Skip to main content
Log in

Biological Approaches to Treatment of Head and Neck Cancer

  • Review Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

There are few options for the treatment of advanced squamous cell carcinoma of the head and neck (SCCHN). Chemotherapy in such patients is not associated with survival improvement. However, recent reports suggest that approaches involving biological therapy may provide some benefits. The most promising therapeutics, currently in phase III investigation, involve p53 gene replacement with adenoviral vectors and tumour lysis with tumour-specific oncolytic viruses (ONYX-015). Improved understanding of cancer immunology appears to be opening doors through targeting tumour antigens and upregulation of co-stimulatory molecules with the use of gene therapy. Cellular therapy trials and other approaches involving antiangiogenic factors, Superoxide dismutase and the thymidine kinase gene in SCCHN remain preliminary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Landis SH, Murray T, Bolden S, et al. Cancer statistics 1998. CA Cancer J Clin 1998; 48: 6–29

    Article  PubMed  CAS  Google Scholar 

  2. Von Hoff DD. Head and neck cancer. In: Stein JH, editor. Internal Medicine. New York (NY): Mosby Year Book, 1994: 943–7

    Google Scholar 

  3. Ervin TK, Clark JR, Weichselbaum RR. An analysis of induction and adjuvant chemotherapy in the multidisciplinary treatment of squamous cell carcinoma of the head and neck. J Clin Oncol 1987; 5: 10–20

    PubMed  CAS  Google Scholar 

  4. Vokes EE, Weichselbaum RR, Limppman SM, et al. Head and neck cancer. N Engl J Med 1993; 328: 184–91

    Article  PubMed  CAS  Google Scholar 

  5. Lippman SM, Shin DM. Single and combination chemotherapy for recurrent and/or metastatic head and neck squamous cell carcinoma. Adv Oncol 1998; 14 (3): 16–23

    Google Scholar 

  6. Stell PM, Rawson NSB. Adjuvant chemotherapy in head and neck cancer. Br J Cancer 1990; 61: 779–87

    Article  PubMed  CAS  Google Scholar 

  7. Forastiere AA, Leong T, Murphy B, et al. A phase III trial of high dose paclitaxel + cisplatin + G-CSF versus low dose paclitaxel + cisplatin in patients with advanced squamous cell carcinoma of the head and neck (HNSCC): an Eastern Cooperative Oncology Group trial [abstract 1367]. Proc Am Soc Clin Oncol 1997; 16: 384a

    Google Scholar 

  8. Benner SE, Lippman SM, Huber MH, et al. Phase I study of paclitaxel, cisplatin and ifosfamide in patients with recurrent or metastatic squamous cell cancer of the head and neck. Semin Oncol 1995; 22 Suppl. 12: 22–5

    PubMed  CAS  Google Scholar 

  9. Catimel G, Verweij J, Mattijssen V, et al. Docetaxel (taxotere): an active drug for the treatment of patients with advanced squamous cell carcinoma of the head and neck. Ann Oncol 1994; 5: 533–7

    PubMed  CAS  Google Scholar 

  10. Dreyfuss AI, Clark JR, Norris CM, et al. Docetaxel: an active drug for squamous cell carcinoma of the head and neck. J Clin Oncol 1996; 14: 1672–8

    PubMed  CAS  Google Scholar 

  11. Ebihara S, Fuji H, Sasaki Y, et al. A phase II study of docetaxel (taxotere) in patients with head and neck cancer (HNC) [abstract 1425]. Proc Am Soc Clin Oncol 1997; 16: 399A

    Google Scholar 

  12. Hainsworth JD, Meluch AA, Greco FA. Paclitaxel, carboplatin and long-term continuous infusion of 5-FU in the treatment of upper aerodigestive malignancies: preclinical results of phase II trial. Semin Oncol 1997; 14 Suppl. 19: 38–42

    Google Scholar 

  13. Shin DM, Glisson BS, Khuri FR, et al. Phase II trial of paclitaxel, ifosfamide and cisplatin in patients with recurrent head and neck squamous cell carcinoma. J Clin Oncol 1998; 16: 1325–30

    PubMed  CAS  Google Scholar 

  14. Catimel G, Vermorken JB, Clevel M, et al. A Phase II study of gemcitabine (LY 188011) in patients with advanced squamous cell carcinoma of the head and neck. Ann Oncol 1994; 5: 543–7

    PubMed  CAS  Google Scholar 

  15. Merlano M, Benasso M, Corvo R, et al. Gemcitabine (GEM), cisplatin (PT) and radiotherapy (RT) in squamous cell carcinoma of the head and neck [abstract 1445]. Proc Am Soc Clin Oncol 1997: 405a

  16. Nemunaitis J, Kuhn J. Immune modulation as cancer treatment using gene therapy. BUMC Proc 1999; 12: 231–7

    Google Scholar 

  17. Gleich LL, Gluckman JL, Armstrong S, et al. Alloantigen gene therapy for squamous cell carcinoma of the head and neck: results of a phase I trial. Arch Otolaryngol Head Neck Surg 1998; 124 (10): 1097–104

