Skip to main content
Log in

Pathophysiology of Immune-Mediated (Type 1) Diabetes Mellitus

Potential for Immunotherapy

  • Leading Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Type 1 diabetes mellitus is a chronic T cell-mediated disease resulting from autoimmune destruction of pancreatic β-cells. This process leads to progressive and irreversible failure of insulin secretion. Development of the disease involves both genetic and environmental factors. Genetic predisposition is mainly connected with the human leucocyte antigen (HLA) region, which encodes structures responsible for antigen presentation. A comprehensive molecular understanding of the pathogenesis of the disease is essential for the design of rational and well tolerated means of prevention.

This paper describes recent experimental and clinical findings and elucidates the current possibilities for immunotherapy of type 1 diabetes. The nature of breakdown of self-tolerance and the mechanisms involved in its recovery are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Green A, Gale EA, Patterson CC. Incidence of childhood-onset insulin-dependent diabetes mellitus: the EURODIAB ACE Study. Lancet 1992; 339: 905–9

    Article  PubMed  CAS  Google Scholar 

  2. Tuomilehto J, Karvonen M, Pitkaniemi J, et al. Record high incidence of Type I (insulin-dependent) diabetes mellitus in Finnish children. The Finnish Childhood Type I Diabetes Registry Group. Diabetologia 1999; 42(6): 655–60

    Article  PubMed  CAS  Google Scholar 

  3. Songini M, Loche M, Muntoni S, et al. Increasing prevalence of juvenile onset type 1 (insulin-dependent) diabetes mellitus in Sardinia: the military service approach. Diabetologia 1993; 36: 547–52

    Article  PubMed  CAS  Google Scholar 

  4. Muntoni S, Stabilini L, Stabilini M, et al. Steadily high IDDM incidence over 4 years in Sardinia. Diabetes Care 1995; 18: 1600–1

    Article  PubMed  CAS  Google Scholar 

  5. Ko KW, Yang SW, Cho NH. The incidence of IDDM in Seoul from 1985 to 1988. Diabetes Care 1994; 17(12): 1473–5

    Article  PubMed  CAS  Google Scholar 

  6. Samanta A, Burden AC, Hearnshaw JR, et al. Diabetes in Asian children [letter; comment]. Lancet 1990; 335(8701): 1341

    Article  PubMed  CAS  Google Scholar 

  7. Wong GW, Leung SS, Oppenheimer SJ. Epidemiology of IDDM in southern Chinese children in Hong Kong. Diabetes Care 1993; 16: 926–8

    Article  PubMed  CAS  Google Scholar 

  8. Knip M, Vahasalo P, Karjalainen J, et al. Natural history of preclinical IDDM in high risk siblings. Childhood Diabetes in Finland Study Group. Diabetologia 1994; 37: 388–93

    Article  PubMed  CAS  Google Scholar 

  9. Homo-Delarche F, Boitard C. Autoimmune diabetes: the role of the islets of Langerhans. Immunol Today 1996; 17: 456–60

    Article  PubMed  CAS  Google Scholar 

  10. Bingley PJ, Christie MR, Bonifacio E, et al. Combined analysis of autoantibodies improves prediction of IDDM in islet cell antibody-positive relatives. Diabetes 1994; 43: 1304–10

    Article  PubMed  CAS  Google Scholar 

  11. Bonifacio E, Genovese S, Braghi S, et al. Islet autoantibody markers in IDDM: risk assessment strategies yielding high sensitivity. Diabetologia 1995; 38: 816–22

    Article  PubMed  CAS  Google Scholar 

  12. Roll U, Ziegler AG. Combined antibody screening for improved prediction of IDDM — modern strategies. Exp Clin Endocrinol Diabetes 1997; 105: 1–14

    Article  PubMed  CAS  Google Scholar 

  13. Bingley PJ. Interactions of age, islet cell antibodies, insulin autoantibodies, and first-phase insulin response in predicting risk of progression to IDDM in ICA+ relatives: the ICARUS data set. Islet Cell Antibody Register Users Study. Diabetes 1996; 45: 1720–8

    Article  PubMed  CAS  Google Scholar 

  14. Roll U, Christie MR, Standl E, et al. Associations of anti-GAD antibodies with islet cell antibodies and insulin autoantibodies in first-degree relatives of type I diabetic patients. Diabetes 1994; 43: 154–60

    Article  PubMed  CAS  Google Scholar 

  15. Kloppel G, Drenck CR, Oberholzer M, et al. Morphometric evidence for a striking B-cell reduction at the clinical onset of type 1 diabetes. Virchows Arch A Pathol Anat Histopathol 1984; 403(4): 441–52

    Article  PubMed  CAS  Google Scholar 

  16. Eizirik DL, Sandier S, Palmer JP. Repair of pancreatic beta-cells. A relevant phenomenon in early IDDM? Diabetes 1993; 42: 1383–91

