Skip to main content

Advertisement

Log in

Criteria for the Design and Biological Characterization of Radiolabeled Peptide-Based Pharmaceuticals

  • Drug Development
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Radiolabeled peptide-based formulations are being evaluated for their application in oncological imaging and therapy using nuclear medicine techniques. A major breakthrough in the field was the discovery and identification of the G-protein coupled receptor superfamily that are overexpressed in a variety of human cancers. These receptors act as targets for endogenous compounds, often of peptidic nature, which can be radiolabeled and, therefore, could potentially be utilized as radiopharmaceuticals. This general strategy has proven successful for application in humans in only a few cases thus far. However, the use of more sophisticated structural methodology to enhance our understanding of the interactions between the receptor and the endogenous peptide or its analogs, and a more efficient preclinical evaluation process, may help to single out the most promising compounds for further development and eventual use in the clinical application of radiopharmaceuticals.

This review analyzes current methods of approaching these key points. The rational process for developing peptide-based radiopharmaceuticals is presented, from the structural analysis of the peptide-receptor interaction for the identification and modeling of the peptide analogs to the synthesis, with an appropriate metal carrier, of compounds that mimic endogenous peptides. Finally, the in vitro and in vivo biological testing and evaluation in preclinical animal models is described. To render the entire process successful, expertise in different areas of drug development is indispensable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Carbone PP. Advances in the systemic treatment of cancers in the elderly. Crit Rev Oncol Hematol 2000; 35: 201–18

    Article  PubMed  CAS  Google Scholar 

  2. Gianni L. The future of targeted therapy: combining novel agents. Oncology 2002; 63Suppl. 1: 47–56

    Article  PubMed  CAS  Google Scholar 

  3. Heron DE, Godette KD, Wynn RA, et al. Radiation medicine innovations for the new millenium. J Natl Med Assoc 2003; 95: 55–63

    PubMed  Google Scholar 

  4. Hortobagyi GN. The status of breast cancer management: challenges and opportunities. Breast Cancer Res Treat 2002; 75Suppl. 1: S61–5

    Article  PubMed  CAS  Google Scholar 

  5. Hellstrom KE, Brown JP, Hellstrom I. Monoclonal antibodies to tumor antigens. Contemp Top Immunobiol 1980; 11: 117–37

    Article  PubMed  CAS  Google Scholar 

  6. Juweid M, Neumann R, Paik C, et al. Micropharmacology of monoclonal antibodies in solid tumors: direct experimental evidence for a binding site barrier. Cancer Res 1992; 52: 5144–53

    PubMed  CAS  Google Scholar 

  7. Dillman RO. Radiolabeled anti-CD20 monoclonal antibodies for the treatment of B-cell lymphoma. J Clin Oncol 2002; 20: 3545–57

    Article  PubMed  CAS  Google Scholar 

  8. Press OW, Eary JF, Appelbaum FR, et al. Phase II trial of 131I-B1 (anti-CD20) antibody therapy with autologous stem cell transplantation for relapsed B cell lymphomas. Lancet 1995; 346: 336–40

    Article  PubMed  CAS  Google Scholar 

  9. Reubi JC. Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr Rev 2003; 24: 389–427

    Article  PubMed  CAS  Google Scholar 

  10. Kwekkeboom D, Krenning EP, de Jong M. Peptide receptor imaging and therapy. J Nucl Med 2000; 41: 1704–13

    PubMed  CAS  Google Scholar 

  11. Paganelli G, Bodei L, Handkiewicz Junak D, et al. 90Y-DOTA-D-Phel-Try3-octreotide in therapy of neuroendocrine malignancies. Biopolymers 2002; 66: 393–8

    Article  PubMed  CAS  Google Scholar 

  12. Gibril F, Reynolds JC, Doppman JL, et al. Somatostatin receptor scintigraphy: its sensitivity compared with that of other imaging methods in detecting primary and metastatic gastrinomas: a prospective study. Ann Intern Med 1996; 125: 26–34

    PubMed  CAS  Google Scholar 

  13. Virgolini I, Raderer M, Kurtaran A, et al. Vasoactive intestinal peptide-receptor imaging for the localization of intestinal adenocarcinomas and endocrine tumors. N Engl J Med 1994; 331: 1116–21

