39. Garcia-Calvo M, Leonard RJ, Novick J, et al. Purification, characterization, and biosynthesis of margatoxin, a component of Centruroides margaritatus venom that selectively inhibits voltage-dependent potassium channels. J Biol Chem 1993; 268: 18866–74

    PubMed  CAS  Google Scholar 

  40. Garcia ML, Garcia-Calvo M, Hidalgo P, et al. Purification and characterization of thee inhibitors of voltage-dependent K+ channels from Leiurus quinquestriatus var hebraeus venom. Biochemistry 1994; 33(22): 6834–9

    Article  PubMed  CAS  Google Scholar 

  41. Grissmer S, Nguyen AN, Aiyar J, et al. Pharmacological characterization of five cloned voltage-gated K+ channels, types Kv1.1, 1.2, 1.3, 1.5, and 3.1, stably expressed in mammalian cell lines. Mol Pharmacol 1994; 45: 1227–34

    PubMed  CAS  Google Scholar 

  42. Drakopoulou E, Cotton J, Virelizier H, et al. Chemical synthesis, structural and functional characterisation of noxiustoxin, a powerful blocker of lymphocyte voltage-dependent K+ channels. Biochem Biophys Res Commum 1995; 213: 901–7

    Article  CAS  Google Scholar 

  43. Kaiman K, Pennington MW, Lanigan MD, et al. ShK-Dap22, a potent Kv1.3-specific immunosuppressive polypeptide. J Biol Chem 1998; 273: 32697–707

    Article  Google Scholar 

  44. Rauer H, Lanigan MD, Pennington MW, et al. Structure-guided transformation of charybdotoxin yields an analog that selectively targets Ca2+-activated over voltage-gated K+ channels. J Biol Chem 2000; 275: 1201–8

    Article  PubMed  CAS  Google Scholar 

  45. Michne W, Guiles J, Trasurywala A, et al. Novel inhibitors of potassium ion channels on human T lymphocytes. J Med Chem 1995; 38: 1877–83

    Article  PubMed  CAS  Google Scholar 

  46. Hill RJ, Grant AM, Volberg W, et al. WIN 17317-3: novel nonpeptide antagonist of voltage-activated potassium channels in human T-lymphocytes. Mol Pharmacol 1995; 48: 98–104

    PubMed  CAS  Google Scholar 

  47. Nguyen A, Kath JC, Hanson DC, et al. Novel nonpeptide agents potently block the C-type inactivated conformation of Kv1.3 and suppress T cell activation. Mol Pharmacol 1996; 50: 1672–9

    PubMed  CAS  Google Scholar 

  48. Burgess LE, Koch K, Cooper K, et al. The SAR of UK-78,282: a novel blocker of human T cell Kv1.3 potassium channels. Bioorg Med Chem Lett 1997; 7: 1047–52

    Article  CAS  Google Scholar 

  49. Hanson DC, Nguyen A, Mather RJ, et al. UK-78,282, a novel piperidine compound that potently blocks the Kv1.3 voltage-gated potassium channel and inhibits human T cell activation. Br J Pharmacol 1999; 126: 1707–16

    Article  PubMed  CAS  Google Scholar 

  50. Goetz MA, Hensens OD, Zink DL, et al. Potent nor-triterpenoid blockers of the voltage-gated potassium channel Kv1.3 from Spachea correae. Tetrahedron Lett 1998; 39: 2895–8

    Article  CAS  Google Scholar 

  51. Felix JP, Bugianesi RM, Schmalhofer WA, et al. Identification and biochemical characterization of a novel nortriterpene inhibitor of the human lymphocyte voltage-gated potassium channel, Kv1.3. Biochemistry 1999; 38: 4922–30

    Article  PubMed  CAS  Google Scholar 

  52. Wanner SG, Glossman H, Knaus HG, et al. WIN 17317-3, a new high-affinity probe for voltage-gated sodium channels. Biochemistry 1999; 38: 11137–46

    Article  PubMed  CAS  Google Scholar 

  53. Vianna-Jorge R, Ponte CG, Oliveira CF, et al. WIN 17317-3 blocks Ca2+-activated K+ channels and enhances the motility of guinea-pig detrusor muscle. Eur J Pharmacol 2001; 428(1): 45–9