    PubMed  CAS  Google Scholar 

  18. Schantz SP, Shillitoe EJ, Brown B, et al. Natural killer cell activity and head and neck cancer: a clinical assessment. J Natl Cancer Inst 1986; 77: 869–75

    PubMed  CAS  Google Scholar 

  19. Wanebo HJ, Blackinton D, Turk P, et al. Augmentation of the LAK cell response in head and neck neoplasms by combination IL-2 and INF-alpha. Am J Surg 1991; 162: 384–7

    Article  PubMed  CAS  Google Scholar 

  20. Wanebo HJ, Blackinton D, Kouttab N, et al. Contribution of serum inhibitory factors and immune cellular defects to the depressed cell mediated immunity patients with head and neck cancer. Am J Surg 1993; 166: 389–94

    Article  PubMed  CAS  Google Scholar 

  21. Clayman GL, Taylor DL, Liu FJ, et al. Serum and acute phase protein modulation of the effector phase of lymphokine-activated killer cells. Laryngoscope 1993; 103: 299–307

    Article  PubMed  CAS  Google Scholar 

  22. Tas MP, Simons PJ, Balm FJ, et al. Depressed monocyte polarization and clustering of dendritic cells in patients with head and neck cancer: in vitro restoration of this immunosuppression by thymic hormones. Cancer Immunol Immunother 1993; 36: 108–14

    Article  PubMed  CAS  Google Scholar 

  23. Gallo O, Bianchi S, Giannini A, et al. Correlations between histopathological and biological findings in nasopharyngeal carcinoma and its prognostic significance. Laryngoscope 1991; 101: 487–93

    Article  PubMed  CAS  Google Scholar 

  24. Zong YS, Zhang CO, Zhang F, et al. Infiltrating lymphocytes and accessory cells in nasopharyngeal carcinoma. Jpn J Cancer Res 1993; 84: 900–5

    Article  PubMed  CAS  Google Scholar 

  25. Donaldson RC. Chemoimmunotherapy for cancer of the head and neck. Am J Surg 1973; 126: 507–12

    Article  PubMed  CAS  Google Scholar 

  26. Beuchler M, Muckherji B, Chasin W, et al. High dose Methotrexate with and without BCG therapy in advanced head and neck malignancy. Cancer 1979; 43: 1095–100

    Article  Google Scholar 

  27. Papac R, Minor DR, Rudnick S, et al. Controlled trial of Methotrexate and bacillus Calmette-Guerin therapy for advanced head and neck cancer. Cancer Res 1978; 38: 3150–3

    PubMed  CAS  Google Scholar 

  28. Cunningham TJ, Antemann R, Paonessa D, et al. Adjuvant immuno and/or chemotherapy with neuaminidase-treated autogenous tumor vaccine and bacillus Calmette-Guerin for head and neck cancers. Ann NY Acad Sci 1976; 277: 339–44

    Article  PubMed  CAS  Google Scholar 

  29. Taylor SG, Sisson GA, Bytell DE. Adjuvant chemoimmunotherapy of head and neck cancer. Cancer Res 1979; 68: 297–308

    Google Scholar 

  30. Richman SP, Livingston RB, Gutterman JU, et al. Chemotherapy versus chemo-immunotherapy of head and neck cancer: report of a randomized study. Cancer Treat Rep 1976; 60: 535–9

    PubMed  CAS  Google Scholar 

  31. Amiel JL, Sancho-Garnier H, Vanderbrouck C, et al. First results of a randomized trial on immunotherapy of head and neck tumors. Recent Results Cancer Res 1979; 68: 318–22

    Article  Google Scholar 

  32. Taylor SG, Raynor WJJ, Bytell DE, et al. A randomized trial of adjuvant BCG immunotherapy in head and neck cancer. Arch Otolaryngol 1983; 109: 544–9

    Article  PubMed  Google Scholar 

  33. Olivari AJ, PradierR, Califano L, et al. Levamisole in squamous cell carcinoma of the head and neck. Cancer Treat Rep 1979; 63: 983–90

    PubMed  CAS  Google Scholar 

  34. Sachi M, Snyderman CH, Heo DS, et al. Local adoptive immunotherapy of human head and neck cancer xenografts in nude mice with lymphokine activated killer cells and IL-2. Cancer Res 1990; 50: 3113–8

    Google Scholar 

  35. Whiteside TL, Letessier E, Hirabayashi H, et al. Evidence for local and systemic activation of immune cells by peritumoral injections of IL-2 in patients with advanced head and neck cancer. Cancer Res 1993; 53: 5654–62

    PubMed  CAS  Google Scholar 

  36. Yasamura S, Hirabayashi H, Schwartz D, et al. Human cytotoxic T-cell lines with restricted specificity for squamous cell carcinoma of the head and neck. Cancer Res 1993; 53: 1461–8