    Article  PubMed  CAS  Google Scholar 

  17. Lindberg B, Ivarsson A, Landin-Olsson M, et al. Islet autoantibodies in cord blood from children who developed type 1 (insulin-dependent) diabetes mellitus before 15 years of age. Diabetologia 1999; 42: 181–7

    Article  PubMed  CAS  Google Scholar 

  18. Roll U, Christie MR, Fuchtenbusch M, et al. Perinatal autoimmunity in offspring of diabetic parents. The German Multi-center BABY-DIAB study: detection of humoral immune responses to islet antigens in early childhood. Diabetes 1996; 45: 967–73

    Article  PubMed  Google Scholar 

  19. Seissler J, de Sonnaville JJ, Morgenthaler NG, et al. Immunological heterogeneity in type I diabetes: presence of distinct autoantibody patterns in patients with acute onset and slowly progressive disease. Diabetologia 1998; 41(8): 891–7

    Article  PubMed  CAS  Google Scholar 

  20. Honeyman MC, Harrison LC, Drummond B, et al. Analysis of families at risk for insulin-dependent diabetes mellitus reveals that HLA antigens influence progression to clinical disease. Mol Med 1995; 1: 576–82

    PubMed  CAS  Google Scholar 

  21. Kaprio J, Tuomilehto J, Koskenvuo M, et al. Concordance for type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetes mellitus in a population-based cohort of twins in Finland. Diabetologia 1992; 35(11): 1060–7

    Article  PubMed  CAS  Google Scholar 

  22. Rich SS. Mapping genes in diabetes. Genetic epidemiological perspective. Diabetes 1990; 39: 1315–9

    Article  PubMed  CAS  Google Scholar 

  23. Kumar D, Gemayel NS, Gill SK, et al. Type-specific concordance in young diabetic monozygotic twins. Adv Exp Med Biol 1988; 246: 259–67

    Article  PubMed  CAS  Google Scholar 

  24. Todd JA. Genetic analysis of type 1 diabetes using whole genome approaches. Proc Natl Acad Sci USA 1995; 92: 8560–5

    Article  PubMed  CAS  Google Scholar 

  25. Verge CF, Gianani R, Yu L, et al. Late progression to diabetes and evidence for chronic beta-cell autoimmunity in identical twins of patients with type I diabetes. Diabetes 1995; 44: 1176–9

    Article  PubMed  CAS  Google Scholar 

  26. Julier C, Hyer RN, Davies J, et al. Insulin-IGF2 region on chromosome lip encodes a gene implicated in HLA-DR4-dependent diabetes susceptibility. Nature 1991; 354: 155–9

    Article  PubMed  CAS  Google Scholar 

  27. Lucassen AM, Julier C, Beressi JP, et al. Susceptibility to insulin dependent diabetes mellitus maps to a 4.1 kb segment of DNA spanning the insulin gene and associated VNTR. Nat Genet 1993; 4: 305–10

    Article  PubMed  CAS  Google Scholar 

  28. Caillat-Zucman S, Djilali Saiah I, Timsit J, et al. Insulin dependent diabetes mellitus (IDDM): 12th International Histocom-patibility Workshop Study. In: Charron D, editor. HLA: genetic diversity of HLA, functional and medical implications. Paris: EDK, 1997: 389–98

    Google Scholar 

  29. Noble JA, Valdes AM, Cook M, et al. The role of HLA class II genes in insulin-dependent diabetes mellitus: molecular analysis of 180 Caucasian, multiplex families. Am J Hum Genet 1996; 59(5): 1134–48

    PubMed  CAS  Google Scholar 

  30. She JX, Bui MM, Tian XH, et al. Additive susceptibility to insulin-dependent diabetes conferred by HLA-DQB1 and insulin genes. Autoimmunity 1994; 18: 195–203

    Article  PubMed  CAS  Google Scholar 

  31. Djoulah S, Busson M, Sasazuki T, et al. A new predictive model for insulin-dependent diabetes mellitus susceptibility based on combinations of molecular HLA-DRB1 and HLA-DQB 1 pockets. Tissue Antigens 1999; 54(4): 341–8

    Article  PubMed  CAS  Google Scholar 

  32. Sato AK, Sturniolo T, Sinigaglia F, et al. Substitution of aspartic acid at beta57 with alanine alters MHC class II peptide binding activity but not protein stability: HLA-DQ (alphal*0201, betal*0302) and (alphal*0201, betal*0303). Hum Immunol 1999; 60(12): 1227–36

    Article  PubMed  CAS  Google Scholar 

  33. Herman AE, Tisch RM, Patel SD, et al. Determination of glutamic acid decarboxylase 65 peptides presented by the type I diabetes-associated HLA-DQ8 class II molecule identifies an immunogenic peptide motif. J Immunol 1999; 163(11): 6275–82