    Article  PubMed  CAS  Google Scholar 

  14. Behr TM, Jenner N, Radetzky S, et al. Targeting of cholecystokinin-B/gastrin receptors in vivo: preclinical and initial clinical evaluation of the diagnostic and therapeutic potential of radiolabelled gastrin. Eur J Nucl Med 1998; 25: 424–30

    Article  PubMed  CAS  Google Scholar 

  15. Breeman WA, de Jong M, Erion JL, et al. Preclinical comparison of (111)In-labeled DTPA- or DOTA-bombesin analogs for receptor-targeted scintigraphy and radionuclide therapy. J Nucl Med 2002; 43: 1650–6

    PubMed  CAS  Google Scholar 

  16. Behr TM, Gotthardt M, Barth A, et al. Imaging tumors with peptide-based radioligands. Q J Nucl Med 2001; 45: 189–200

    PubMed  CAS  Google Scholar 

  17. Pasqualini R. Vascular targeting with phage peptide libraries. Q J Nucl Med 1999; 43: 159–62

    PubMed  CAS  Google Scholar 

  18. Nilsson F, Tarli L, Viti F, et al. The use of phage display for the development of tumour targeting agents. Adv Drug Deliv Rev 2000; 43: 165–96

    Article  PubMed  CAS  Google Scholar 

  19. Bauer W, Briner U, Doepfner W, et al. SMS 201-995: a very potent and selective octapeptide analogue of somatostatin with prolonged action. Life Sci 1982; 31: 1133–40

    Article  PubMed  CAS  Google Scholar 

  20. Lister-James J, Moyer BR, Deanv RT. Pharmacokinetic considerations in the development of peptide-based imaging agents. Q J Nucl Med 1997; 41: 111–8

    PubMed  CAS  Google Scholar 

  21. Decristoforo C, Mather SJ. The influence of chelator on the pharmacokinetics of 99mTc-labelled peptides. Q J Nucl Med 2002; 46: 195–205

    PubMed  CAS  Google Scholar 

  22. Berthold M, Bartfai T. Modes of peptide binding in G protein-coupled receptors. Neurochem Res 1997; 22: 1023–31

    Article  PubMed  CAS  Google Scholar 

  23. Mierke DF, Giragossian C. Peptide hormone binding to G-protein-coupled receptors: structural characterization via NMR techniques. Med Res Rev 2001; 21: 450–71

    Article  PubMed  CAS  Google Scholar 

  24. Hamm HE. The many faces of G protein signaling. J Biol Chem 1998; 273: 669–72

    Article  PubMed  CAS  Google Scholar 

  25. Bourne HR. How receptors talk to trimeric G proteins. Curr Opin Cell Biol 1997; 9: 134–42

    Article  PubMed  CAS  Google Scholar 

  26. Bockaert J, Pin JP. Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J 1999; 18: 1723–9

    Article  PubMed  CAS  Google Scholar 

  27. Palczewski K, Kumasaka T, Hori T, et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 2000; 289: 739–45

    Article  PubMed  CAS  Google Scholar 

  28. Baldwin JM. The probable arrangement of the helices in G protein-coupled receptors. EMBO J 1993; 12: 1693–703

    PubMed  CAS  Google Scholar 

  29. Horn F, Weare J, Beukers MW, et al. GPCRDB: an information system for G protein-coupled receptors. Nucleic Acids Res 1998; 26: 275–9

    Article  PubMed  CAS  Google Scholar 

  30. Schwartz MA, Schaller MD, Ginsberg MH. Integrins: emerging paradigms of signal transduction. Annu Rev Cell Dev Biol 1995; 11: 549–99

    Article  PubMed  CAS  Google Scholar 

  31. Marshall GR. Peptide interactions with G-protein coupled receptors. Biopolymers 2001; 60: 246–77

    Article  PubMed  CAS  Google Scholar 

  32. Pellegrini M, Mierke DF. Structural characterization of peptide hormone/receptor interactions by NMR spectroscopy. Biopolymers 1999; 51: 208–20

    Article  PubMed  CAS  Google Scholar 

  33. Piserchio A, Prado GN, Zhang R, et al. Structural insight into the role of the second intracellular loop of the bradykinin 2 receptor in signaling and internalization. Biopolymers 2002; 63: 239–46

    Article  PubMed  CAS  Google Scholar 

  34. Macdonald D, Mierke DF, Li H, et al. Photoaffinity labeling of mutant neurokinin-1 receptors reveals additional structural features of the substance P/NK-1 receptor complex. Biochemistry 2001; 40: 2530–9

