Skip to main content

Advertisement

Log in

Prostate Cancer

Advances in Immunotherapy

  • Therapy Review
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

The absence of curative therapies for advanced or recurrent forms of prostate cancer has prompted a vigorous search for novel treatment strategies. Immunotherapy encompasses one particularly promising systemic approach to the treatment of prostate cancer. Immune-based strategies for treating prostate cancer have recently been facilitated by the identification of a number of prostate tissue/tumour antigens that can be targeted, either by antibody or T cells, to promote prostate tumour cell injury or death. These same prostate antigens can also be used for the construction of vaccines to induce prostate-specific T cell-mediated immunity. Greater insight into specific mechanisms that govern antigen-specific T cell activation has brought with it a number of innovative methods to induce and enhance T cell-mediated responses against prostate tumours. For instance, auto-logous dendritic cells loaded with prostate antigens have proved useful to induce prostate-specific T cell activation. Similarly, in vivo manipulations of T cell costimulatory pathway receptors can greatly facilitate tumour-specific T cell activation and potentiate T cell-mediated responses against a number of malignancies, including prostate cancer. For example, blocking T cell cytotoxic lymphocyte-associated antigen 4 (CTLA-4) receptor binding to its ligand prevents the down-regulation of T cell responses and can even potentiate T cell antitumoural immunity in mouse models of prostate cancer. Androgen ablation (AA) may induce prostate tumour/tissue-specific T cell mediated inflammation and, as such, a phase II trial is currently in progress to ascertain whether CTLA-4 blockade can enhance AA-induced treatment responses in patients with advanced prostate cancer. Nevertheless, further basic and clinical investigation is still required to establish immunotherapy as a true prostate cancer treatment option.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I

Similar content being viewed by others

References

  1. Greenlee RT, Murray T, Bolden S, et al. Cancer statistics, 2000. CA Cancer J Clin 2000 Jan–Feb; 50(1): 7–33

    Article  PubMed  CAS  Google Scholar 

  2. Horoszewicz JS, Kawinski E, Murphy GP. Monoclonal antibodies to a new antigenic marker in epithelial prostatic cells and serum of prostatic cancer patients. Anticancer Res 1987 Sep-Oct; 7(5B): 927–35

    PubMed  CAS  Google Scholar 

  3. Israeli RS, Powell CT, Fair WR, et al. Molecular cloning of a complementary DNA encoding a prostate-specific membrane antigen. Cancer Res 1993 Jan; 53(2): 227–30

    PubMed  CAS  Google Scholar 

  4. Brinkmann U, Vasmatzis G, Lee B, et al. PAGE-1, an X chromosome-linked GAGE-like gene that is expressed in normal and neoplastic prostate, testis, and uterus. Proc Natl Acad Sci U S A 1998 Sep; 95(18): 10757–62

    Article  PubMed  CAS  Google Scholar 

  5. Van den Eynde B, Peeters O, De Backer O, et al. A new family of genes coding for an antigen recognized by autologous cytolytic T lymphocytes on a human melanoma. J Exp Med 1995 Sep; 182(3): 689–98

    Article  PubMed  Google Scholar 

  6. Ablin RJ, Soanes WA, Bronson P, et al. Precipitating antigens of the normal human prostate. J Reprod Fertil 1970 Aug; 22(3): 573–4

    Article  PubMed  CAS  Google Scholar 

  7. Wang MC, Valenzuela LA, Murphy GP, et al. Purification of a human prostate specific antigen. Invest Urol 1979 Sep; 17(2): 159–63

    PubMed  CAS  Google Scholar 

  8. Klein KA, Reiter RE, Redula J, et al. Progression of metastatic human prostate cancer to androgen independence in immunodeficient SCID mice. Nat Med 1997 Apr; 3(4): 402–8

    Article  PubMed  CAS  Google Scholar 

  9. Reiter RE, Gu Z, Watabe T, et al. Prostate stem cell antigen: a cell surface marker overexpressed in prostate cancer. Proc Natl Acad Sci U S A 1998 Feb; 95(4): 1735–40

    Article  PubMed  CAS  Google Scholar 

  10. Nelson PS, Gan L, Ferguson G, et al. Molecular cloning and characterization of prostase, an androgen-regulated serine protease with prostate-restricted expression. Proc Natl Acad Sci U S A 1999 Mar; 96(6): 3114–9

