Skip to main content

Advertisement

Log in

CpG DNA in the Prevention and Treatment of Infections

  • Drug Mechanisms and Targets
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Microbial infection is sensed by Toll-like receptors (TLRs) on innate immune cells. Among the ten so far defined TLRs, TLR9 and its ligand are peculiar. TLR9 recognises bacterial DNA characterised by the abundance of unmethylated CpG dinucleotides, which distinguish bacterial DNA (CpG DNA) from mammalian DNA. Moreover, TLR9 shows a restricted cellular and subcellular pattern of expression. In contrast to other TLR agonists, CpG DNA is superior in activation of dendritic dells and induction of costimulatory cytokines such as interleukin (IL)-12 and IL-18. This qualifies CpG DNA as a Th1-promoting adjuvant. During infection, recognition of CpG DNA of intracellular pathogens skews and fine-tunes the ongoing immune response and induces long-lasting Th1 milieus. Thus, CpG DNA might play an important role in driving the immune system to a Th1 profile, preventing undesired Th2 milieus that might favour induction of allergic responses. Since CpG DNA can be synthesised with high purity and sequence fidelity, synthetic CpG DNA will become an important agent for Th1 instruction and be an effective adjuvant during vaccination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Fig. 2
Table II

Similar content being viewed by others

References

  1. Medzhitov R, Janeway CA. Innate immunity: the virtues of a nonclonal system of recognition. Cell 1997; 91: 295–8

    Article  PubMed  CAS  Google Scholar 

  2. Aderem A, Ulevitch RJ. Toll-like receptors in the induction of the innate immune response. Nature 2000; 406(6797): 782–7

    Article  PubMed  CAS  Google Scholar 

  3. Lemaitre B, Nicolas E, Michaut L, et al. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996; 86(6): 973–83

    Article  PubMed  CAS  Google Scholar 

  4. Hoffmann JA, Reichhart JM. Drosophila innate immunity: an evolutionary perspective. Nat Immunol 2002; 3(2): 121–6

    Article  PubMed  CAS  Google Scholar 

  5. Rock FL, Hardiman G, Timans JC, et al. A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci U S A 1998; 95(2): 588–93

    Article  PubMed  CAS  Google Scholar 

  6. Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2001; 2(8): 675–80

    Article  PubMed  CAS  Google Scholar 

  7. Underhill DM, Ozinsky A, Smith KD, et al. Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages. Proc Natl Acad Sci U S A 1999; 96(25): 14459–63

    Article  PubMed  CAS  Google Scholar 

  8. Kadowaki N, Ho S, Antonenko S, et al. Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med 2001; 194(6): 863–70

    Article  PubMed  CAS  Google Scholar 

  9. Muzio M, Bosisio D, Polentarutti N, et al. Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J Immunol 2000; 164(11): 5998–6004

    PubMed  CAS  Google Scholar 

  10. Wyllie DH, Kiss-Toth E, Visintin A, et al. Evidence for an accessory protein function for Toll-like receptor 1 in anti-bacterial responses. J Immunol 2000; 165(12): 7125–32

    PubMed  CAS  Google Scholar 

  11. Aliprantis AO, Yang RB, Mark MR, et al. Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science 1999; 285(5428): 736–9

    Article  PubMed  CAS  Google Scholar 

  12. Brightbill HD, Libraty DH, Krutzik SR, et al. Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 1999; 285(5428): 732–6

    Article  PubMed  CAS  Google Scholar 

  13. Hirschfeld M, Kirschning CJ, Schwandner R, et al. Cutting edge: inflammatory signaling by Borrelia burgdorferi lipoproteins is mediated by toll-like receptor 2. J Immunol 1999; 163(5): 2382–6

    PubMed  CAS  Google Scholar 

  14. Takeuchi O, Kaufmann A, Grote K, et al. Cutting edge: preferentially the R-stereoisomer of the mycoplasmal lipopeptide macrophage-activating lipopeptide-2 activates immune cells through a toll-like receptor 2- and MyD88-dependent signaling pathway. J Immunol 2000; 164(2): 554–7

    PubMed  CAS  Google Scholar 

  15. Lien E, Sellati TJ, Yoshimura A, et al. Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products. J Biol Chem 1999; 274(47): 33419–25

    Article  PubMed  CAS  Google Scholar 

  16. Bulut Y, Faure E, Thomas L, et al. Cooperation of Toll-like receptor 2 and 6 for cellular activation by soluble tuberculosis factor and Borrelia burgdorferi outer surface protein A lipoprotein: role of Toll-interacting protein and IL-1 receptor signaling molecules in Toll-like receptor 2 signaling. J Immunol 2001; 167(2): 987–94

    PubMed  CAS  Google Scholar 

  17. Shuto T, Xu H, Wang B, et al. Activation of NF-kappa B by nontypeable Haemophilus influenzae is mediated by toll-like receptor 2-TAK1-dependent NIK-IKK alpha /beta-I kappa B alpha and MKK3/6-p38 MAP kinase signaling pathways in epithelial cells. Proc Natl Acad Sci U S A 2001; 98(15): 8774–9

    Article  PubMed  CAS  Google Scholar 

  18. Aliprantis AO, Weiss DS, Radolf JD, et al. Release of toll-like receptor-2-activating bacterial lipoproteins in Shigella flexneri culture supernatants. Infect Immun 2001; 69(10): 6248–55