    PubMed  CAS  Google Scholar 

  34. Hanson MS, Cetkovic-Cvrlje M, Ramiya VK, et al. Quantitative thresholds of MHC class II I-E expressed on hemopoietically derived antigen-presenting cells in transgenic NOD/Lt mice determine level of diabetes resistance and indicate mechanism of protection. J Immunol 1996; 157: 1279–87

    PubMed  CAS  Google Scholar 

  35. Singer SM, Tisch R, Yang XD, et al. An Abd transgene prevents diabetes in nonobese diabetic mice by inducing regulatory T cells. Proc Natl Acad Sci USA 1993; 90: 9566–70

    Article  PubMed  CAS  Google Scholar 

  36. Chicz RM, Urban RG, Gorga JC, et al. Specificity and promiscuity among naturally processed peptides bound to HLA-DR alleles. J Exp Med 1993; 178(1): 27–47

    Article  PubMed  CAS  Google Scholar 

  37. Honeyman MC, Cram DS, Harrison LC. Transcription factor jun-B is target of autoreactive T-cells in IDDM. Diabetes 1993; 42: 626–30

    Article  PubMed  CAS  Google Scholar 

  38. Rabin DU, Pleasic SM, Shapiro JA, et al. Islet cell antigen 512 is a diabetes-specific islet autoantigen related to protein tyrosine phosphatases. J Immunol 1944; 152: 3183–8

    Google Scholar 

  39. Ashton Rickardt PG, Tonegawa S. A differential-avidity model for T-cell selection. Immunol Today 1994; 15: 362–6

    Article  Google Scholar 

  40. Veijola R, Vahasalo P, Tuomilehto-Wolf E, et al. Human leukocyte antigen identity and DQ risk alleles in autoantibody-positive siblings of children with IDDM are associated with reduced early insulin response. Childhood Diabetes in Finland (DiMe) Study Group. Diabetes 1995; 44: 1021–8

    Article  PubMed  CAS  Google Scholar 

  41. Nakanishi K, Kobayashi T, Murase T, et al. Association of HLA-A24 with complete beta-cell destruction in IDDM. Diabetes 1993; 42: 1086–93

    Article  PubMed  CAS  Google Scholar 

  42. Caillat-Zucman S, Garchon HJ, Timsit J, et al. Age-dependent HLA genetic heterogeneity of type 1 insulin-dependent diabetes mellitus. J Clin Invest 1992; 90: 2242–50

    Article  PubMed  CAS  Google Scholar 

  43. Kobayashi T, Tamemoto K, Nakanishi K, et al. Immunogenetic and clinical characterization of slowly progressive diabetes. Diabetes Care 1993; 16: 780–8

    Article  PubMed  CAS  Google Scholar 

  44. Klemetti P, Hyoty H, Roivainen M, et al. Relation between T-cell responses to glutamate decarboxylase and coxsackievirus B4 in patients with insulin-dependent diabetes mellitus. J Clin Virol 1999; 14(2): 95–105

    Article  PubMed  CAS  Google Scholar 

  45. Panina Bordignon P, Lang R, van Endert PM, et al. Cytotoxic T cells specific for glutamic acid decarboxylase in autoimmune diabetes. J Exp Med 1995; 181: 1923–7

    Article  PubMed  CAS  Google Scholar 

  46. Ou D, Jonsen LA, Metzger DL, et al. CD4+ and CD8+ T-cell clones from congenital rubella syndrome patients with IDDM recognize overlapping GAD65 protein epitopes. Implications for HLA class I and II allelic linkage to disease susceptibility. Hum Immunol 1999; 60(8): 652–64

    Article  PubMed  CAS  Google Scholar 

  47. Honeyman MC, Coulson BS, Stone NL, et al. Association between rotavirus infection and pancreatic islet autoimmunity in children at risk of developing type 1 diabetes. Diabetes 2000; 49(8): 1319–24

    Article  PubMed  CAS  Google Scholar 

  48. Lonnrot M, Salminen K, Knip M, et al. Enterovirus RNA in serum is a risk factor for beta-cell autoimmunity and clinical type 1 diabetes: a prospective study. Childhood Diabetes in Finland (DiMe) Study Group. J Med Virol 2000; 61(2): 214–20

    Article  PubMed  CAS  Google Scholar 

  49. Juhela S, Hyoty H, Hinkkanen A, et al. T cell responses to enterovirus antigens and to beta-cell autoantigens in unaffected children positive for IDDM-associated autoantibodies. J Autoimmun 1999; 12(4): 269–78

    Article  PubMed  CAS  Google Scholar 

  50. Foulis AK, McGill M, Farquharson MA, et al. A search for evidence of viral infection in pancreases of newly diagnosed patients with IDDM. Diabetologia 1997; 40: 53–61