    Google Scholar 

  37. Cortesina G, De Stefani A, Giovarelli M, et al. Treatment of recurrent squamous cell carcinoma of the head and neck with low doses of IL-2 injected perilymphatically. Cancer 1988; 61: 2482–5

    Article  Google Scholar 

  38. Slater J, Maclennan KA, Moore J, et al. The phenotypic changes in tumor infiltrating lymphocytes and tumor cells following intra-arterial infusion of IL-2 in patients with squamous cell carcinoma. J Pathol 1995; 176: 167–73

    Article  Google Scholar 

  39. De Stefani A, Valente G, Forni G, et al. Treatment of oral cavity and otopharynx squamous cell carcinoma with perilymphatic IL-2: clinical and pathologic correlation. J Immunother 1995; 19: 125–33

    Article  Google Scholar 

  40. Greenberg PD. Adoptive T-cell therapy of tumors: mechanisms operative in the recognition and elimination of tumor cells. Adv Immunol 1991; 49: 281–355

    Article  PubMed  CAS  Google Scholar 

  41. Doherty PC, Knowles BB, Wettstein PJ. Immunological surveillance of tumor in the context of major histocompatibility restriction of T-cell function. Adv Cancer Res 1984; 42: 1–65

    Article  PubMed  CAS  Google Scholar 

  42. Rosenberg SA, Lotze MT, Yang JC, et al. Experience with the use of high dose IL-2 in the treatment of 652 cancer patients. Ann Surg 1989; 210: 474–85

    Article  PubMed  CAS  Google Scholar 

  43. Aebersold P. Lysis of autologous tumor cells by tumor infiltrating lymphocytes: association with clinical response. J Natl Cancer Inst 1991; 83: 932–8

    Article  PubMed  CAS  Google Scholar 

  44. Wolf G, Hudson J, Peterson K, et al. Lymphocyte subpopulations infiltrating squamous cell carcinomas of the head and neck: correlations with extent of tumor and prognosis. Otolaryngol Head Neck Surg 1986; 95: 142–6

    PubMed  CAS  Google Scholar 

  45. Guo M, Rabin BS, Johnson JT, et al. Lymphocyte phenotypes at tumor margin in patients with head and neck cancer. Head Neck Surg 1987; 9: 65–271

    Article  Google Scholar 

  46. Karrebijin JD, Balm AJ, Knegt PP, et al. Macrophage and dendritic cell infiltration in head and neck squamous cell carcinoma; an immunohistochemical study. Cancer Immunol Immunother 1994; 38 (1): 31–7

    Article  Google Scholar 

  47. Hiratsuka H, Imamura M, Ishii Y, et al. Immunohistologic detection of lymphocyte subpopulations infiltrating human oral cancer with special reference to its clinical significance. Cancer 1984; 53 (11): 2456–66

    Article  PubMed  CAS  Google Scholar 

  48. Hald J, Rasmussen N, Claesson MH. Tumor-infiltrating lymphocytes mediate lysis of autologous squamous cell carcinomas of the head and neck. Cancer Immunol Immunother 1994; 41 (4): 243–50

    Article  Google Scholar 

  49. Snyderman C, Heo D, Chen K, et al. T-cell markers in tumor-infiltrating lymphocytes of head and neck cancer. Head Neck 1989; 11 (4): 331–6

    Article  PubMed  CAS  Google Scholar 

  50. Schwartz RH. A cell culture model for T-lymphocyte clonal anergy. Science 1990; 248: 1349–51

    Article  PubMed  CAS  Google Scholar 

  51. Jenkins MK. The ups and downs of T-cell constimulation. Immunity 1994; 1 (6): 443–6

    Article  PubMed  CAS  Google Scholar 

  52. Heo D, Snyderman C, Gollin SM, et al. Biology, cytogenetics and sensitivity to immunological effector cells of new head and neck squamous cell carcinoma lines. Cancer Res 1989; 49: 5167–75

    PubMed  CAS  Google Scholar 

  53. Whiteside TL, Chikamatsu K, Nagashima S, et al. Antitumor effects of cytolytic T-lymphocytes (CTL) and natural killer (NK) cells in head and neck cancer. Anticancer Res 1996; 16: 2357–64

    PubMed  CAS  Google Scholar 

  54. Sachi M, Vitolo D, Sedelmayr P, et al. Induction of tumor regression in experimental model of human head and neck cancer by human A-LAK cells and IL-2. Int J Cancer 1991; 47: 784–91

    Article  Google Scholar 

  55. Rabinowich H, Vitolo D, Altarac S, et al. Role of cytokines in the adoptive immunotherapy of an experimental model of human head and neck cancer by human IL-2 activated natural killer cells. J Immunol 1993; 149: 340–9