    Article  PubMed  CAS  Google Scholar 

  19. Takeuchi O, Hoshino K, Kawai T, et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 1999; 11(4): 443–51

    Article  PubMed  CAS  Google Scholar 

  20. Yoshimura A, Lien E, Ingalls RR, et al. Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via toll-like receptor 2. J Immunol 1999; 163(1): 1–5

    PubMed  CAS  Google Scholar 

  21. Schwandner R, Dziarski R, Wesche H, et al. Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J Biol Chem 1999; 274(25): 17406–9

    Article  PubMed  CAS  Google Scholar 

  22. Ozinsky A, Underhill DM, Fontenot JD, et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc Natl Acad Sci U S A 2000; 97(25): 13766–71

    Article  PubMed  CAS  Google Scholar 

  23. Underhill DM, Ozinsky A, Hajjar AM, et al. The toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 1999; 401(6755): 811–5

    Article  PubMed  CAS  Google Scholar 

  24. Means TK, Wang S, Lien E, et al. Human toll-like receptors mediate cellular activation by mycobacterium tuberculosis. J Immunol 1999; 163(7): 3920–7

    PubMed  CAS  Google Scholar 

  25. Flo TH, Halaas O, Lien E, et al. Human Toll-like receptor 2 mediates monocyte activation by Listeria monocytogenes, but not by group B streptococci or lipo-polysaccharide. J Immunol 2000; 164(4): 2064–9

    PubMed  CAS  Google Scholar 

  26. Wang Q, Dziarski R, Kirschning CJ, et al. Micrococci and peptidoglycan activate TLR2→MyD88→IRAK→TRAF→NIK→IKK->NF-kappaB signal transduction pathway that induces transcription of interleukin-8. Infect Immun 2001; 69(4): 2270–6

    Article  PubMed  CAS  Google Scholar 

  27. Prebeck S, Kirschning C, Durr S, et al. Predominant role of toll-like receptor 2 versus 4 in chlamydia pneumoniae-induced activation of dendritic cells. J Immunol 2001; 167(6): 3316–23

    PubMed  CAS  Google Scholar 

  28. Jones BW, Means TK, Heldwein KA, et al. Different toll-like receptor agonists induce distinct macrophage responses. J Leukoc Biol 2001; 69(6): 1036–44

    PubMed  CAS  Google Scholar 

  29. Opitz B, Schroder NW, Spreitzer I, et al. Toll-like receptor-2 mediates treponema glycolipid and lipoteichoic acid-induced NF-kappaB translocation. J Biol Chem 2001; 276(25): 22041–7

    Article  PubMed  CAS  Google Scholar 

  30. Campos MA, Almeida IC, Takeuchi O, et al. Activation of toll-like receptor-2 by glycosylphosphatidylinositol anchors from a protozoan parasite. J Immunol 2001; 167(1): 416–23

    PubMed  CAS  Google Scholar 

  31. Lehner MD, Morath S, Michelsen KS, et al. Induction of cross-tolerance by lipo-polysaccharide and highly purified lipoteichoic acid via different toll-like receptors independent of paracrine mediators. J Immunol 2001; 166(8): 5161–7

    PubMed  CAS  Google Scholar 

  32. Hirschfeld M, Weis JJ, Toshchakov V, et al. Signaling by Toll-like receptor 2 and 4 agonists results in differential gene expression in murine macrophages. Infect Immun 2001; 69(3): 1477–82

    Article  PubMed  CAS  Google Scholar 

  33. Werts C, Tapping RI, Mathison JC, et al. Leptospiral lipopolysaccharide activates cells through a TLR2-dependent mechanism. Nat Immunol 2001; 2(4): 346–52

    Article  PubMed  CAS  Google Scholar 

  34. Vabulas RM, Ahmad-Nejad P, da Costa C, et al. Endocytosed HSP60s use Toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem 2001; 276(33): 31332–9

    Article  PubMed  CAS  Google Scholar 

  35. Asea A, Rehli M, Kabingu E, et al. Novel signal transduction pathway utilized by extracellular HSP70: Role of TLR2 and TLR4. J Biol Chem 2002; 277(17): 15028–34

    Article  PubMed  CAS  Google Scholar 

  36. Alexopoulou L, Holt AC, Medzhitov R, et al. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 2001; 413(6857): 732–8

    Article  PubMed  CAS  Google Scholar 

  37. Shimazu R, Akashi S, Ogata H, et al. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 1999; 189(11): 1777–82

    Article  PubMed  CAS  Google Scholar 

  38. Poltorak A, He X, Smirnova I, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 1998; 282(5396): 2085–8

    Article  PubMed  CAS  Google Scholar 

  39. Hoshino K, Takeuchi O, Kawai T, et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 1999; 162(7): 3749–52

    PubMed  CAS  Google Scholar 

  40. Kawasaki K, Akashi S, Shimazu R, et al. Mouse Toll-like receptor 4.MD-2 complex mediates lipopolysaccharide-mimetic signal transduction by Taxol. J Biol Chem 2000; 275(4): 2251–4