    Article  PubMed  CAS  Google Scholar 

  51. Christianson SW, Shultz LD, Leiter EH. Adoptive transfer of diabetes into immunodeficient NOD-scid/scid mice. Relative contributions of CD4+ and CD8+ T-cells from diabetic versus prediabetic NOD.NON-Thy-1a donors. Diabetes 1993; 42: 44–55

    Article  PubMed  CAS  Google Scholar 

  52. Wong FS, Visintin I, Wen L, et al. CD8 T cell clones from young nonobese diabetic (NOD) islets can transfer rapid onset of diabetes in NOD mice in the absence of CD4 cells. J Exp Med 1996; 183: 67–76

    Article  PubMed  CAS  Google Scholar 

  53. Kaufman DL, Clare-Salzler M, Tian J, et al. Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes. Nature 1993; 366: 69–72

    Article  PubMed  CAS  Google Scholar 

  54. Sohnlein P, Muller M, Syren K, et al. Epitope spreading and a varying but not disease-specific GAD65 antibody response in type I diabetes. Childhood Diabetes in Finland (DiMe) Study Group. Diabetologia 2000 43(2): 210–7

    Article  PubMed  CAS  Google Scholar 

  55. Kikutani H, Makino S. The murine autoimmune diabetes model: NOD and related strains. Adv Immunol 1992; 51: 285–322

    Article  PubMed  CAS  Google Scholar 

  56. Harrison LC, Honeyman MC, DeAizpurua J, et al. Inverse relation between humoral and cellular immunity to glutamic acid decarboxylase in subjects at risk of insulin-dependent diabetes. Lancet 1993; 341: 1365–9

    Article  PubMed  CAS  Google Scholar 

  57. Roep BO, Arden SD, De Vries RR, et al. T-cell clones from a type-1 diabetes patient respond to insulin secretory granule proteins. Nature 1990; 345: 632–4

    Article  PubMed  CAS  Google Scholar 

  58. Keller RJ. Cellular immunity to human insulin in individuals at high risk for the development of type I diabetes mellitus. J Autoimmun 1990; 3: 321–7

    Article  PubMed  CAS  Google Scholar 

  59. Serreze DV, Fleming SA, Chapman HD, et al. B lymphocytes are critical antigen-presenting cells for the initiation of T cell-mediated autoimmune diabetes in nonobese diabetic mice. J Immunol 1998; 161(8): 3912–8

    PubMed  CAS  Google Scholar 

  60. Falcone M, Lee J, Patstone G, et al. B lymphocytes are crucial antigen-presenting cells in the pathogenic autoimmune response to GAD65 antigen in nonobese diabetic mice. J Immunol 1998; 1163-8

  61. Katz JD, Benoist C, Mathis D. T helper cell subsets in insulindependent diabetes. Science 1995; 268: 1185–8

    Article  PubMed  CAS  Google Scholar 

  62. Tisch R, Yang XD, Singer SM, et al. Immune response to glutamic acid decarboxylase correlates with insulitis in nonobese diabetic mice. Nature 1993; 366: 72–53

    Article  PubMed  CAS  Google Scholar 

  63. Atkinson M, Leslie DR. Inverse relation between humoral and cellular immunity to glutamic acid decarboxylase in subjects at risk of insulin-dependent diabetes. J Endocrinol Invest 1994; 17: 581–4

    PubMed  CAS  Google Scholar 

  64. Gombert JM, Herbelin A, Tancrede Bohin E, et al. Early quantitative and functional deficiency of NKl+-like thymocytes in the NOD mouse. Eur J Immunol 1996; 26: 2989–98

    Article  PubMed  CAS  Google Scholar 

  65. Yoshimoto T, Bendelac A, Watson C, et al. Role of NK1.1+ T cells in a TH2 response and in immunoglobulin E production. Science 1995; 270(5243): 1845–7

    Article  PubMed  CAS  Google Scholar 

  66. Lehuen A, Lantz O, Beaudoin L, et al. Overexpression of natural killer T cells protects Valpha l4-Jalpha281 transgenic nonobese diabetic mice against diabetes. J Exp Med 1998; 188(10): 1831–9

    Article  PubMed  CAS  Google Scholar 

  67. Saoudi A, Seddon B, Fowell D, et al. The thymus contains a high frequency of cells that prevent autoimmune diabetes on transfer into prediabetic recipients. J Exp Med 1996; 184(6): 2393–8

    Article  PubMed  CAS  Google Scholar 

  68. Seddon B, Mason D. Regulatory T cells in the control of autoimmunity: the essential role of transforming growth factor beta and interleukin 4 in the prevention of autoimmune thyroiditis in rats by peripheral CD4(+)CD45RC-cells and CD4(+)CD8(−) thymocytes. JExp Med 1999; 189(2): 279–88