    Article  PubMed  CAS  Google Scholar 

  54. Vianna-Jorge R, Oliveira CF, Garcia ML, et al. Correolide, a nor-triterpenoid blocker of Shaker-type Kv1 channels, elicits twitches in guinea-pig ileum by stimulating the enteric nervous system and enhancing neurotransmitter release. Br J Pharmacol 2000; 131: 772–8

    Article  PubMed  CAS  Google Scholar 

  55. Vianna-Jorge R, Oliveira CF, Garcia ML, et al. Shaker-type Kv1 channel blockers increase the peristaltic activity of guinea-pig ileum by stimulating acetylcholine and tachykinins release by the enteric nervous system. Br J Pharmacol 2003 Jan; 138(1): 57–62

    Article  PubMed  CAS  Google Scholar 

  56. Schmalhofer WA, Bao J, McManus OB, et al. Identification of a new class of inhibitors of the voltage-gated potassium channel, Kv1.3, with immunosuppressant properties. Biochemistry 2002; 41(24): 7781–94

    Article  PubMed  CAS  Google Scholar 

  57. Miao S, Bao J, GarciaL M, et al. Benzamide derivatives as blockers of Kv 1.3. Ion Channels 2003; 13: 1161–4

    CAS  Google Scholar 

  58. Schmalhofer WA, Slaughter RS, Matyskiela M, et al. Di-substituted cyclohexyl derivatives bind to two identical sites with positive cooperativity on the voltage-gated potassium channel, Kv 1.3. Biochemistry 2003; 42: 4733–43

    Article  PubMed  CAS  Google Scholar 

  59. Wojtulewski JA, Gow PJ, Walter J, et al. Clotrimazole in rheumatoid arthritis. Ann Rheum Dis 1980; 39: 469–72

    Article  PubMed  CAS  Google Scholar 

  60. Alvarez J, Montero M, Garcia-Sancho J. High affinity inhibition of Ca(2+)-dependent K+ channels by cytochrome P-450 inhibitors. J Biol Chem 1992; 267(17): 11789–93

    PubMed  CAS  Google Scholar 

  61. Wulff H, Miller MI, Hänsel W, et al. Design of a potent and selective inhibitor of intermediate-conductance Ca2+-activated K+ channel, IKCa1: a potential immunosuppressant. Proc Natl Acad Sci U S A 2000; 97: 8151–6

    Article  PubMed  CAS  Google Scholar 

  62. Stocker JW, De Francheschi L, McNaughton-Smith GA, et al. ICA-17043, a novel Gardos channel blocker, prevents sickled red blood cell dehydration in vitro and in vivo in SAD mice. Blood 2003; 101: 2412–8

    Article  PubMed  CAS  Google Scholar 

  63. Lin CS, Boltz RC, Blake JT, et al. Voltage-gated potassium channels regulate cacium-dependent pathways involved in human T lymphocyte activation. J Exp Med 1993; 177: 637–45

    Article  PubMed  CAS  Google Scholar 

  64. Butcher EC, Picker LJ. Lymphocyte homing and homeostasis. Nature 1996; 392: 245–52

    Google Scholar 

  65. Bancherau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998; 392: 245–52

    Article  CAS  Google Scholar 

  66. Gunn MD, Tangemann K, Tam C, et al. A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes. Proc Natl Acad Sci U S A 1998; 95: 258–63

    Article  PubMed  CAS  Google Scholar 

  67. Campbell JJ, Bowman EP, Murphy K, et al. 6-C-kine (SLC), a lymphocyte adhesion-triggering chemokine expressed by high endothelium, is an agonist for the MIP-3beta receptor CCR7. J Cell Biol 1998 May; 141: 1053–9

    Article  PubMed  CAS  Google Scholar 

  68. Sallusto F, Lening D, Forster R, et al. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999; 401: 708–12

    Article  PubMed  CAS  Google Scholar 

  69. Spinozzi F, Agea E, Bistoni O, et al. Intracellular calcium levels are differentially regulated in T lymphocytes triggered by anti-CD2 and anti-CD3 monoclonal antibodies. Cell Signal 1995; 7(3): 287–93