    Article  PubMed  CAS  Google Scholar 

  41. Kurt-Jones EA, Popova L, Kwinn L, et al. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol 2000; 1(5): 398–401

    Article  PubMed  CAS  Google Scholar 

  42. Okamura Y, Watari M, Jerud ES, et al. The extra domain A of fibronectin activates Toll-like receptor 4. J Biol Chem 2001; 276(13): 10229–33

    Article  PubMed  CAS  Google Scholar 

  43. Wang JE, Warris A, Ellingsen EA, et al. Involvement of CD14 and Toll-like receptors in activation of human monocytes by Aspergillus fumigatus hyphae. Infect Immun 2001; 69(4): 2402–6

    Article  PubMed  CAS  Google Scholar 

  44. Shoham S, Huang C, Chen JM, et al. Toll-like receptor 4 mediates intracellular signaling without TNF-alpha release in response to Cryptococcus neoformans polysaccharide capsule. J Immunol 2001; 166(7): 4620–6

    PubMed  CAS  Google Scholar 

  45. Ohashi K, Burkart V, Flohé S, et al. Heat shock protein 60 is a putative endogenous ligand of the Toll-like receptor-4 complex. J Immunol 2000; 164: 558–61

    PubMed  CAS  Google Scholar 

  46. Termeer C, Benedix F, Sleeman J, et al. Oligosaccharides of hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med 2002; 195(1): 99–111

    Article  PubMed  CAS  Google Scholar 

  47. Du C, Bright JJ, Sriram S. Inhibition of CD40 signaling pathway by tyrphostin A1 reduces secretion of IL-12 in macrophage, Th1 cell development and experimental allergic encephalomyelitis in SJL/J mice. J Neuroimmunol 2001; 114(1–2): 69–79

    Article  PubMed  CAS  Google Scholar 

  48. Hayashi F, Smith KD, Ozinsky A, et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 2001; 410(6832): 1099–103

    Article  PubMed  CAS  Google Scholar 

  49. Takeuchi O, Kawai T, Muhlradt PF, et al. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol 2001; 13(7): 933–40

    Article  PubMed  CAS  Google Scholar 

  50. Hajjar AM, O’Mahony DS, Ozinsky A, et al. Cutting edge: functional interactions between toll-like receptor (TLR) 2 and TLR1 or TLR6 in response to phenol-soluble modulin. J Immunol 2001; 166(1): 15–9

    PubMed  CAS  Google Scholar 

  51. Hemmi H, Kaisho T, Takeuchi O, et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 2002; 3(2): 196–200

    Article  PubMed  CAS  Google Scholar 

  52. Bauer S, Kirschning CJ, Hacker H, et al. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci U S A 2001; 98(16): 9237–42

    Article  PubMed  CAS  Google Scholar 

  53. Hemmi H, Takeuchi O, Kawai T, et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000; 408(6813): 740–5

    Article  PubMed  CAS  Google Scholar 

  54. Takeshita F, Leifer CA, Gursel I, et al. Cutting edge: role of toll-like receptor 9 in CpG DNA-induced activation of human cells. J Immunol 2001; 167(7): 3555–8

    PubMed  CAS  Google Scholar 

  55. Visintin A, Mazzoni A, Spitzer JH, et al. Regulation of Toll-like receptors in human monocytes and dendritic cells. J Immunol 2001; 166(1): 249–55

    PubMed  CAS  Google Scholar 

  56. Zarember KA, Godowski PJ. Tissue expression of human toll-like receptors and differential regulation of toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J Immunol 2002; 168(2): 554–61

    PubMed  CAS  Google Scholar 

  57. Krug A, Towarowski A, Britsch S, et al. Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12. Eur J Immunol 2001; 31(10): 3026–37

    Article  PubMed  CAS  Google Scholar 

  58. Matsuguchi T, Musikacharoen T, Ogawa T, et al. Gene expressions of Toll-like receptor 2, but not Toll-like receptor 4, is induced by LPS and inflammatory cytokines in mouse macrophages. J Immunol 2000; 165(10): 5767–72

    PubMed  CAS  Google Scholar 

  59. Wang T, Lafuse WP, Zwilling BS. Regulation of toll-like receptor 2 expression by macrophages following Mycobacterium avium infection. J Immunol 2000; 165(11): 6308–13

    PubMed  CAS  Google Scholar 

  60. Haziot A, Ferrero E, Kontgen F, et al. Resistance to endotoxin shock and reduced dissemination of gram-negative bacteria in CD14-deficient mice. Immunity 1996; 4(4): 407–14

    Article  PubMed  CAS  Google Scholar 

  61. Poltorak A, Ricciardi-Castagnoli P, Citterio S, et al. Physical contact between lipopolysaccharide and Toll-like receptor 4 revealed by genetic complementation. Proc Natl Acad Sci U S A 2000; 97(5): 2163–7

    Article  PubMed  CAS  Google Scholar 

  62. Means TK, Golenbock DT, Fenton MJ. Structure and function of Toll-like receptor proteins. Life Sci 2000; 68(3): 241–58