    Article  PubMed  CAS  Google Scholar 

  11. Yousef GM, Obiezu CV, Luo LY, et al. Prostase/KLK-L1 is a new member of the human kallikrein gene family, is expressed in prostate and breast tissues, and is hormonally regulated. Cancer Res 1999 Sep; 59(17): 4252–6

    PubMed  CAS  Google Scholar 

  12. Kuhn EJ, Kurnot RA, Sesterhenn IA, et al. Expression of the c-erbB-2 (HER-2/neu) oncoprotein in human prostatic carcinoma. J Urol 1993 Nov; 150 (5 Pt 1): 1427–33

    PubMed  CAS  Google Scholar 

  13. Mark HF, Feldman D, Das S, et al. Fluorescence in situ hybridization study of HER-2/neu oncogene amplification in prostate cancer. Exp Mol Pathol 1999 Jun; 66(2): 170–8

    Article  PubMed  CAS  Google Scholar 

  14. Mellon K, Thompson S, Charlton RG, et al. p53, c-erbB-2 and the epidermal growth factor receptor in the benign and malignant prostate. J Urol 1992 Feb; 147(2): 496–9

    PubMed  CAS  Google Scholar 

  15. Ware JL, Maygarden SJ, Koontz Jr WW, et al. Immunohistochemical detection of c-erbB-2 protein in human benign and neoplastic prostate. Hum Pathol 1991 Mar; 22(3): 254–8

    Article  PubMed  CAS  Google Scholar 

  16. James ND, Atherton PJ, Jones J, et al. A phase II study of the bispecific antibody MDX-H210 (anti-HER2 x CD64) with GM-CSF in HER2+ advanced prostate cancer. Br J Cancer 2001 Jul; 85(2): 152–6

    Article  PubMed  CAS  Google Scholar 

  17. Chen ME, Lin SH, Chung LW, et al. Isolation and characterization of PAGE-1 and GAGE-7: new genes expressed in the LNCaP prostate cancer progression model that share homology with melanoma-associated antigens. J Biol Chem 1998 Jul; 273(28): 17618–25

    Article  PubMed  CAS  Google Scholar 

  18. Lin B, Ferguson C, White JT, et al. Prostate-localized and androgen-regulated expression of the membrane-bound serine protease TMPRSS2. Cancer Res 1999 Sep; 59(17): 4180–4

    PubMed  CAS  Google Scholar 

  19. Afar DE, Vivanco I, Hubert RS, et al. Catalytic cleavage of the androgen-regulated TMPRSS2 protease results in its secretion by prostate and prostate cancer epithelia. Cancer Res 2001 Feb; 61(4): 1686–92

    PubMed  CAS  Google Scholar 

  20. Tanimoto H, Yan Y, Clarke J, et al. Hepsin, a cell surface serine protease identified in hepatoma cells, is overexpressed in ovarian cancer. Cancer Res 1997 Jul; 57(14): 2884–7

    PubMed  CAS  Google Scholar 

  21. Hubert RS, Vivanco I, Chen E, et al. STEAP: a prostate-specific cell-surface antigen highly expressed in human prostate tumors. Proc Natl Acad Sci U S A 1999 Dec; 96(25): 14523–8

    Article  PubMed  CAS  Google Scholar 

  22. Xu LL, Stackhouse BG, Florence K, et al. PSGR, a novel prostate-specific gene with homology to a G protein-coupled receptor, is overexpressed in prostate cancer. Cancer Res 2000 Dec; 60(23): 6568–72

    PubMed  CAS  Google Scholar 

  23. Fong L, Ruegg CL, Brockstedt D, et al. Induction of tissue-specific autoimmune prostatitis with prostatic acid phosphatase immunization: implications for immunotherapy of prostate cancer. J Immunol 1997 Oct; 159(7): 3113–7

    PubMed  CAS  Google Scholar 

  24. Sinha AA, Quast BJ, Wilson MJ, et al. Immunocytochemical localization of an immunoconjugate (antibody IgG against prostatic acid phosphatase conjugated to 5-fluoro-2′-deoxyuridine) in human prostate tumors. Anticancer Res 1998 May–Jun; 18: 1385–92

    PubMed  CAS  Google Scholar 

  25. Solin T, Kontturi M, Pohlmann R, et al. Gene expression and prostate specificity of human prostatic acid phosphatase (PAP): evaluation by RNA blot analyses. Biochem Biophys Acta 1990 Jan; 1048(1): 72–7