    Article  PubMed  CAS  Google Scholar 

  35. Pellegrini M, Mierke DF. Molecular complex of cholecystokinin-8 and N-terminus of the cholecystokinin A receptor by NMR spectroscopy. Biochemistry 1999; 38: 14775–83

    Article  PubMed  CAS  Google Scholar 

  36. Giragossian C, Mierke DF. Intermolecular interactions between cholecystokinin-8 and the third extracellular loop of the cholecystokinin-2 receptor. Biochemistry 2002; 41: 4560–6

    Article  PubMed  CAS  Google Scholar 

  37. Giragossian C, Mierke DF. Intermolecular interactions between cholecystokinin-8 and the third extracellular loop of the cholecystokinin A receptor. Biochemistry 2001; 40: 3804–9

    Article  PubMed  CAS  Google Scholar 

  38. Wank SA. Cholecystokinin receptors. Am J Physiol 1995; 269: G628–46

    PubMed  CAS  Google Scholar 

  39. Ji Z, Hadac EM, Henne RM, et al. Direct identification of a distinct site of interaction between the carboxyl-terminal residue of cholecystokinin and the type A cholecystokinin receptor using photoaffinity labeling. J Biol Chem 1997; 272: 24393–401

    Article  PubMed  CAS  Google Scholar 

  40. Kennedy K, Gigoux V, Escrieut C, et al. Identification of two amino acids of the human cholecystokinin-A receptor that interact with the N-terminal moiety of cholecystokinin. J Biol Chem 1997; 272: 2920–6

    Article  PubMed  CAS  Google Scholar 

  41. De Luca S, Ragone R, Bracco C, et al. A cyclic CCK8 analog selective for the cholecystokinin type A receptor: design, synthesis, NMR structure and binding measurements. Chembiochem 2003 Nov 7; 4(11): 1176–87

    Article  PubMed  Google Scholar 

  42. Anderson CJ, Pajeau TS, Edwards EB, et al. In vitro and in vivo evaluation of Copper-64-Octreotide conjugates. J Nucl Med 1995; 36: 2315–25

    PubMed  CAS  Google Scholar 

  43. de Jong M, Bakker WH, Krenning EP, et al. Yttrium90 and Indium 111 labeling, receptor binding and biodistribution of [DOTA0-Dphe1, Tyr3]octreotide, a promising somatostatin analogue for radionuclide therapy. Eur J Nucl Med 1997; 24: 368–71

    Article  PubMed  Google Scholar 

  44. Baidoo KE, Scheffel U, Stathis M, et al. High-affinity no-carrier-added 99mTc-labeled chemotactic peptides for studies of inflammation in vivo. Bioconjug Chem 1998; 9: 208–17

    Article  PubMed  CAS  Google Scholar 

  45. Hnatowich DJ, Qu T, Chang F, et al. Labeling peptides with technetium-99m using a bifunctional chelator of a N-hydroxysuccinimide ester of mercaptoacetyltriglycine. J Nucl Med 1998; 39: 56–64

    PubMed  CAS  Google Scholar 

  46. Schwartz DA, Abrams MJ, Hauser MM, et al. Preparation of hydrazino-modified proteins and their use for the synthesis of technetium-99m-protein conjugates. Bioconjug Chem 1991; 2: 333–6

    Article  PubMed  CAS  Google Scholar 

  47. Visser GWM, Gerretsen M, Herscheid JDM, et al. Labeling of monoclonal antibodies with rhenium-186 using the MAG3 chelate for radioimmunotherapy of cancer: a technical protocol. J Nucl Med 1993; 34: 1953–63

    PubMed  CAS  Google Scholar 

  48. Friesner RA, Gunn JR. Computational studies of protein folding. Annu Rev Biophys Biomol Struct 1996; 25: 315–42

    Article  PubMed  CAS  Google Scholar 

  49. Van Gunsteren WF, Berendsen HJ. Molecular dynamics: perspective for complex systems. Biochem Soc Trans 1982; 10: 301–5

    PubMed  Google Scholar 

  50. McCammon JA, Gelin BR, Karplus M. Dynamics of folded proteins. Nature 1977; 267: 585–90

    Article  PubMed  CAS  Google Scholar 

  51. De Luca S, Tesauro D, Di Lello P, et al. Synthesis and solution characterization of a porphyrin-CCK8 conjugate. J Pept Sci 2001; 7: 386–94