    Article  PubMed  CAS  Google Scholar 

  70. Zweifach A, Lewis RS. Mitogen-regulated Ca2+ current of T lymphocytes is activated by depletion of intracellular Ca2+ stores. Proc Natl Acad Sci U S A 1993; 90: 6295–9

    Article  PubMed  CAS  Google Scholar 

  71. Zweifach A, Lewis RS. Calcium-dependent potentiation of store-operated calcium channels in T lymphocytes. J Gen Physiol 1996; 107: 597–610

    Article  PubMed  CAS  Google Scholar 

  72. Altman A, Coggeshall KM, Mustelin T. Molecular events mediating T cell activation. Adv Immunol 1990; 48: 227–360

    Article  PubMed  CAS  Google Scholar 

  73. Dolmetsch RE, Xu K, Lewis RS. Calcium oscillations increase the efficiency and specificity of gene expression. Nature 1998; 392: 933–6

    Article  PubMed  CAS  Google Scholar 

  74. Lewis RS. Calcium signaling mechanisms in T lymphocytes. Annu Rev Immunol 2001; 19: 497–21

    Article  PubMed  CAS  Google Scholar 

  75. Verheugen JA, Vijverberg HP, Oortgiesen M, et al. Voltage-gated and Ca2+- activated K+ channels in intact human T lymphocytes: non-invasive measurements of membrane currents, membrane potential, and intracellular calcium. J Gen Physiol 1995; 105: 765–94

    Article  PubMed  CAS  Google Scholar 

  76. Guanshani S, Wulff H, Miller JM, et al. Up-regulation of the IKCa1 potassium channel during T-cell activation. J Biol Chem 2000; 275(47): 37137–49

    Article  Google Scholar 

  77. Chandy KG, Cahalan M, Pennington M, et al. Potassium channels in T lymphocytes: toxins to therapeutic immunosuppressants. Toxicon 2001; 39: 1269–76

    Article  PubMed  CAS  Google Scholar 

  78. Mackay CR, Marston WL, Dudler L. Naive and memory T cells show distinct pathways of lymphocyte recirculation. J Exp Med 1990; 141: 801–17

    Article  Google Scholar 

  79. Mackay CR. Homing of naive, memory and effector lymphocytes. Curr Opin Immunol 1993; 5: 423–7

    Article  PubMed  CAS  Google Scholar 

  80. Austrup F, Vestweber D, Borges E, et al. P-and E-selectin mediate recruitment of T-helper-1 but not T-helper-2 cells into inflamed tissues. Nature 1997; 385: 54–60

    Article  Google Scholar 

  81. Garside P, Ingulli E, Merica RR, et al. Visualization of specific B and T lymphocyte interaction in the lymph node. Science 1998; 281: 96–9

    Article  PubMed  CAS  Google Scholar 

  82. Manjunath N, Shankar P, Stockton B, et al. A transgenic mouse model to analyze CD8+ effector T cell differentiation in vivo. Proc Natl Acad Sci U S A 1999; 96: 13932–7

    Article  PubMed  CAS  Google Scholar 

  83. Masopust D, Vezys V, Marzo AL, et al. Preferential localization of effector memory cells in nonlymphoid tissue. Science 2001; 291: 2413–7

    Article  PubMed  CAS  Google Scholar 

  84. Reinhardt RL, Khoruts A, Merica R, et al. Visualizing the generation of memory CD4 T cells in the whole body. Nature 2001; 410: 101–5

    Article  PubMed  CAS  Google Scholar 

  85. Lezzi G, Scheidegger D, Lanzavecchia A. Migration and function of antigen-primed nonpolarized T lymphocytes in vivo. J Exp Med 2001; 193: 987–93

    Article  Google Scholar 

  86. Geginat J, Sallusto F, Lanzavecchia A. Cytokine-driven proliferation and differentiation of human naive, central memory, and effector memory CD4+ T cells. J Exp Med 2001; 194: 1711–9