    Google Scholar 

  56. Kita KH, Tachikawa SS, Hori Y, et al. Inhibition of head and neck tumor cell colony growth by lymphokine activated killer cells. Acta Otolaryngol Stockh 1993; 500 Suppl. : 138–41

    Google Scholar 

  57. Squadrelli-Saraceno M, Rivoltini L, Cantu G, et al. Local adoptive immunotherapy of advanced head and neck tumors with LAK cells and interleukin-2. Tumori 1990; 76 (6): 566–71

    PubMed  CAS  Google Scholar 

  58. Iwaka T, Eura M, Fukiage T, et al. Adoptive immunotherapy by intra-arterial infusion of ATLAK or allo-TLAK cells in patients with head and neck cancer. Gan To Kaguku Ryoho 1989; 16: 1438–47

    Google Scholar 

  59. Vitolo D, Vujanovic N, Rahinowich H, et al. Rapid IL-2 induced adherence of human natural killer (NK) cells II. Expression of mRNA for cytokine and IL-2 receptors in adherent NK cells. J Immunol 1992; 151: 1926–37

    Google Scholar 

  60. Young MRI, Schmidt-Pak A, Wright MA, et al. Mechanisms of immune suppression in patients with head and neck cancer: presence of immune suppressive CD34+ cells in cancers that secrete granulocyte-macrophage colony stimulating factor. Clin Cancer Res 1995; 1: 95–103

    PubMed  Google Scholar 

  61. Young MRI, Wright MA, Lozano Y, et al. Mechanisms of immune suppression in patients with head and neck cancer: influence on the immune infiltrate of the cancer. Int J Cancer 1996; 67: 333–8

    Article  PubMed  CAS  Google Scholar 

  62. Garrity T, Pandit R, Wright MA, et al. Increased presence of CD34+ cells in the peripheral blood of head and neck cancer patients and their differentiation into CD1a+ cells. Int J Cancer 1997; 73: 663–9

    Article  PubMed  CAS  Google Scholar 

  63. Resser JR, Carbone DP. Immunotherapy of head and neck cancer. Curr Opin Oncol 1998; 10: 226–32

    Article  PubMed  CAS  Google Scholar 

  64. Lathers DMR, Lubbert E, Wright MA, et al. Dendritic cell differentiation pathways of CD34+ cells from the peripheral blood of head and neck cancer patients. J Leukocyte Biol 1999; 65: 623–8

    PubMed  CAS  Google Scholar 

  65. Nemunaitis J, Fong T, Shabe P, et al. Comparison of serum Interleukin-10 (IL-10) levels between normal volunteers and patients with advanced melanoma. Cancer Invest. In press

  66. Young MRI, Wright MA, Pandit R. Myeloid differentiation treatment to diminish the presence of immune suppressive CD34+ cells within human head and neck squamous cell carcinoma. J Immunol 1997; 159: 990–6

    PubMed  CAS  Google Scholar 

  67. Bernhard H, Disis ML, Heimfeld S, et al. Generation of immunostimulatory dendritic cells from human CD34+ hematopoietic progenitor cells of the bone marrow and peripheral blood. Cancer Res 1995; 55: 1099–104

    PubMed  CAS  Google Scholar 

  68. Caux C, Massacrier C, Dezutter-Dumbuyant C, et al. Human dendritic langerhans cells generated in vitro from CD34+ progenitors can prime naïve CD4+ T-cells and process soluble antigen. J Immunol 1995; 155: 5427–35

    PubMed  CAS  Google Scholar 

  69. Caux C, Massacrier C, Vandervliet B, et al. CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to granulocyte-macrophage colony-stimulating factor plus tumor necrosis factor α: II. Functional analysis. Blood 1997; 90: 1458–70

    PubMed  CAS  Google Scholar 

  70. Mutlu S, Matthews JB, Midda M, et al. MHC antigen expression in human oral squamous carcinoma cell lines. J Pathol 1991; 165: 129–36

    Article  PubMed  CAS  Google Scholar 

  71. Houck JR, Sexton FM, Zajdel G. HLA class I and class II antigen expression on squamous cell carcinoma of the head and neck. Arch Otolaryngol Head Neck Surg 1990; 116: 1181–5

    Article  PubMed  CAS  Google Scholar 

  72. Lang S, Whiteside TL, Lebeau A, et al. Impairment of T-cells activation in head and neck cancer in situ and in vitro: strategies for an immune restoration. Arch Otolaryngol Head Neck Surg 1999; 125: 82–8

    PubMed  CAS  Google Scholar 

  73. Boring CC, Squires TS, Tong T. Cancer statistics. Cancer J Clin 1994; 44: 7–26

    Article  CAS  Google Scholar 

  74. Myers EN, Suen JY, editors. Cancer of the head and neck. 3rd ed. Philadelphia (PA): WB Saunders Co., 1996

    Google Scholar 

  75. Houck JR, Shah TP, Ohlsson-Wilhelm BM, et al. Modulation of human leukocyte antigen class I expression by gamma interferon in head and neck cancer cell lines. Am J Otolaryngol 1988; 9: 217–23