    Article  CAS  Google Scholar 

  69. Seddon B, Mason D. Peripheral autoantigen induces regulatory T cells that prevent autoimmunity. J Exp Med 1999; 189(5): 877–82

    Article  PubMed  CAS  Google Scholar 

  70. O’Garra A, Steinman L, Gijbels K. CD4+ T-cell subsets in autoimmunity. Curr Opin Immunol 1997; 9(6): 872–83

    Article  PubMed  Google Scholar 

  71. Kurrer MO, Pakala SV, Hanson HL, et al. Beta cell apoptosis in T cell-mediated autoimmune diabetes. Proc Natl Acad Sei USA 1997; 94: 213–8

    Article  CAS  Google Scholar 

  72. O’Brien BA, Harmon BV, Cameron DP, et al. Apoptosis is the mode of beta-cell death responsible for the development of IDDM in the nonobese diabetic (NOD) mouse. Diabetes 1997; 46: 750–7

    Article  PubMed  Google Scholar 

  73. Schoenberger SP, Toes RE, van der Voort El, et al. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 1998; 393(6684): 480–3

    Article  PubMed  CAS  Google Scholar 

  74. Pavlovic D, van de Winkel M, van der Auwera B, et al. Effect of interferon-gamma and glucose on major histocompatibility complex class I and class II expression by pancreatic beta-and non-beta-cells. J Clin Endocrinol Metab 1997; 82(7): 2329–36

    Article  PubMed  CAS  Google Scholar 

  75. Amrani A, Verdaguer J, Thiessen S, et al. IL-1alpha, IL-lbeta, and IFN-gamma mark beta cells for Fas-dependent destruction by diabetogenic CD4(+) T lymphocytes. J Clin Invest 2000; 105(4): 459–68

    Article  PubMed  CAS  Google Scholar 

  76. Gallichan WS, Balasa B, Davies JD, et al. Pancreatic IL-4 expression results in islet-reactive Th2 cells that inhibit diabetogenic lymphocytes in the nonobese diabetic mouse. J Immunol 1999; 163(3): 1696–703

    PubMed  CAS  Google Scholar 

  77. Sandier S, Eizirik DL, Svensson C, et al. Biochemical and molecular actions of interleukin-1 on pancreatic beta-cells. Autoimmunity 1991; 10(3): 241–53

    Article  Google Scholar 

  78. Gurlo T, Kawamura K, Grafenstein H. Role of inflammatory infiltrate in activation and effector function of cloned islet reactive nonobese diabetic CD8+ T cells: involvement of a nitric oxide-dependent pathway. J Immunol 1999; 163: 5770–80

    PubMed  CAS  Google Scholar 

  79. Verdaguer J, Yoon JW, Anderson B, et al. Acceleration of spontaneous diabetes in TCR-beta-transgenic nonobese diabetic mice by beta-cell cytotoxic CD8+ T cells expressing identical endogenous TCR-alpha chains. J Immunol 1996; 157: 4726–35

    PubMed  CAS  Google Scholar 

  80. Nagata M, Yoon JW. Prevention of autoimmune type I diabetes in biobreeding (BB) rats by a newly established, autoreactive T cell line from acutely diabetic BB rats. J Immunol 1994; 153: 3775–83

    PubMed  CAS  Google Scholar 

  81. Wong FS, Visintin I, Wen L, et al. The role of lymphocyte subsets in accelerated diabetes in nonobese diabetic-rat insu-lin promoter-B7-l (NOD-RIP-B7-1) mice. J Exp Med 1998; 187: 1985–93

    Article  PubMed  CAS  Google Scholar 

  82. Koevary SB, Blomberg M. Prevention of diabetes in BB/Wor rats by intrathymic islet injection. J Clin Invest 1992; 89(2): 512–6

    Article  PubMed  CAS  Google Scholar 

  83. Nomura Y, Stein E, Mullen Y. Prevention of overt diabetes and insulitis by intrathymic injection of syngeneic islets in newborn nonobese diabetic (NOD) mice. Transplantation 1993; 56: 638–42

    Article  PubMed  CAS  Google Scholar 

  84. Nomura Y, Mullen Y, Stein E. Syngeneic islets transplanted into the thymus of newborn mice prevent diabetes and reduce insulitis in the NOD mouse. Transplant Proc 1993; 25: 963–4

    PubMed  CAS  Google Scholar 

  85. French MB, Allison J, Cram DS, et al. Transgenic expression of mouse proinsulin II prevents diabetes in nonobese diabetic mice Diabetes 1997; 46(1): 34–9

    Article  PubMed  CAS  Google Scholar 

  86. Birk OS, Douek DC, Elias D, et al. A role of Hsp60 in autoimmune diabetes: analysis in a transgenic model. Proc Natl Acad Sci USA 1996; 93: 1032–7