    Article  PubMed  CAS  Google Scholar 

  63. Xu Y, Tao X, Shen B, et al. Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature 2000; 408(6808): 111–5

    Article  PubMed  CAS  Google Scholar 

  64. Kawai T, Adachi O, Ogawa T, et al. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 1999; 11: 115–22

    Article  PubMed  CAS  Google Scholar 

  65. Horng T, Barton GM, Medzhitov R. TIRAP: an adapter molecule in the Toll signaling pathway. Nat Immunol 2001; 2(9): 835–41

    Article  PubMed  CAS  Google Scholar 

  66. Fitzgerald KA, Palsson-McDermott EM, Bowie AG, et al. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 2001; 413(6851): 78–83

    Article  PubMed  CAS  Google Scholar 

  67. Kaisho T, Takeuchi O, Kawai T, et al. Endotoxin-induced maturation of MyD88-deficient dendritic cells. J Immunol 2001; 166(9): 5688–94

    PubMed  CAS  Google Scholar 

  68. Kobayashi K, Inohara N, Hernandez LD, et al. RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems. Nature 2002; 416(6877): 194–9

    Article  PubMed  CAS  Google Scholar 

  69. Chin AI, Dempsey PW, Bruhn K, et al. Involvement of receptor-interacting protein 2 in innate and adaptive immune responses. Nature 2002; 416(6877): 190–4

    Article  PubMed  CAS  Google Scholar 

  70. Chu WM, Gong X, Li ZW, et al. DNA-PKcs is required for activation of innate immunity by immunostimulatory DNA. Cell 2000; 103: 909–18

    Article  PubMed  CAS  Google Scholar 

  71. Jack RS, Fan X, Bernheiden M, et al. Lipopolysaccharide-binding protein is required to combat a murine gram-negative bacterial infection. Nature 1997; 389(6652): 742–5

    Article  PubMed  CAS  Google Scholar 

  72. Muzio M, Natoli G, Saccani S, et al. The human toll signaling pathway: divergence of nuclear factor kappaB and JNK/SAPK activation upstream of tumor necrosis factor receptor: associated factor 6 (TRAF6). J Exp Med 1998; 187: 2097–101

    Article  PubMed  CAS  Google Scholar 

  73. Lomaga MA, Yeh WC, Sarosi I, et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-l,CD40, and LPS signaling. Genes Dev 1999; 13(8): 1015–24

    Article  PubMed  CAS  Google Scholar 

  74. Arbibe L, Mira JP, Teusch N, et al. Toll-like receptor 2-mediated NF-kappa B activation requires a Rac1-dependent pathway. Nat Immunol 2000; 1(6): 533–40

    Article  PubMed  CAS  Google Scholar 

  75. Park Y, Lee SW, Sung YC. Cutting edge: CpG DNA inhibits dendritic cell apoptosis by up-regulating cellular inhibitor of apoptosis proteins through the phosphatidylinositide-3′-OH kinase pathway. J Immunol 2002; 168(1): 5–8

    PubMed  CAS  Google Scholar 

  76. Häcker H, Mischak H, Miethke T, et al. CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO J 1998; 17: 101–11

    Article  Google Scholar 

  77. Dalpke AH, Zimmermann S, Heeg K. CpG-Oligonucleotides in vaccination: signaling and mechanisms of action. Immunobiology 2001; 204(5): 667–76

    Article  PubMed  CAS  Google Scholar 

  78. Sun S, Zhang X, Tough DF, et al. Type I interferon-mediated stimulation of T cells by CpG DNA. J Exp Med 1998; 188(12): 2335–42

    Article  PubMed  CAS  Google Scholar 

  79. Schnare M, Barton GM, Holt AC, et al. Toll-like receptors control activation of adaptive immune responses. Nat Immunol 2001; 2(10): 947–50

    Article  PubMed  CAS  Google Scholar 

  80. McCluskie MJ, Weeratna RD, Davis HL. The role of CpG in DNA vaccines. Springer Semin Immunopathol 2000; 22(1–2): 125–32

    Article  PubMed  CAS  Google Scholar 

  81. Tokunaga T, Yamamoto H, Shimada S, et al. Antitumor activity of deoxyribonucleicacid fraction from Mycobacterium bovis BCG. I. Isolation, physicochemical characterization, and antitumor activity. J Natl Cancer Inst 1984; 72(4): 955–62

    PubMed  CAS  Google Scholar 

  82. Krieg AM, Yi AK, Matson S, et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 1995; 374: 546–9

    Article  PubMed  CAS  Google Scholar 

  83. Wagner H. Bacterial CpG DNA activates immune cells to signal infectious danger. Adv Immunol 1999; 73: 329–68

    Article  PubMed  CAS  Google Scholar 

  84. Hornef MW, Frisan T, Vandewalle A, et al. Toll-like receptor 4 resides in the Golgi apparatus and colocalizes with internalized lipopolysaccharide in intestinal epithelial cells. J Exp Med 2002; 195(5): 559–70

    Article  PubMed  CAS  Google Scholar 

  85. Ahmad-Nejad P, Hacker H, Rutz M, et al. Bacterial CpG-DNA and lipopolysac-charides activate Toll-like receptors at distinct cellular compartments. Eur J Immunol 2002; 32(7): 1958–68

    Article  PubMed  CAS  Google Scholar 

  86. Hartmann G, Weeranta R, Ballas ZK, et al. Delineation of a CpG phosphorothioate oligodeoxynucleotide for activating primate immune responses in vitro and in vivo. J Immunol 2000; 164: 1617–24