    Article  PubMed  CAS  Google Scholar 

  87. Allegretta M, Nicklas JA, Sriram S, et al. T cells responsive to myelin basic protein in patients with multiple sclerosis. Science 1990; 247: 718–21

    Article  PubMed  CAS  Google Scholar 

  88. Navikas V, Link H. Cytokines and pathogenesis of multiple sclerosis. J Neurosci 1996; 45: 322–33

    Article  CAS  Google Scholar 

  89. Lovett-Racke AE, Trotter JL, Lauber J, et al. Decreased dependence of myelin basic protein-reactive T cells on CD28-mediated costimulation in multiple sclerosis patients: a marker of activated/memory T cells. J Clin Invest 1998; 101: 725–30

    Article  PubMed  CAS  Google Scholar 

  90. Scholz C, Anderson DE, Freeman GJ, et al. Expansion of autoreactive T cells in multiple sclerosis independent of exogenous B7 costimulation. J Immunol 1998; 160: 1532–8

    PubMed  CAS  Google Scholar 

  91. Markovic-Plese S, Cortese I, Wandinger KP, et al. CD4+CD28 costimulation-independent T cells in multiple sclerosis. J Clin Invest 2001; 108: 1185–94

    PubMed  CAS  Google Scholar 

  92. O’Connor K, Bar-Or A, Hafler DA. The neuroimmunology of multiple sclerosis: possible roles of T and lymphocytes in immunopathogenesis. J Clin Immunol 2001; 21: 81–92

    Article  PubMed  Google Scholar 

  93. Steinman L. Multiple sclerosis: a two-stage disease. Nat Immunol 2001; 2(9): 762–4

    Article  PubMed  CAS  Google Scholar 

  94. Tisch R, McDevitt H. Insulin-dependent diabetes mellitus. Cell 1996; 85: 291–7

    Article  PubMed  CAS  Google Scholar 

  95. Wucherpfennig KW, Eisenbarth GS. Type 1 diabetes. Nat Immunol 2001; 2(9): 766–8

    Article  Google Scholar 

  96. Viglietta V, Kent SC, Orban T, et al. GAD65-reactive T cells are activated in patients with autoimmune type 1a diabetes. J Clin Invest 2002; 109: 895–903

    PubMed  CAS  Google Scholar 

  97. Romball CG, Singer SM, McDevitt HO. Th1 and Th2 CD4+ T cells in the pathogenesis of organ-specific autoimmune diseases. Immunol Today 1987; 16: 34–8

    Google Scholar 

  98. De Carli M, D’Elios MM, Mariotti S, et al. Cytolytic T cells with Th1-like cytokine profile predominate in retroorbital lymphocytic infiltrates of Graves ophthalmopathy. J Clin Endocrinol Metab 1993; 77: 1120–4

    Article  PubMed  Google Scholar 

  99. Weetman AP. Determinants of autoimmune thyroid disease. Nat Immunol 2001; 2(9): 769–70

    Article  PubMed  CAS  Google Scholar 

  100. Simon AK, Seipelt E, Sieper J. Divergent T-cell cytokine patterns in inflammatory arthritis. Proc Natl Acad Sci U S A 1994; 91: 8562–6

    Article  PubMed  CAS  Google Scholar 

  101. Friedrich M, Krammig S, Henze M, et al. Flow cytometric characterization of lesional T cells in psoriasis: intracellular cytokine and surface antigen expression indicates an activated, memory effector/type 1 immunophenotype. Arch Dermatol Res 2000; 292: 519–21

    Article  PubMed  CAS  Google Scholar 

  102. Beeton C, Barbaria J, Giraud P, et al. Selective blocking of voltage-gated K channels improves experimental autoimmune encephalomyelitis and inhibits T cells activation. J Immunol 2001; 166: 936–44

    PubMed  CAS  Google Scholar 

  103. Beeton C, Wulff H, Barbaria J, et al. Selective blockade of T lymphocyte K+ channels ameliorates experimental autoimmune encephalomyelitis, a model for multiple sclerosis. Proc Natl Acad Sci U S A 2001; 98: 13942–7