    Article  PubMed  CAS  Google Scholar 

  87. Assan R, Feutren G, Debray Sachs M, et al. Metabolic and immunological effects of cyclosporin in recently diagnosed type 1 diabetes mellitus. Lancet 1985; 1(8420): 67–71

    Article  PubMed  CAS  Google Scholar 

  88. Feutren G, Assan R, Karsenty G. Cyclosporin increases the rate and length of remission in insulin-dependent diabetes of recent onset. Lancet 1986; 2: 119–24

    Article  PubMed  CAS  Google Scholar 

  89. Chase HP, Butler-Simon N, Garg SK, et al. Cyclosporine A for the treatment of new-onset insulin-dependent diabetes mellitus. Pediatrics 1990; 85(3): 241–5

    PubMed  CAS  Google Scholar 

  90. Harrison LC, Colman PG, Dean B, et al. Increase in remission rate in newly diagnosed type I diabetic subjects treated with azathioprine. Diabetes 1985; 34: 1306–8

    Article  PubMed  CAS  Google Scholar 

  91. Silverstein J, Maclaren N, Riley W, et al. Immunosuppression with azathioprine and prednisone in recent-onset insulin-dependent diabetes mellitus. N Engl J Med 1988; 319: 599–604

    Article  PubMed  CAS  Google Scholar 

  92. Martin S, Schernthaner G, Nerup J, et al. Follow-up of cyclosporin A treatment in type 1 (insulin-dependent) diabetes mellitus: lack of long-term effects. Diabetologia 1991; 34: 429–34

    Article  PubMed  CAS  Google Scholar 

  93. Parving HH, Tarnow L, Nielsen FS, et al. Cyclosporine nephrotoxicity in type 1 diabetic patients. A 7-year follow-up study. Diabetes Care 1999; 22(3): 478–83

    Article  PubMed  CAS  Google Scholar 

  94. Hutchings PR, Cooke A. Comparative study of the protective effect afforded by intravenous administration of bovine or ovine insulin to young NOD mice. Diabetes 1995; 44: 906–10

    Article  PubMed  CAS  Google Scholar 

  95. Tisch R, Wang B, Serreze DV. Induction of glutamic acid decarboxylase 65-specific Th2 cells and suppression of autoimmune diabetes at late stages of disease is epitope dependent. J Immunol 1999; 163(3): 1178–87

    PubMed  CAS  Google Scholar 

  96. Daniel D, Wegmann DR. Protection of nonobese diabetic mice from diabetes by intranasal or subcutaneous administration of insulin peptide B-(9-23). Proc Natl Acad Sci USA 1996; 93: 956–60

    Article  PubMed  CAS  Google Scholar 

  97. Ramiya VK, Shang XZ, Pharis PG, et al. Antigen based therapies to prevent diabetes in NOD mice. J Autoimmune 1996; 9: 349–56

    Article  CAS  Google Scholar 

  98. Keller RJ, Eisenbarth GS, Jackson RA. Insulin prophylaxis in individuals at high risk of type 1 diabetes. Lancet 1993; 341: 927–8

    Article  PubMed  CAS  Google Scholar 

  99. Gottlieb PA, Handler ES, Appel MC, et al. Insulin treatment prevents diabetes mellitus but not thyroiditis in RT6-depleted diabetes resistant BB/Wor rats. Diabetologia 1991; 34: 296–300

    Article  PubMed  CAS  Google Scholar 

  100. Bjork E, Kampe O, Andersson A, et al. Expression of the 64 kDa/glutamic acid decarboxylase rat islet cell autoantigen is influenced by the rate of insulin secretion. Diabetologia 1992; 35(5): 490–3

    Article  PubMed  CAS  Google Scholar 

  101. Palmer JP, Helqvist S, Spinas GA, et al. Interaction of beta-cell activity and IL-1 concentration and exposure time in isolated rat islets of Langerhans. Diabetes 1989; 38: 1211–6

    Article  PubMed  CAS  Google Scholar 

  102. Karounos DG, Bryson JS, Cohen DA. Metabolically inactive insulin analog prevents type I diabetes in prediabetic NOD mice. J Clin Invest 1997; 100(6): 1344–8

    Article  PubMed  CAS  Google Scholar 

  103. Tian J, Lehmann PV, Kaufman DL. Determinant spreading of T helper cell 2 (Th2) responses to pancreatic islet autoantigens. J Exp Med 1997; 186(12): 2039–43

    Article  PubMed  CAS  Google Scholar 

  104. Elias D, Meilin A, Ablamunits V, et al. Hsp60 peptide therapy of NOD mouse diabetes induces a Th2 cytokine burst and downregulates autoimmunity to various beta-cell antigens. Diabetes 1997; 46: 758–64