    Article  PubMed  Google Scholar 

  52. Wu RS. Novel bifunctional linkers for antibody chelation with radiometals. Cancer Treat Res 1990; 51: 215–32

    Article  PubMed  CAS  Google Scholar 

  53. Lindmo T, Boven E, Cuttitta F, et al. Determination of the immunoreactive fraction of radiolabeled monoclonal antibodies by linear extrapolation to binding at infinite antigen excess. J Immunol Methods 1984; 72: 77–89

    Article  PubMed  CAS  Google Scholar 

  54. Schuhmacher J, Matys R, Hauser H, et al. Labeling of monoclonal antibodies with a 67Ga-phenolic aminocarboxylic acid chelate. Part I: chemistry and labeling technique. Eur J Nucl Med 1986; 12: 397–404

    Article  PubMed  CAS  Google Scholar 

  55. Reilly R, Lee N, Houle S, et al. In vitro stability of EDTA and DTPA immunoconjugates of monoclonal antibody 2G3 labeled with indium-111. Int J Rad Appl Instrum [A] 1992; 43: 961–7

    Article  CAS  Google Scholar 

  56. Deshpande SV, Subramanian R, McCall MJ, et al. Metabolism of indium chelates attached to monoclonal antibody: minimal transchelation of indium from benzyl-EDTA chelate in vivo. J Nucl Med 1990; 31: 218–24

    PubMed  CAS  Google Scholar 

  57. Aloj L, Panico MR, Caraco C, et al. Radiolabeling approaches for cholecystokinin B receptor imaging. Biopolymers 2002; 66: 370–80

    Article  PubMed  CAS  Google Scholar 

  58. Wank SA. G protein-coupled receptors in gastrointestinal physiology: I. CCK receptors: an exemplary family. Am J Physiol 1998; 274: G607–13

    PubMed  CAS  Google Scholar 

  59. Colosimo A, Goncz KK, Holmes AR, et al. Transfer and expression of foreign genes in mammalian cells. Biotechniques 2000; 29: 314–8, 320-2, 324 passim

    PubMed  CAS  Google Scholar 

  60. Berkner KL. Development of adenovirus vectors for the expression of heterologous genes. Biotechniques 1988; 6: 616–29

    Article  PubMed  CAS  Google Scholar 

  61. Kovesdi I, Brough DE, Bruder JT, et al. Adenoviral vectors for gene transfer. Curr Opin Biotechnol 1997; 8: 583–9

    Article  PubMed  CAS  Google Scholar 

  62. Munson PJ. LIGAND: a computerized analysis of ligand binding data. Methods Enzymol 1983; 92: 543–76

    Article  PubMed  CAS  Google Scholar 

  63. Rovati GE, Rodbard D, Munson PJ. DESIGN: computerized optimization of experimental design for estimating Kd and Bmax in ligand binding experiments: II. simultaneous analysis of homologous and heterologous competition curves and analysis blocking and of “multiligand” dose-response surfaces. Anal Biochem 1990; 184: 172–83

    Article  PubMed  CAS  Google Scholar 

  64. Sundberg AL, Blomquist E, Carlsson J, et al. Cellular retention of radioactivity and increased radiation dose. Model experiments with EGF-dextran. Nucl Med Biol 2003; 30: 303–15

    Article  PubMed  CAS  Google Scholar 

  65. de Jong M, Rolleman EJ, Bernard BF, et al. Inhibition of renal uptake of indium-111-DTPA-octreotide in vivo. J Nucl Med 1996; 37: 1388–92

    PubMed  Google Scholar 

  66. Aloj L, Caraco C, Panico MR, et al. In vitro and in vivo evaluation of [111In]DTPAGLU-G-CCK8 for Cholecystokinin-B receptor imaging. J Nucl Med 2004; 45(3): 485–94

    PubMed  CAS  Google Scholar 

  67. Viney JL. Transgenic and gene knockout mice in cancer research. Cancer Metastasis Rev 1995; 14: 77–90

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Progetto Strategico “Oncologia” (Bridge) funded by the National Council of Researches of Italy and the Ministry of Education, Universities and Technological Researches of Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ettore Benedetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benedetti, E., Morelli, G., Accardo, A. et al. Criteria for the Design and Biological Characterization of Radiolabeled Peptide-Based Pharmaceuticals. BioDrugs 18, 279–295 (2004). https://doi.org/10.2165/00063030-200418050-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-200418050-00001

Keywords

Navigation