    Article  PubMed  CAS  Google Scholar 

  26. Vihko P, Virkkunen P, Henttu P, et al. Molecular cloning and sequence analysis of cDNA encoding human prostatic acid phosphatase. FEBS Lett 1988; 236: 275–81

    Article  PubMed  CAS  Google Scholar 

  27. Jacobs EL, Haskell CM. Clinical use of tumor markers in oncology. Curr Probl Cancer 1991; 15: 299–360

    Article  PubMed  CAS  Google Scholar 

  28. Slovin SF, Ragupathi G, Adluri S, et al. Carbohydrate vaccines in cancer: immunogenicity of a fully synthetic globo H hexasaccharide conjugate in man. Proc Natl Acad Sci U S A 1999 May; 96(10): 5710–5

    Article  PubMed  CAS  Google Scholar 

  29. Finn OJ, Jerome KR, Henderson RA, et al. MUC-1 epithelial tumor mucin-based immunity and cancer vaccines. Immunol Rev 1995 Jun; 145: 61–89

    Article  PubMed  CAS  Google Scholar 

  30. Salgaller ML. Prostate cancer immunotherapy at the dawn of the new millennium. Expert Opin Investig Drugs 2000 Jun; 9(6): 1217–29

    Article  PubMed  CAS  Google Scholar 

  31. Slovin SF, Livingston P, Zhang S, et al. Targeted therapy in prostate cancer (PC): vaccination with a glycoprotein MUC-l-KLH-QS-21 peptide conjugate. Proc Am Soc Clin Oncol 1997; 16: 311a

    Google Scholar 

  32. Slovin SF, Kelly WK, Scher HI. Immunological approaches for the treatment of prostate cancer. Semin Urol Oncol 1998 Feb; 16(1): 53–9

    PubMed  CAS  Google Scholar 

  33. Slovin SF. Vaccines as treatment strategies forrelapsed prostate cancer: approaches for induction of immunity. Hematol Oncol Clin North Am 2001 Jun; 15(3): 477–96

    Article  PubMed  CAS  Google Scholar 

  34. Barton J, Blackledge G, Wakeling A. Growth factors and their receptors: new targets for prostate cancer therapy. Urology 2001 Aug; 58(2 Suppl. 1): 114–22

    Article  PubMed  CAS  Google Scholar 

  35. Ho SB, Niehans GA, Lyftogt C, et al. Heterogeneity of mucin gene expression in normal and neoplastic tissues. Cancer Res 1993 Feb; 53(3): 641–51

    PubMed  CAS  Google Scholar 

  36. Saffran DC, Reiter RE, Jakobovits A, et al. Target antigens for prostate cancer immunotherapy. Cancer Metastasis Rev 1999; 18(4): 437–49

    Article  PubMed  CAS  Google Scholar 

  37. Craft N, Shostak Y, Carey M, et al. A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nat Med 1999 Mar; 5(3): 280–5

    Article  PubMed  CAS  Google Scholar 

  38. Yeh S, Lin HK, Kang HY, et al. From HER2/Neu signal cascade to androgen receptor and its coactivators: a novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells. Proc Natl Acad Sci U S A 1999 May; 96(10): 5458–63

    Article  PubMed  CAS  Google Scholar 

  39. Agus DB, Scher HI, Higgins B, et al. Response of prostate cancer to anti-Her-2/neu antibody in androgen-dependent and -independent human xenograft models. Cancer Res 1999 Oct; 59(19): 4761–4

    PubMed  CAS  Google Scholar 

  40. Small EJ, Reese DM, Um B, et al. Therapy of advanced prostate cancer with granulocyte-macrophage colony-stimulating factor. Clin Cancer Res 1999 Jul; 5(7): 1738–44

    PubMed  CAS  Google Scholar 

  41. Davol PA, Frackelton Jr AR. Targeting human prostatic carcinoma through basic fibroblast growth factor receptors in an animal model: characterizing and circumventing mechanisms of tumor resistance. Prostate 1999 Aug; 40(3): 178–91

    Article  PubMed  CAS  Google Scholar 

  42. Belldegrun A, Bander NH, Lerner SP, et al. Society of Urologie Oncology Biotechnology Forum: new approaches and targets for advanced prostate cancer. J Urol 2001 Oct; 166(4): 1316–21