    PubMed  CAS  Google Scholar 

  87. Verthelyi D, Ishii KJ, Gursel M, et al. Human peripheral blood cells differentially recognize and respond to two distinct CPG motifs. J Immunol 2001; 166(4): 2372–7

    PubMed  CAS  Google Scholar 

  88. Yi AK, Peckham DW, Ashman RF, et al. CpG DNA rescues B cells from apoptosis by activating NFkappaB and preventing mitochondrial membrane potential disruption via a chloroquine-sensitive pathway. Int Immunol 1999; 11(12): 2015–24

    Article  PubMed  CAS  Google Scholar 

  89. Liang H, Lipsky PE. The response of human B lymphocytes to oligodeoxynucleotides. Springer Semin Immunopathol 2000; 22(1–2): 63–75

    Article  PubMed  CAS  Google Scholar 

  90. Sparwasser T, Miethke T, Lipford GB, et al. Bacterial DNA cause septic shock. Nature 1997; 386: 336–7

    Article  PubMed  CAS  Google Scholar 

  91. Deng GM, Tarkowski A. The role of bacterial DNA in septic arthritis. Int J Mol Med 2000; 6(1): 29–33

    Google Scholar 

  92. Neujahr DC, Reich CF, Pisetsky DS. Immunostimulatory properties of genomic DNA from different bacterial species. Immunobiology 1999; 200(1): 106–19

    Article  PubMed  CAS  Google Scholar 

  93. Barry ME, Pinto-Gonzalez D, Orson FM, et al. Role of endogenous endonucleases and tissue site in transfection and CpG-mediated immune activation after naked DNA injection. Hum Gene Ther 1999; 10(15): 2461–80

    Article  PubMed  CAS  Google Scholar 

  94. Pisetsky DS. Immune activation by bacterial DNA: a new genetic code. Immunity 1996; 5: 303–10

    Article  PubMed  CAS  Google Scholar 

  95. Lipford GB, Sparwasser T, Zimmermann S, et al. CpG-DNA-mediated transient lymphadenopathy is associated with a state of Th1 predisposition to antigen-driven responses. J Immunol 2000; 165(3): 1228–35

    PubMed  CAS  Google Scholar 

  96. Lee SW, Song MK, Baek KH, et al. Effects of a hexameric deoxyriboguanosine run conjugation into CpG oligodeoxynucleotides on their immunostimulatory potentials. J Immunol 2000; 165(7): 3631–9

    PubMed  CAS  Google Scholar 

  97. Monteith DK, Henry SP, Howard RB, et al. Immune stimulation: a class effect of phosphorothioate oligodeoxynucleotides in rodents. Anticancer Drug Des 1997; 12(5): 421–32

    PubMed  CAS  Google Scholar 

  98. Zhao Q, Matson S, Herrera CJ, et al. Comparison of cellular binding and uptake of antisense phosphodiester, phosphorothioate, and mixed phosphorothioate and methylphosphonate oligonucleotides. Antisense Res Dev 1993; 3: 53–66

    PubMed  CAS  Google Scholar 

  99. Dalpke AH, Zimmermann S, Albrecht I, et al. Phosphodiester CpG oligonucleotides as adjuvants: poly-guanosine runs enhance cellular uptake and improve immunostimulative activity of phosphodiester CpG oligonucleotides in vitro and in vivo. Immunology. 2002; 106(1): 102–12

    Article  PubMed  CAS  Google Scholar 

  100. Sester DP, Naik S, Beasley SJ, et al. Phosphorothioate backbone modification modulates macrophage activation by CpG DNA. J Immunol 2000; 165(8): 4165–73

    PubMed  CAS  Google Scholar 

  101. Benimetskaya L, Loike JD, Khaled Z, et al. Mac-1 (CDllb/CD18) is an oligodeoxynucleotide-binding protein. Nat Med 1997; 3(4): 414–20

    Article  PubMed  CAS  Google Scholar 

  102. Pearson AM, Rich A, Krieger M. Polynucleotide binding to macrophage scavenger receptors depends on the formation of base-quartet-stabilized four-stranded helices. J Biol Chem 1993; 268(5): 3546–54

    PubMed  CAS  Google Scholar 

  103. Butler M, Crooke RM, Graham MJ, et al. Phosphorothioate oligodeoxynucleotides distribute similarly in class A scavenger receptor knockout and wild-type mice. J Pharmacol Exp Ther 2000; 292(2): 489–96

    PubMed  CAS  Google Scholar 

  104. Gursel I, Gursel M, Ishii KJ, et al. Sterically stabilized cationic liposomes improve the uptake and immunostimulatory activity of CpG oligonucleotides. J Immunol 2001; 167(6): 3324–8

    PubMed  CAS  Google Scholar 

  105. Krieg AM, Wu T, Weeranta R, et al. Sequence motifs in adenoviral DNA block immune activation by stimulatory CpG motifs. Proc Natl Acad Sci U S A 1998; 95: 12631–6

    Article  PubMed  CAS  Google Scholar 

  106. Roman M, Martin-Orozco E, Goodman JS, et al. Immunostimulatory DNA sequences function as T helper-1-promoting adjuvants. Nat Med 1997; 3(8): 849–54