    Article  PubMed  CAS  Google Scholar 

  105. Fuchtenbusch M, Rabl W, Grassl B, et al. Delay of type I diabetes in high risk, first degree relatives by parenteral antigen administration: the Schwabing insulin prophylaxis pilot trial. Diabetologia 1998; 41: 536–41

    Article  PubMed  CAS  Google Scholar 

  106. Kobayashi T, Nakanishi K, Murase T, et al. Small doses of subcutaneous insulin as a strategy for preventing slowly progressive beta-cell failure in islet cell antibody-positive patients with clinical features of NIDDM. Diabetes 1996; 45: 622–6

    Article  PubMed  CAS  Google Scholar 

  107. Chalew SA. Can we prevent type 1 diabetes? J La State Med Soc 2000; 152(6): 286–8

    PubMed  CAS  Google Scholar 

  108. Zhang ZJ, Davidson L, Eisenbarth G, et al. Suppression of diabetes in nonobese diabetic mice by oral administration of porcine insulin. Proc Natl Acad Sci USA 1991; 88(22): 10252–6

    Article  PubMed  CAS  Google Scholar 

  109. Homann D, Holz A, Bot A, et al. Autoreactive CD4+ T cells protect from autoimmune diabetes via bystander suppression using the IL-4/Stat6 pathway. Immunity 1999; 11(4): 463–72

    Article  PubMed  CAS  Google Scholar 

  110. Bergerot I, Arreaza GA, Cameron MJ, et al. Insulin B-chain reactive CD4+ regulatory T-cells induced by oral insulin treatment protect from type 1 diabetes by blocking the cytokine secretion and pancreatic infiltration of diabetogenic effector T-cells. Diabetes 1999; 48(9): 1720–9

    Article  PubMed  CAS  Google Scholar 

  111. Muir A, Peck A, Clare-Salzler M, et al. Insulin immunization of nonobese diabetic mice induces a protective insulitis characterized by diminished intraislet interferon-gamma transcription. J Clin Invest 1995; 95: 628–34

    Article  PubMed  CAS  Google Scholar 

  112. Ploix C, Bergerot I, Fabien N, et al. Protection against autoimmune diabetes with oral insulin is associated with the presence of IL-4 type 2 T-cells in the pancreas and pancreatic lymph nodes. Diabetes 1998; 47(1): 39–44

    Article  PubMed  CAS  Google Scholar 

  113. Chen Y, Inobe J, Marks R, et al. Peripheral deletion of antigenreactive T cells in oral tolerance [published erratum appears in Nature 1995 Sep 21; 377 (6546): 257]. Nature 1995; 376(6536): 177–80

    Article  PubMed  CAS  Google Scholar 

  114. Maron R, Melican NS, Weiner HL. Regulatory Th2-type T cell lines against insulin and GAD peptides derived from orally-and nasally-treated NOD mice suppress diabetes. J Autoimmune 1999; 12(4): 251–8

    Article  CAS  Google Scholar 

  115. Hancock WW, Polanski M, Zhang J, et al. Suppression of insulitis in non-obese diabetic (NOD) mice by oral insulin administration is associated with selective expression of interleukin-4 and -10, transforming growth factor-beta, and prostaglandin-E. Am J Pathol 1995; 147: 1193–9

    PubMed  CAS  Google Scholar 

  116. Gutgemann I, Fahrer AM, Airman JD, et al. Induction of rapid T cell activation and tolerance by systemic presentation of an orally administered antigen. Immunity 1998; 8(6): 667–73

    Article  PubMed  CAS  Google Scholar 

  117. Chaillous L, Lefevre H, Thivolet C, et al. Oral insulin administration and residual beta-cell function in recent-onset type 1 diabetes: a multicentre randomised controlled trial. Diabete Insuline Orale group. Lancet 2000; 356(9229): 545–9

    Article  PubMed  CAS  Google Scholar 

  118. Weiner HL. Oral tolerance: immune mechanisms and treatment of autoimmune diseases. Immunol Today 1997; 18(7): 335–43

    Article  PubMed  CAS  Google Scholar 

  119. Benson JM, Whitacre CC. The role of clonal deletion and anergy in oral tolerance. Res Immunol 1997; 148(8-9): 533–41

    Article  PubMed  CAS  Google Scholar 

  120. Khare SD, Krco CJ, Griffiths MM, et al. Oral administration of an immunodominant human collagen peptide modulates collagen-induced arthritis. J Immunol 1995; 155(7): 3653–9

    PubMed  CAS  Google Scholar 

  121. Homann D, Dyrberg T, Petersen J, et al. Insulin in oral immune ‘tolerance’: a one-amino acid change in the B chain makes the difference. J Immunol 1999; 163(4): 1833–8