    Article  PubMed  CAS  Google Scholar 

  76. Esteban F, Concha A, Delgado M, et al. Lack of MHC class I antigens and tumors aggressiveness of the squamous cell carcinoma of the larynx. Br J Cancer 1990; 62: 1047–51

    Article  PubMed  CAS  Google Scholar 

  77. Prime SS, Pitigala-Arachchi A, Crane IJ, et al. The expression of cell surface MHC class I heavy and light chain molecules in premalignant and malignant lesions of the oral mucosa. Histopathology 1987; 11: 81–91

    Article  PubMed  CAS  Google Scholar 

  78. Mattijssen V, de Mulder PHM, Schalvijk L, et al. HLA antigen expression in routinely processed head and neck squamous cell carcinoma primary lesions of different sites. Int J Cancer 1991; 6: 95–100

    Article  CAS  Google Scholar 

  79. Crystal RG. Transfer of genes to humans: early lessons and obstacles to success. Science 1995; 270: 404–10

    Article  PubMed  CAS  Google Scholar 

  80. Sacks PG, Taylor DL, Racz T, et al. A multi-cellular tumor steroid model of cellular immunity against head and neck cancer. Cancer Immunol Immunother 1990; 32: 195–200

    Article  PubMed  CAS  Google Scholar 

  81. Arosarena OA, Baranwal S, Strome S, et al. Expression of major histocompatibility complex antigens in squamous cell carcinomas of the head and neck: effects of interferon gene transfer. Otolaryngol Head Neck Surg 1999; 120 (5): 666–71

    Article  Google Scholar 

  82. Matthews JB, Pitigala-Arachchi A, Crane IJ, et al. The relationship between epithelial Ia expression and the inflammatory cell infiltrate during experimental oral carcinogenesis. Virchows Arch A Pathol Anat Histophathol 1988; 413: 521–8

    Article  CAS  Google Scholar 

  83. Nemunaitis J, Fong T, Edelman G, et al. Phase I trial of gamma-interferon (γ-IFN) retroviral vector administered intratumorally to patients with metastatic melanoma. Cancer Gene Ther 1999; 6 (4): 322–30

    Article  PubMed  CAS  Google Scholar 

  84. Nemunaitis J, Fong T, Burrows F, et al. Phase I trial of gamma-interferon (γ-IFN) retroviral vector administered intratumorally with multiple courses in patients with metastatic melanoma. Human Gene Ther 1999; 10 (8): 1289–98

    Article  CAS  Google Scholar 

  85. Fujii S, Huang S, Fong TC, et al. Induction of anti-melanoma-associated antigen systemic immunity on intratumor delivery of interferon-γ retroviral vector in melanoma patients. Cancer Gene Ther. In press

  86. DeBree R, Roos JC, Quak JJ, et al. Clinical imaging of head and neck cancer with 99Tc-labeled monoclonal antibody E48 IgG or F (ab’)2. J Nucl Med 1994; 35: 775–83

    CAS  Google Scholar 

  87. DeBree R, Roos JC, Quak JJ, et al. Radioimmunoscintigraphy and biodistribution of technetium-99m-labeled monoclonal antibody U36 in patients with head and neck cancer. Clin Cancer Res 1995; 1 (6): 591–8

    CAS  Google Scholar 

  88. De Plaen E, Arden K, Traversari C. Structure, chromosome location and expression of 12 genes of the MAGE family. Immunogenetics 1994; 40: 360–9

    Article  PubMed  CAS  Google Scholar 

  89. van der Bruggen P, Traversari C, Chomez P, et al. A gene encoding an antigen recognized by cytolytic T-lymphocytes on a human melanoma. Science 1991; 254: 1643–7

    Article  PubMed  Google Scholar 

  90. De Smet C, Lurquin C, Van der Bruggen P, et al. Sequence and expression pattern of human the MAGE2 gene. Immunogenetics 1994; 39: 121–9

    Article  PubMed  Google Scholar 

  91. Brasseur F, Marchand M, Vanwijck R. Human gene MAGE-1, which codes for a tumor rejection antigen, is expressed by some breast tumors. Int J Cancer 1992; 52: 839–41

    Article  PubMed  CAS  Google Scholar 

  92. Eura M, Ogi K, Chikamatsu K, et al. Expression of the MAGE gene family in human head and neck squamous cell carcinoma. Int J Cancer 1995; 64: 304–8

    Article  PubMed  CAS  Google Scholar 

  93. Soussi T, Legros Y, Lubin R, et al. Multifactorial analysis of p53 alteration in human cancer: a review. Int J Cancer 1994; 57: 1–9