    Article  PubMed  CAS  Google Scholar 

  107. Rook GAW, Stanford JL. Give us our daily germs. Immunol Today 1998; 19(3): 113–6

    PubMed  CAS  Google Scholar 

  108. Klinman DM, Yi AK, Beaucage SL, et al. CpG motifs present in bacteria DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon gamma. Proc Natl Acad Sci U S A 1996; 93(7): 2879–83

    Article  PubMed  CAS  Google Scholar 

  109. Krieg AM, Love-Homan L, Yi AK, et al. CpG DNA induces sustained IL-12 expression in vivo and resistance to Listeria monocytogenes challenge. J Immunol 1998; 161: 2428–34

    PubMed  CAS  Google Scholar 

  110. Zimmermann S, Egeter O, Hausmann S, et al. Cutting edge: CpG oligodeoxynucleotides trigger protective and curative Th1 responses in lethal murine leishmaniasis. J Immunol 1998; 160: 3627–30

    PubMed  CAS  Google Scholar 

  111. Sparwasser T, Koch ES, Vabulas RM, et al. Bacterial DNA and immunostimulatory CpG oligonucleotides trigger maturation and activation of murine dendritic cells. Eur J Immunol 1998; 28: 2045–54

    Article  PubMed  CAS  Google Scholar 

  112. Cowdery JS, Boerth NJ, Norian LA, et al. Differential regulation of the IL-12 p40 promoter and of p40 secretion by CpG DNA and lipopolysaccharide. J Immunol 1999; 162(11): 6770–5

    PubMed  CAS  Google Scholar 

  113. Takeshita F, Klinman DM. CpG ODN-mediated regulation of IL-12 p40 transcription. Eur J Immunol 2000; 30(7): 1967–76

    Article  PubMed  CAS  Google Scholar 

  114. Weinmann AS, Plevy SE, Smale ST. Rapid and selective remodeling of a positioned nucleosome during the induction of IL-12 p40 transcription. Immunity 1999; 11(6): 665–75

    Article  PubMed  CAS  Google Scholar 

  115. Chu RS, Targoni OS, Krieg AM, et al. CpG Oligodeoxynucleotides act as adjuvants that switch on T helper 1 (Th1) immunity. J Exp Med 1997; 186(10): 1623–31

    Article  PubMed  CAS  Google Scholar 

  116. Walker PS, Scharton-Kersten T, Krieg AM, et al. Immunstimulatory oligodeoxynucleotides promote protective immunity and provide systemic therapy for leishmaniasis via IL-12- and IFN-γ-dependent mechanisms. Proc Natl Acad Sci U S A 1999; 96: 6970–5

    Article  PubMed  CAS  Google Scholar 

  117. Kline JN, Waldschmidt TJ, Businga TR, et al. Cutting edge: modulation of airway inflammation by CpG oligodeoxynucleotides in a murine model of asthma. J Immunol 1998; 160: 2555–9

    PubMed  CAS  Google Scholar 

  118. Shirota H, Sano K, Kikuchi T, et al. Regulation of murine airway eosinophilia and Th2 cells by antigen-conjugated CpG oligodeoxynucleotides as a novel antigen-specific immunomodulator. J Immunol 2000; 164: 5575–82

    PubMed  CAS  Google Scholar 

  119. Lipford GB, Bauer M, Blank C, et al. CpG-containing synthetic oligonucleotides promote B and cytotoxic T cell responses to protein antigen: a new class of vaccine adjuvants. Eur J Immunol 1997; 27(9): 2340–4

    Article  PubMed  CAS  Google Scholar 

  120. Elkins KL, Rhinehart-Jones TR, Stibitz S, et al. Bacterial DNA containing CpG motifs stimulates lymphocyte-dependent protection of mice against lethal infection with intracellular bacteria. J Immunol 1999; 162(4): 2291–8

    PubMed  CAS  Google Scholar 

  121. Juffermans NP, Leemans JC, Florquin S, et al. CpG oligodeoxynucleotides enhance host defense during murine tuberculosis. Infect Immun 2002; 70(1): 147–52

    Article  PubMed  CAS  Google Scholar 

  122. Gramzinski RA, Doolan DL, Sedegah M, et al. Interleukin-12- and gamma interferon-dependent protection against malaria conferred by CpG oligodeoxynucleotide in mice. Infect Immun 2001; 69(3): 1643–9

    Article  PubMed  CAS  Google Scholar 

  123. Oxenius A, Martinic MM, Hengartner H, et al. CpG-containing oligonucleotides are efficient adjuvants for induction of protective antiviral immune responses with T-cell peptide vaccines. J Virol 1999; 73(5): 4120–6

    PubMed  CAS  Google Scholar 

  124. Broide D, Schwarze J, Tighe H, et al. Immunostimulatory DNA sequences inhibit IL-5, eosinophilic inflammation, and airway hyperresponsiveness in mice. J Immunol 1998; 161(12): 7054–62