    Article  PubMed  CAS  Google Scholar 

  104. Wulff H, Calabresi PA, Allie R, et al. The voltage-gated Kv1.3 K+ channel in effector memory T cells as new target for MS. J Clin Invest 2003; 111: 1703–13

    PubMed  CAS  Google Scholar 

  105. Baggiolini M. Chemokines and leukocyte traffic. Nature 1998; 392: 565–8

    Article  PubMed  CAS  Google Scholar 

  106. Diamond MS, Springer TA. The dynamic regulation of integrin adhesiveness. Curr Biol 1994; 4: 506–17

    Article  PubMed  CAS  Google Scholar 

  107. Clark EA, Brugge JS. Integrins and signal transduction pathways: the road taken. Science 1995; 268: 233–9

    Article  PubMed  CAS  Google Scholar 

  108. Levite M, Cahalon L, Peretz A, et al. Extracellular K+ and opening of voltage-gated potassium channels activate T cell integrin function: physical and functional association between Kv1.3 channels and betal integrins. J Exp Med 2000; 191: 1167–76

    Article  PubMed  CAS  Google Scholar 

  109. Koo CG, Blake TJ, Talento A, et al. Blockade of the voltage-gated potassium channel Kv 1.3 inhibits immune responses in vivo. J Immunol 1997; 158: 5120–8

    PubMed  CAS  Google Scholar 

  110. Ishida Y, Chused TM. Lack of voltage sensitive potassium channels and generation of membrane potential by sodium potassium ATPase in murine T lymphocytes. J Immunol 1993; 151(2): 610–20

    PubMed  CAS  Google Scholar 

  111. Janeway C, Travers AP. Immunobiology. New York: Garland Publishing Co, 1994: 11–2

    Google Scholar 

  112. Koo GC, Blake JT, Shah K, et al. Correolide and derivatives are novel immunosuppressants blocking the lymphocyte Kv1.3 potassium channels. Cell Immunol 1999; 197: 99–107

    Article  PubMed  CAS  Google Scholar 

  113. Mourre C, Chernova MN, Martin-Eauclaire MF, et al. Distribution in rat brain of binding sites of kaliotoxin, a blocker of Kv1.1 and Kv1.3 alpha-subunits. J Pharmacol Exp Ther 1999; 291(3): 943–52

    PubMed  CAS  Google Scholar 

  114. Suarez-Kurtz G, Vianna-Jorge R, Pereira BF, et al. Peptidyl inhibitors of Shaker-type Kv1 channels elicit twitches in guinea pig ileum by blocking Kv1.1 at enteric nervous system and enhancing acetylcholine release. J Pharmacol Exp Ther 1999; 289: 1517–22

    PubMed  CAS  Google Scholar 

  115. Middleton RE, Sanchez M, Linde AR, et al. Substitution of a single residue in Stichodactyla helianthus peptide, ShK-Dap22, reveals a novel pharmacological profile. Biochemistry 2003 Nov 25; 42(46): 13698–707

    Article  PubMed  CAS  Google Scholar 

  116. Shah K, Blake TJ, Huang C, et al. Immunosuppressive effects of a Kv 1.3 inhibitor. Cell Immunol 2003; 221: 100–6

    Article  PubMed  CAS  Google Scholar 

  117. Beeton C, Wulff H, Singh S, et al. A novel fluorescent toxin to detect and investigate kv1.3-channel up-regulation in chronically activated T lymphocytes. J Biol Chem 2003; 278: 9928–37

    Article  PubMed  CAS  Google Scholar 

  118. Koni PA, Khanna R, Chang MC, et al. Compensatory anion currents in Kv1.3 channel-deficient thymocytes. J Biol Chem 2003; 278: 39443–51

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Drs Adriana Bonomo, Maria Luísa Garcia and Gregory J. Kaczorowski for critical reading of the manuscript.

The authors declare that no conflict of interest exists. No sources of funding were used to assist in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosane Vianna-Jorge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vianna-Jorge, R., Suarez-Kurtz, G. Potassium Channels in T Lymphocytes. BioDrugs 18, 329–341 (2004). https://doi.org/10.2165/00063030-200418050-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-200418050-00005

Keywords

Navigation