    Article  PubMed  CAS  Google Scholar 

  94. Ciernik IF, Berzofsky JA, Carbone DP. Mutant oncopeptide immunization induces CTL specifically lysing tumor cells endogenously expressing the corresponding intact mutant p53. Hybridoma 1995; 14: 139–42

    Article  PubMed  CAS  Google Scholar 

  95. Lee CT, Ciernik IF, Wu S, et al. Increased immunogenicity of tumors bearing mutant p53 and P1A epitopes after transduction of B7-1 via recombinant adenovirus. Cancer Gene Ther 1996; 3: 238–44

    PubMed  CAS  Google Scholar 

  96. Ropke M, Hald J, Guldberg P, et al. Spontaneous human squamous cell carcinomas are killed by a human cytotoxic T-lymphocyte clone recognizing a wild-type p53-derived peptide. Proc Natl Acad Sci U S A 1996; 93: 14704–7

    Article  PubMed  CAS  Google Scholar 

  97. Damle NK, Klussman K, Linsley PS, et al. Differential costimulatory effects of adhesion molecules B7, ICAM-1, LFA-3 and VCAM-1 on resting and antigen-primed CD4+ and T-lymphocytes. J Immunol 1992; 148: 1985–92

    PubMed  CAS  Google Scholar 

  98. Van Seventer GA, Shimizu Y, Horgan KJ, et al. The LFA-1 ligand ICAM-1 provides an important costimulatory signal for T-cell receptor-mediated activation of resting T-cells. J Immunol 1990; 144: 4579–86

    PubMed  Google Scholar 

  99. Van Seventer GA, Shimizu Y, Horgan KJ, et al. Remote T-cell constimulation via LFA-1/ICAM-1 and CD2/LFA-3: demonstration with immobilized ligand/mAb and implication in monocyte-mediated co-stimulation. Eur J Immunol 1991; 21: 1711–8

    Article  PubMed  Google Scholar 

  100. Webb DS, Mostowski HS, Gerrard TL. Cytokine-induced enhancement of ICAM-1 expression results in increased vulnerability of tumor cells to monocyte-mediated lysis. J Immunol 1991; 146: 3682–6

    PubMed  CAS  Google Scholar 

  101. Dubey C, Croft M, Swain SL. Costimulatory requirements of naïve CD4+ T-cells, ICAM-1 or B7.1 can costimulate naïve CD4+ T-cell activation but both are required for optimum response. J Immunol 1995; 155: 45–7

    PubMed  CAS  Google Scholar 

  102. Guinan EC, Gribben JG, Vicki AB, et al. Pivotal role of the B7: CD28 pathway in transplantation tolerance and tumor immunity. Blood 1994; 10: 3261–82

    Google Scholar 

  103. Dohring C, Angman L, Spangnoli G, et al. T-helper and accessory cell independent cytotoxic responses to human tumor cells transfected with a B7 retroviral vector. Int J Cancer 1994; 57: 754–9

    Article  PubMed  CAS  Google Scholar 

  104. Bain C, Merrouche Y, Puisieux I, et al. B7.1 gene transduction of human renal cell carcinoma cell lines restored the proliferative response and cytotoxic function of allogeneic T-cells. Int J Cancer 1996; 67: 769–76

    Article  PubMed  CAS  Google Scholar 

  105. Ranheim EA, Kipps TJ. Activated T-cells induce expression of B7/BB1 on normal or leukemic B-cells through a CD40-dependent signal. J Exp Med 1993; 177: 925–35

    Article  PubMed  CAS  Google Scholar 

  106. Banchereau J, Bazan F, Blanchard D, et al. The CD40 antigen and its ligand. Ann Rev Immunol 1994; 12: 881–922

    Article  CAS  Google Scholar 

  107. Townsend SE, Alison JP. Tumor rejection after direct costimulation of CD8+ T-cells by B7-transfected melanoma cells. Science 1993; 259: 368–70

    Article  PubMed  CAS  Google Scholar 

  108. Roth JA, Cristiano RJ. Gene therapy for cancer: what have we done and where are we going? J Natl Cancer Inst 1997; 88: 21–39

    Article  Google Scholar 

  109. Addison CL, Braciak T, Ralston R, et al. Intratumoral injection of an adenovirus expressing IL-2 induced regression and immunity in a murine breast cancer model. Proc Natl Acad Sci U S A 1995; 92: 8522–6

    Article  PubMed  CAS  Google Scholar 

  110. Toloza EM, Hunt K, Swisher S, et al. In vivo cancer gene therapy with a recombinant IL-2 adenovirus vector. Cancer Gene Ther 1996; 3 (1): 11–7

    PubMed  CAS  Google Scholar 

  111. O’Malley BWJ, Cope KA, Chen SH, et al. Combination gene therapy for oral cancer in a murine model. Cancer Res 1996; 56: 1737–41

    PubMed  Google Scholar 

  112. O’Malley BW, Sewell DA, Li D, et al. The role of IL-2 in combination adenovirus gene therapy for head and neck cancer. Mol Endocrinol 1997; 11: 667–73