    PubMed  CAS  Google Scholar 

  122. Im S, Barchan D, Souroujon MC, et al. Role of tolerogen conformation in induction of oral tolerance in experimental autoimmune myasthenia gravis. J Autoimmun 2000; 165: 3599–605

    CAS  Google Scholar 

  123. Harrison LC, Dempsey Collier M, Kramer DR, et al. Aerosol insulin induces regulatory CD8 gamma delta T cells that prevent murine insulin-dependent diabetes. J Exp Med 1996; 184: 2167–74

    Article  PubMed  CAS  Google Scholar 

  124. Tian J, Atkinson MA, Clare-Salzler M, et al. Nasal administration of glutamate decarboxylase (GAD65) peptides induces Th2 responses and prevents murine insulin-dependent diabetes. J Exp Med 1996; 183: 1561–7

    Article  PubMed  CAS  Google Scholar 

  125. Kaufmann SH. Gamma/delta and other unconventional T lymphocytes: what do they see and what do they do? Proc Natl Acad Sci USA 1996; 93(6): 2272–9

    Article  PubMed  CAS  Google Scholar 

  126. Chaturvedi P, Agraval B, Zechel M, et al. A self MHC class II beta-chain peptide prevents diabetes in nonobese diabetic mice. J Immunol 2000; 164(12): 6610–20

    PubMed  CAS  Google Scholar 

  127. Dunsavage MB, O’Leary CJ, Baumgart TD, et al. Aconformationally-constrained MHC class II I-Ag7-derived peptide protects NOD mice from the development of diabetes. J Autoimmune 1999; 12(4): 233–42

    Article  CAS  Google Scholar 

  128. Xu XJ, Gearon C, Stevens E, et al. Spontaneous T-cell proliferation in the non-obese diabetic mouse to a peptide from the unique class II MHC molecule, I-Ag7, which is also protective against the development of autoimmune diabetes. Diabetologia 1999; 42(5): 560–5

    Article  PubMed  CAS  Google Scholar 

  129. Lider O, Reshef T, Beraud E, et al. Anti-idiotypic network induced by T cell vaccination against experimental autoimmune encephalomyelitis. Science 1988; 239(4836): 181–3

    Article  PubMed  CAS  Google Scholar 

  130. Van Laar JM, Miltenburg AM, Verdonk MJ, et al. Effects of inoculation with attenuated autologous T cells in patients with rheumatoid arthritis. J Autoimmun 1993; 6(2): 159–67

    Article  PubMed  Google Scholar 

  131. Hafler DA, Cohen I, Benjamin DS, et al. T cell vaccination in multiple sclerosis: a preliminary report. Clin Immunol Immunopathol 1992; 62(3): 307–13

    Article  PubMed  CAS  Google Scholar 

  132. Zhang J, Medaer R, Stinissen P, et al. MHC-restricted depletion of human myelin basic protein-reactive T cells by T cell vac-cination. Science 1993; 261(5127): 1451–4

    Article  PubMed  CAS  Google Scholar 

  133. Feili Hariri M, Frantz MO, Morel PA. Prevention of diabetes in the NOD mouse by a Th1 clone specific for a hsp60 peptide. J Autoimmune 2000; 14(2): 133–42

    Article  Google Scholar 

  134. Zekzer D, Wong FS, Wen L, et al. Inhibition of diabetes by an insulin-reactive CD4 T-cell clone in the nonobese diabetic mouse. Diabetes 1997; 46: 1124–32

    Article  PubMed  CAS  Google Scholar 

  135. Gearon CL, Hussain MJ, Vergani D, et al. Lymphocyte vaccination protects prediabetic non-obese diabetic mice from developing diabetes mellitus. Diabetologia 1997; 40(12): 1388–95

    Article  PubMed  CAS  Google Scholar 

  136. Smerdon RA, Peakman M, Hussain MJ, et al. Lymphocyte vaccination prevents spontaneous diabetes in the non-obese diabetic mouse. Immunology 1993; 80(3): 498–501

    PubMed  CAS  Google Scholar 

  137. The absence of a glycemic threshold for the development of long-term complications: the perspective of the Diabetes Control and Complications Trial. Diabetes 1996; 45: 1289-98

  138. The relationship of glycemie exposure (HbA1c) to the risk of development and progression of retinopathy in the Diabetes Control and Complications Trial. Diabetes 1995; 44 (8): 968-83

  139. Danne T, Weber B, Hartmann R, et al. Long-term glycemie control has a nonlinear association to the frequency of background retinopathy in adolescents with diabetes. Follow-up of the Berlin Retinopathy Study. Diabetes Care 1994; 17(12): 1390–6

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Abel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abel, M., Krokowski, M. Pathophysiology of Immune-Mediated (Type 1) Diabetes Mellitus. BioDrugs 15, 291–301 (2001). https://doi.org/10.2165/00063030-200115050-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-200115050-00002

Keywords

Navigation