    Article  PubMed  CAS  Google Scholar 

  43. Polascik TJ, Manyak MJ, Haseman MK, et al. Comparison of clinical staging algorithms and 111-indium-capromab pendetide immunoscintigraphy in the prediction of lymph node involvement in high risk prostate carcinoma patients. Cancer 1999 Apr; 85(7): 1586–92

    Article  PubMed  CAS  Google Scholar 

  44. Manyak MJ, Hinkle GH, Olsen JO, et al. Immunoscintigraphy with indium-111-capromab pendetide: evaluation before definitive therapy in patients with prostate cancer. Urology 1999 Dec; 54(6): 1058–63

    Article  PubMed  CAS  Google Scholar 

  45. Kahn D, Austin JC, Maguire RT, et al. A phase II study [90Y] yttrium-capromab pendetide in the treatment of men with prostate cancer recurrence following radical prostatectomy. Cancer Biother Radiopharm 1999 Apr; 14(2): 99–111

    Article  PubMed  CAS  Google Scholar 

  46. Meredith RF, Bueschen AJ, Khazaeli MB, et al. Treatment of metastatic prostate carcinoma with radiolabeled antibody CC49. J Nucl Med 1994 Jun; 35(6): 1017–22

    PubMed  CAS  Google Scholar 

  47. Deb N, Goris M, Trisler K, et al. Treatment of hormone-refractory prostate cancer with 90Y-CYT-356 monoclonal antibody. Clin Cancer Res 1996 Aug; 2(8): 1289–97

    PubMed  CAS  Google Scholar 

  48. Cesano A, Visonneau S, Santoli D. TALL-104 cell therapy of human solid tumors implanted in immunodeficient (SCID) mice. Anticancer Res 1998 Jul–Aug; 18(4A): 2289–95

    PubMed  CAS  Google Scholar 

  49. Granziero L, Krajewski S, Farness P, et al. Adoptive immunotherapy prevents prostate cancer in a transgenic animal model. Eur J Immunol 1999 Apr; 29(4): 1127–38

    Article  PubMed  CAS  Google Scholar 

  50. Greenberg NM, DeMayo F, Finegold MJ, et al. Prostate cancer in a transgenic mouse. Proc Natl Acad Sci U S A 1995 Apr; 92(8): 3439–43

    Article  PubMed  CAS  Google Scholar 

  51. Hurwitz AA, Foster BA, Allison JP, et al. The TRAMP mouse as a model for prostate cancer. Curr Prot Immunol 2001; Suppl. 45: 20.5.1-20.5.23

  52. Foster BA, Gingrich JR, Kwon ED, et al. Characterization of prostatic epithelial cell lines derived from transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Cancer Res 1997 Apr; 57(16): 3325–3330

    PubMed  CAS  Google Scholar 

  53. Harris DT, Matyas GR, Gomella LG, et al. Immunologie approaches to the treatment of prostate cancer. Semin Oncol 1999 Aug; 26(4): 439–47

    PubMed  CAS  Google Scholar 

  54. Henriksson R, Widmark A, Bergh A, et al. Interleukin-2-induced growth inhibition of prostatic adenocarcinoma (Dunning R3327) in rats. Urol Res 1992; 20(3): 189–91

    Article  PubMed  CAS  Google Scholar 

  55. Kocheril SV, Grignon DJ, Wang CY, et al. Responsiveness of human prostate carcinoma bone tumors to interleukin-2 therapy in a mouse xenograft tumor model. Cancer Detect Prev 1999; 23(5): 408–16

    Article  PubMed  CAS  Google Scholar 

  56. Triest JA, Grignon DJ, Cher ML, et al. Systemic interleukin 2 therapy for human prostate tumors in a nude mouse model. Clin Cancer Res 1998 Aug; 4(8): 2009–14

    PubMed  CAS  Google Scholar 

  57. Maffezzini M, Simonato A, Fortis C. Salvage immunotherapy with subcutaneous recombinant interleukin 2 (rIL-2) and alpha-interferon (A-IFN) for stage D3 prostate carcinoma failing second-line hormonal treatment. Prostate 1996; 28: 282–6

    Article  PubMed  CAS  Google Scholar 

  58. Angiolillo AL, Sgadari C, Tosato G. A role for the interferon-inducible protein 10 in inhibition of angiogenesis by interleukin-12. Ann N Y Acad Sci 1996 Oct; 795:158–67

    Article  PubMed  CAS  Google Scholar 

  59. Coughlin CM, Salhany KE, Gee MS, et al. Tumor cell responses to IFNgamma affect tumorigenicity and response to IL-12 therapy and antiangiogenesis. Immunity 1998 Jul; 9(1): 25–34