    Article  PubMed  Google Scholar 

  113. O’Malley BW, Li D, Buckner A, et al. Limitation of adenovirus-mediated IL-2 gene therapy for oral cancer. Laryngoscope 1999; 109: 389–95

    Article  PubMed  Google Scholar 

  114. Li D, Jiang W, Bishop JS, et al. Combination surgery and non-viral IL-2 gene therapy head and neck cancer. Clin Cancer Res 1999; 5: 1551–6

    PubMed  CAS  Google Scholar 

  115. Myers JN, Mank-Seymour A, Zitvogel L, et al. Interleukin-2 gene therapy prevents establishment of SCC VII squamous cell carcinomas, inhibits tumor growth, and elicits long-term antitumor immunity in syngeneic C3H mice. Laryngoscope 1998; 108: 261–8

    Article  PubMed  CAS  Google Scholar 

  116. O’Malley BW, Cope KA, Johnson CS, et al. A new immunocompetent murine model for oral cancer. Arch Otolaryngol Head Neck Surg 1997; 123: 20–4

    Article  PubMed  Google Scholar 

  117. Cheng YC, Grill SP, Dutschman GE, et al. Metabolism of 9- (1, 3-dihydroxy-2-proposymethyl) guanine, a new anti-herpes virus compound, in herpes simplex virus-infected cells. J Biol Chem 1983; 258: 12460–4

    PubMed  CAS  Google Scholar 

  118. O’Malley Jr BW, Chen S-H, Schwartz MR, et al. Adenovirus-mediated gene therapy for human head and neck squamous cell cancer in a nude mouse model. Cancer Res 1995; 55: 1080–5

    PubMed  Google Scholar 

  119. Goebel EA, Davidson BL, Graham SM, et al. Tumor reduction in vivo after adenoviral mediated gene transfer of the herpes simplex virus thymidine kinase gene and Ganciclovir treatment in human head and neck squamous cell carcinoma. Otolaryngol Head Neck Surg 1998; 119 (4): 331–6

    Article  PubMed  CAS  Google Scholar 

  120. Thomas SM, Naresh KN, Wagle AS, et al. Preclinical studies on suicide gene therapy for head/neck cancer: A novel method for evaluation of treatment efficacy. Anticancer Res 1998; 18: 4393–8

    PubMed  CAS  Google Scholar 

  121. Sewell DA, Li D, Duan L, et al. Optimizing suicide gene therapy for head and neck cancer. Laryngoscope 1997; 107: 1490–5

    Article  PubMed  CAS  Google Scholar 

  122. Gerutti PA. Pro-oxidant state and tumor promotion. Science 1985; 227: 375–81

    Article  Google Scholar 

  123. Oberley LW. Superoxide dismutase and cancer. In: LW Oberley, editor. Superoxide dismutase. Boca Raton (FL): CRC Press, 1982: 127–65

    Google Scholar 

  124. Zhong W, Oberley LW, Oberley TD, et al. Suppression of the malignant phenotype of human glioma cells by overexpression of manganese Superoxide dismutase. Oncogene 1997; 14: 481–90

    Article  PubMed  CAS  Google Scholar 

  125. Trent JM, Standbridge EJ, McBride HL, et al. Tumorigenicity in human melanoma cell lines controlled by introduction of human chromosome 6. Science 1990; 247: 568–71

    Article  PubMed  CAS  Google Scholar 

  126. Church SL, Grant JW, Ridnour LA, et al. Increased manganese dismutase expression suppresses the malignant phenotype of human melanoma cells. Proc Natl Acad Sci U S A 1993; 90: 3113–7

    Article  PubMed  CAS  Google Scholar 

  127. Li J. Inhibition of growth of human oral cancer cells by transfection of MnSOD cDNA. MS Thesis. Iowa City (IA): The University of Iowa, 1995

  128. Yan T, Oberley LW, Zhong WX, et al. Manganese-containing Superoxide dismutase overexpression causes phenotypic reversion in SV-40-transformed human lung fibroblasts. Cancer Res 1996; 56: 2864–71

    PubMed  CAS  Google Scholar 

  129. Liu R, Oberley TD, Oberley LW. Transfection and expression of MnSOD cDNA decreases tumor malignancy of human oral squamous carcinoma SCC-25 cells. Human Gene Ther 1997; 8: 585–95

    Article  CAS  Google Scholar 

  130. Folkman J. What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 1990; 82: 4–6

    Article  PubMed  CAS  Google Scholar 

  131. Weidner N, Semple JP, Welch WR, et al. Tumor angiogenesis and metastasis — correlation in invasive breast carcinoma. N Engl J Med 1991; 324: 1–8

    Article  PubMed  CAS  Google Scholar 

  132. Russel DS, Rubinstein LJ. Glioblastoma multiform. In: Russel DS, Rubinstein LJ, editors. Pathology of tumors of the nervous system. London: Edward Arnold, 1989: 219–32