    PubMed  CAS  Google Scholar 

  125. Stacey KJ, Sweet MJ, Hume DA. Macrophages ingest and are activated by bacterial DNA. J Immunol 1996; 157: 2116–22

    PubMed  CAS  Google Scholar 

  126. Bailas ZK, Rasmussen WL, Krieg AM. Induction of NK activity in murine and human cells by CpG motifs in oligodeoxynucleotides and bacterial DNA. J Immunol 1996; 157(5): 1840–5

    Google Scholar 

  127. Weighardt H, Feterowski C, Veit M, et al. Increased resistance against acute polymicrobial sepsis in mice challenged with immunostimulatory CpG oligodeoxynucleotides is related to an enhanced innate effector cell response. J Immunol 2000; 165(8): 4537–43

    PubMed  CAS  Google Scholar 

  128. Klinman DM, Conover J, Coban C. Repeated administration of synthetic oligodeoxynucleotides expressing CpG motifs provides long-term protection against bacterial infection. Infect Immun 1999; 67(11): 5658–63

    PubMed  CAS  Google Scholar 

  129. Klinman DM, Verthelyi D, Takeshita F, et al. Immune recognition of foreign DNA: a cure for bioterrorism? Immunity 1999; 11: 123–9

    Article  PubMed  CAS  Google Scholar 

  130. Segal BM, Klinman DM, Shevach EM. Microbial products induce autoimmune disease by an IL-12-dependent pathway. J Immunol 1997; 158(11): 5087–90

    PubMed  CAS  Google Scholar 

  131. Tsunoda I, Tolley ND, Theil DJ, et al. Exacerbation of viral and autoimmune animal models for multiple sclerosis by bacterial DNA. Brain Pathol 1999; 9(3): 481–93

    Article  PubMed  CAS  Google Scholar 

  132. Vabulas RM, Pircher H, Lipford GB, et al. CpG-DNA activates In vivo T cell epitope presenting dendritic cells to trigger protective antiviral cytotoxic T cell responses. J Immunol 2000; 164(5): 2372–8

    PubMed  CAS  Google Scholar 

  133. Cho HJ, Takabayashi K, Cheng PM, et al. Immunostimulatory DNA-based vaccines induce cytotoxic lymphocyte activity by a T-helper cell-independent mechanism. Nat Biotechnol 2000; 18(5): 509–14

    Article  PubMed  CAS  Google Scholar 

  134. Sparwasser T, Vabulas RM, Villmow B, et al. Bacterial CpG-DNA activates dendritic cells in vivo: T helper cell-independent cytotoxic T cell responses to soluble proteins. Eur J Immunol 2000; 30(12): 3591–7

    Article  PubMed  CAS  Google Scholar 

  135. Li WM, Bally MB, Schutze-Redelmeier MP. Enhanced immune response to T-independent antigen by using CpG oligodeoxynucleotides encapsulated in liposomes. Vaccine 2001; 20(1–2): 148–57

    Article  PubMed  CAS  Google Scholar 

  136. Davis HL, Weeranta R, Waldschmidt TJ, et al. CpG DNA is a potent enhancer of specific immunity in mice immunized with recombinant hepatitis B surface antigen. J Immunol 1998; 160: 870–6

    PubMed  CAS  Google Scholar 

  137. Davis HL, Suparto II, Weeratna RR, et al. CpG DNA overcomes hyporesponsiveness to hepatitis B vaccine in orangutans. Vaccine 2000; 18: 1920–4

    Article  PubMed  CAS  Google Scholar 

  138. McCluskie MJ, Davis HL. CpG DNA is a potent enhancer of systemic and mucosal immune responses against hepatitis B surface antigen with intranasal administration to mice. J Immunol 1998; 161(9): 4463–6

    PubMed  CAS  Google Scholar 

  139. Brazolot Millan CL, Weeratna R, Krieg AM, et al. CpG DNA can induce strong Th1 humoral and cell-mediated immune responses against hepatitis B surface antigen in young mice. Proc Natl Acad Sci U S A 1998; 95: 15553–8

    Article  Google Scholar 

  140. McCluskie MJ, Wen YM, Di Q, et al. Immunization against hepatitis B virus by mucosal administration of antigen-antibody complexes. Viral Immunol 1998; 11(4): 245–52

    Article  PubMed  CAS  Google Scholar 

  141. Moldoveanu Z, Love-Homan L, Huang WQ, et al. CpG DNA, a novel immune enhancer for systemic and mucosal immunization with influenza virus. Vaccine 1998; 16((11–12): 1216–24

    Article  PubMed  CAS  Google Scholar 

  142. Hancock GE, Heers KM, Smith JD, et al. CpG containing oligodeoxynucleotides are potent adjuvants for parenteral vaccination with the fusion (F) protein of respiratory syncytial virus (RSV). Vaccine 2001; 19(32): 4874–82

    Article  PubMed  CAS  Google Scholar 

  143. Leutenegger CM, Boretti FS, Mislin CN, et al. Immunization of cats against feline immunodeficiency virus (FIV) infection by using minimalistic immunogenic defined gene expression vector vaccines expressing FIV gpl40 alone or with feline interleukin-12 (IL-12), IL-16, or a CpG motif. J Virol 2000; 74(22): 10447–57

    Article  PubMed  CAS  Google Scholar 

  144. Cafaro A, Titti F, Fracasso C, et al. Vaccination with DNA containing tat coding sequences and unmethylated CpG motifs protects cynomolgus monkeys upon infection with simian/human immunodeficiency virus (SHIV89.6P). Vaccine 2001; 19(20-22): 2862–77