    Article  PubMed  CAS  Google Scholar 

  60. Carson WE, Fehniger TA, Haldar S, et al. A potential role for interleukin-15 in the regulation of human natural killer cell survival. J Clin Invest 1997 Mar; 99(5): 937–43

    Article  PubMed  CAS  Google Scholar 

  61. Mrozek E, Anderson P, Caligiuri MA. Role of interleukin-15 in the development of human CD56+ natural killer cells from CD34+ hematopoietic progenitor cells. Blood 1996 Apr; 87(7): 2632–40

    PubMed  CAS  Google Scholar 

  62. Ogasawara K, Hida S, Azimi N, et al. Requirement for IRF-1 in the microenvironment supporting development of natural killer cells. Nature 1998 Feb; 391(6668): 700–3

    Article  PubMed  CAS  Google Scholar 

  63. Ohteki T, Yoshida H, Matsuyama T, et al. The transcription factor interferon regulatory factor 1 (IRF-1) is important during the maturation of natural killer 1.1 + T cell receptor-alpha/beta+ (NK1+ T) cells, natural killer cells, and intestinal intraepithelial T cells. J Exp Med 1998 Mar; 187(6): 967–72

    Article  PubMed  CAS  Google Scholar 

  64. Nakajima Y, DelliPizzi A, Mallouh C, et al. Effect of tumor necrosis factor-alpha and interferon-gamma on the growth of human prostate cancer cells lines. Urol Res 1995; 23(4): 205–10

    Article  PubMed  CAS  Google Scholar 

  65. Sherwood ER, Pitt Fort TR, Lee C, et al. Therapeutic efficacy of recombinant tumor necrosis factor alpha in an experimental model of human prostatic carcinoma. J Biol Response Mod 1990 Feb; 9(1): 44–52

    PubMed  CAS  Google Scholar 

  66. Dranoff G, Jaffee E, Lazenby A, et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci U S A 1993 Apr; 90(8): 3539–43

    Article  PubMed  CAS  Google Scholar 

  67. Sanda MG, Ayyagari SR, Jaffee EM, et al. Demonstration of a rational strategy for human prostate cancer gene therapy. J Urol 1994 Mar; 151(3): 622–8

    PubMed  CAS  Google Scholar 

  68. Hurwitz AA, Foster BA, Kwon ED, et al. Combination immunotherapy of primary prostate cancer in a transgenic mouse model using CTLA-4 blockade. Cancer Res 2000 May; 60(9): 2444–8

    PubMed  CAS  Google Scholar 

  69. Hurwitz AA, Yu TF, Leach DR, et al. CTLA-4 blockade synergizes with tumorderived granulocyte-macrophage colony-stimulating factor for treatment of an experimental mammary carcinoma. Proc Natl Acad Sci U S A 1998 Aug; 95(17): 10067–10071

    Article  PubMed  CAS  Google Scholar 

  70. Van Elsas A, Hurwitz AA, Allison JP. Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (anti-CTLA-4) and granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med 1999 May; 190(3): 355–66

    Article  PubMed  Google Scholar 

  71. Nelson WG, Simons JW, Mikhak B, et al. Cancer cells engineered to secrete granulocyte-macrophage colony-stimulating factor using ex vivo gene transfer as vaccines for the treatment of genitourinary malignancies. Cancer Chemother Pharmacol 2000; 46: S67–72

    Article  PubMed  CAS  Google Scholar 

  72. Simons JW, Mikhak B, Chang JF, et al. Induction of immunity to prostate cancer antigens: results of a clinical trial of vaccination with irradiated autologous prostate tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor using ex vivo gene transfer. Cancer Res 1999 Oct; 59(20): 5160–8

    PubMed  CAS  Google Scholar 

  73. Burch PA, Breen JK, Buckner JC, et al. Priming tissue-specific cellular immunity in a phase I trial of autologous dendritic cells for prostate cancer. Clin Cancer Res 2000 Jun; 6(6): 2175–82

    PubMed  CAS  Google Scholar 

  74. Tjoa BA, Simmons SJ, Elgamal A, et al. Follow-up evaluation of a phase II prostate cancer vaccine trial. Prostate 1999 Jul; 40(2): 125–9

    Article  PubMed  CAS  Google Scholar 

  75. Fong L, Brockstedt D, Benike C, et al. Dendritic cell-based xenoantigen vaccination for prostate cancer immunotherapy. J Immunol 2001 Dec; 167(12): 7150–6

    PubMed  CAS  Google Scholar 

  76. Heiser A, Maurice MA, Yancey DR, et al. Induction of polyclonal prostate cancer-specific CTL using dendritic cells transfected with amplified tumor RNA. J Immunol 2001 Mar; 166(5): 2953–60

    PubMed  CAS  Google Scholar 

  77. Lodge PA, Jones LA, Bader RA, et al. Dendritic cell-based immunotherapy of prostate cancer: immune monitoring of a phase II clinical trial. Cancer Res 2000 Feb; 60(4): 829–33

    PubMed  CAS  Google Scholar 

  78. Chambers CA, Allison JP. CTLA-4 the costimulatory molecule that doesn’t: regulation of T-cell responses by inhibition. Cold Spring Harb Symp Quant Biol 1999; 64: 303–12

    Article  PubMed  CAS  Google Scholar 

  79. Chambers CA, Kuhns MS, Egen JC, et al. CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu Rev Immunol 2001; 19: 565–94

    Article  PubMed  CAS  Google Scholar 

  80. Leach D, Krummel M, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996 Mar; 271(5256): 1734–6

    Article  PubMed  CAS  Google Scholar 

  81. Allison JP, Hurwitz AA, Elsas AV, et al. CTLA-4 blockade in tumor immunotherapy. In: Rosenberg SA, editor. Principles and practice of the biologic therapy of cancer. 3rd ed. Philadelphia: Lippincott Williams & Wilkins, 2000: 890–895

    Google Scholar 

  82. Kwon ED, Hurwitz AA, Foster BA, et al. Manipulation of T cell costimulatory and inhibitory signals for immunotherapy of prostate cancer. Proc Natl Acad Sci U S A 1997 Jul; 94(15): 8099–103

    Article  PubMed  CAS  Google Scholar 

  83. Kwon ED, Foster BA, Hurwitz AA, et al. Elimination of residual metastatic prostate cancer after surgery and adjunctive cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) blockade immunotherapy. Proc Natl Acad Sci U S A 1999 Dec; 96(26): 15074–9

    Article  PubMed  CAS  Google Scholar 

  84. Davis TA, Tchekmedyian S, Korman A, et al. MDX-010 (human anti-CTLA-4): a phase I trial in hormone refractory prostate carcinoma [abstract]. ASCO 38th Annual Meeting. Proc Am Soc Clin Oncol 2002; 21: 19a

    Google Scholar 

  85. Isaacs JT, Furuya Y, Berges R. The role of androgen in the regulation of programmed cell death/apoptosis in normal and malignant prostatic tissue. Semin Cancer Biol 1994 Oct; 5(5): 391–400

    PubMed  CAS  Google Scholar 

  86. Montironi R, Pomante R, Diamanti L, et al. Apoptosis in prostatic adenocarcinoma following complete androgen ablation. Urol Int 1998; 60 Suppl. 1: 25–30

    Article  Google Scholar 

  87. Mercader M, Bodner BK, Moser MT, et al. T cell infiltration of the prostate induced by androgen withdrawal in patients with prostate cancer. Proc Natl Acad Sci U S A 2001 Dec; 98(25): 14565–70

    Article  PubMed  CAS  Google Scholar 

  88. Melero I, Shuford WW, Newby SA, et al. Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors. Nat Med 1997 Jun; 3(6): 682–5

    Article  PubMed  CAS  Google Scholar 

  89. Weinberg AD. OX40: targeted immunotherapy: implications for tempering autoimmunity and enhancing vaccines. Trends Immunol 2002 Feb; 23(2): 102–9

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This review has been supported, in part, by funding provided by National Institutes of Health/National Cancer Institiute Grant CA 82185 (E.D.K.), Department of Defense Grants PC991568 (E.D.K.) and CaPCURE (E.D.K., J.P.A., A.A.H.). E.D.K. is a past American Foundation for Urologic Disease Scholar and American Cancer Society Clinical Oncology Fellow.

The authors have no conflicts of interest directly relevant to the contents of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene D. Kwon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hurwitz, A.A., Yanover, P., Markowitz, M. et al. Prostate Cancer. BioDrugs 17, 131–138 (2003). https://doi.org/10.2165/00063030-200317020-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-200317020-00005

Keywords

Navigation