    Article  PubMed  CAS  Google Scholar 

  145. Gallichan WS, Woolstencroft RN, Guarasci T, et al. Intranasal immunization with CpG oligodeoxynucleotides as an adjuvant dramatically increases IgA and protection against herpes simplex virus-2 in the genital tract. J Immunol. 2001; 166(5): 3451–7

    PubMed  CAS  Google Scholar 

  146. Moss RB, Diveley J, Jensen F, et al. In vitro immune function after vaccination with an inactivated, gpl20-depleted HIV-1 antigen with immunostimulatory oligodeoxynucleotides. Vaccine 1999; 18(11–12): 1081–7

    CAS  Google Scholar 

  147. Porter KR, Kochel TJ, Wu SJ, et al. Protective efficacy of a dengue 2 DNA vaccine in mice and the effect of CpG immuno-stimulatory motifs on antibody responses. Arch Virol 1998; 143(5): 997–1003

    Article  PubMed  CAS  Google Scholar 

  148. Freidag BL, Melton GB, Collins F, et al. CpG oligodeoxynucleotides and interleukin-12 improve the efficacy of Mycobacterium bovis BCG vaccination in mice challenged with M. tuberculosis. Infect Immun 2000; 68(5): 2948–53

    Article  PubMed  CAS  Google Scholar 

  149. von Hunolstein C, Teloni R, Mariotti S, et al. Synthetic oligodeoxynucleotide containing CpG motif induces an anti-polysaccharide type 1-like immune response after immunization of mice with Haemophilus influenzae type b conjugate vaccine. Int Immunol 2000; 12(3): 295–303

    Article  Google Scholar 

  150. Jones TR, Obaldia III N, Gramzinski RA, et al. Synthetic oligodeoxynucleotides containing CpG motifs enhance immunogenicity of a peptide malaria vaccine in Aotus monkeys. Vaccine 1999; 17: 3065–71

    Article  PubMed  CAS  Google Scholar 

  151. Corral RS, Petray PB. CpG DNA as a Th1-promoting adjuvant in immunization against Trypanosoma cruzi. Vaccine 2000; 19(2–3): 234–42

    Article  PubMed  CAS  Google Scholar 

  152. Al Mariri A, Tibor A, Mertens P, et al. Protection of BALB/c mice against Brucella abortus 544 challenge by vaccination with bacterioferritin or P39 recombinant proteins with CpG oligodeoxynucleotides as adjuvant. Infect Immun 2001; 69(8): 4816–22

    Article  Google Scholar 

  153. Stacey KJ, Blackwell JM. Immunostimulatory DNA as an adjuvant in vaccination against Leishmania major. Infect Immun 1999; 67(8): 3719–26

    PubMed  CAS  Google Scholar 

  154. Chiaramonte MG, Hesse M, Cheever AW, et al. CpG oligonucleotides can prophylactically immunize against Th2-mediated schistosome egg-induced pathology by an IL-12-independent mechanism. J Immunol 2000; 164(2): 973–85

    PubMed  CAS  Google Scholar 

  155. Zhang YY, Taylor MG, Gregoriadis G, et al. Immunogenicity of plasmid DNA encoding the 62 kDa fragment of Schistosoma japonicum myosin. Vaccine 2000; 18(20): 2102–9

    Article  PubMed  CAS  Google Scholar 

  156. Horner AA, Ronaghy A, Cheng PM, et al. Immunostimulatory DNA is a potent mucosal adjuvant. Cell Immunol 1998; 190(1): 77–82

    Article  PubMed  CAS  Google Scholar 

  157. Bot A, Bona C. Genetic immunization of neonates. Microbes Infect 2002; 4(4): 511–20

    Article  PubMed  CAS  Google Scholar 

  158. Klinman DM, Yamshchikov G, Ishigatsubo Y. Contribution of CpG motifs to the immunogenicity of DNA vaccines. J Immunol 1997; 158(8): 3635–9

    PubMed  CAS  Google Scholar 

  159. Sato Y, Roman M, Tighe H, et al. Immunostimulatory DNA sequences necessary for effective intradermal gene immunization. Science 1996; 273(5273): 352–4

    Article  PubMed  CAS  Google Scholar 

  160. Shirota H, Sano K, Hirasawa N, et al. Novel roles of cpg oligodeoxynucleotides as a leader for the sampling and presentation of cpg-tagged antigen by dendritic cells. J Immunol 2001; 167(1): 66–74

    PubMed  CAS  Google Scholar 

  161. Tighe H, Takabayashi K, Schwartz D, et al. Conjugation of protein to immunostimulatory DNA results in a rapid, long-lasting and potent induction of cell-mediated and humoral immunity. Eur J Immunol 2000; 30(7): 1939–47

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (He1452/2, He1452/4, Zi676/1) and the European Community (QLK2-CT-2000-00336).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalpke, A., Zimmermann, S. & Heeg, K. CpG DNA in the Prevention and Treatment of Infections. BioDrugs 16, 419–431 (2002). https://doi.org/10.2165/00063030-200216060-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-200216060-00003

Keywords

Navigation