    Google Scholar 

  133. Weinstat-Saslow D, Steeg PS. Angiogenesis and colonization in the tumor metastatic process: basic and applied advances. FASEB J 1994; 8: 401–7

    PubMed  CAS  Google Scholar 

  134. Rifkin DB, Kojimba S, Abe M, et al. TGF-β: structure, function and formation. Thromb Hemostasis 1993; 70: 177–9

    CAS  Google Scholar 

  135. Sauter ER, Nesbit M, Watson JC, et al. Vascular endothelial growth factor is a marker of tumor invasion and metastasis in squamous cell carcinoma of the head and neck. Clin Cancer Res 1999; 5: 775–82

    PubMed  CAS  Google Scholar 

  136. Eisma RJ, Spiro JD, Kreutzer DL. Role of angiogenic factors: coexpression of IL-8 and vascular endothelial growth factor in patients with head and neck squamous carcinoma. Laryngoscope 1999; 109: 687–93

    Article  PubMed  CAS  Google Scholar 

  137. Ueda T, Shimada E, Urikawa T. Serum levels of cytokines in patients with colorectal cancer: possible involvement of IL-6 and IL-8 in hematogenous metastasis. J Gastroenterol 1994; 29 (4): 423–9

    Article  PubMed  CAS  Google Scholar 

  138. D’Amato RJ, Loughnan MS, Flynn E, et al. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci U S A 1994; 91: 4082–5

    Article  PubMed  Google Scholar 

  139. Kenyon BM, Browne F, D’Amato RJ. Effects of thalidomide and related metabolites in a mouse corneal model of neovascularization. Exp Eye Res 1997; 64: 971–8

    Article  PubMed  CAS  Google Scholar 

  140. Kotoh T, Dhar DK, Masunaga R, et al. Antiangiogenic therapy of human esophageal cancers with thalidomide in nude mice. Surgery 1999; 125 (5): 536–44

    Article  PubMed  CAS  Google Scholar 

  141. Nguyen M, Tran C, Barsky S, et al. Thalidomide and chemotherapy combination: preliminary results of preclinical and clinical studies. Int J Oncol 1997; 10: 965–9

    PubMed  CAS  Google Scholar 

  142. Fine HA, Loeffler JS, Kyritsia A, et al. A phase II trial of the anti-angiogenic agent, thalidomide, in patients with recurrent high grade gliomas [abstract]. Proc Am Soc Clin Oncol 1997; 16: 385A

    Google Scholar 

  143. Figg WD, Bergan R, Brawley O, et al. Randomized phase II study of thalidomide in androgen-independent prostate cancer (AIPC) [abstract]. Proc Am Soc Clin Oncol 1997; 16: 333A

    Google Scholar 

  144. Gutman M, Szold A, Ravid A, et al. Failure of thalidomide to inhibit tumor growth and angiogenesis in vivo. Anticancer Res 1996; 16: 3673–8

    PubMed  CAS  Google Scholar 

  145. DiPaolo JA, Wenner CE. Thalidomide: effect on Ehrlich ascites tumor cells in vitro. Science 1964; 144: 1583–7

    Article  PubMed  CAS  Google Scholar 

  146. Bauer KS, Dixon SC, Figg WD. Inhibition of angiogenesis by Thalidomide requires metabolic activation, which is species-dependent. Biochem Pharmacol 1998; 55: 1827–34

    Article  PubMed  CAS  Google Scholar 

  147. Santos-Mendoza T, Favila-Castillo L, Oltra A, et al. Thalidomide and its metabolites have no effect on human lymphocyte proliferation. Int Arch Allergy Immunol 1996; 111: 13–7

    Article  PubMed  CAS  Google Scholar 

  148. Bischoff JR, Kirn DH, Williams A, et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 1996; 274: 373–6

    Article  PubMed  CAS  Google Scholar 

  149. Heise C, Sampson-Johannes A, Williams A, et al. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med 1997; 3 (6): 639–45

    Article  PubMed  CAS  Google Scholar 

  150. Nemunaitis J. Phase II trials of intratumoral ONYX-015, and E1B 55kDa gene-deleted adenovirus alone and in combination with cisplatin and 5-FU in patients wit recurrent head and neck cancer [abstract 0–8]. Cancer Gene Ther 1998; 5 (6): S26

    Google Scholar 

  151. Kirn D, Nemunaitis J, Ganly M. A phase II trial of intratumoral injection with an E1B-deleted adenovirus, ONYX-015, in patients with recurrent refractory head and neck cancer [abstract 1509]. Proc ASCO 1998; 1: 391a

    Google Scholar 

  152. Bergsland E, Mani S, Kirn D. Intratumoral injection of ONYX-015 for gastrointestinal tumors metastatic to the liver: a phase I trial [abstract 814]. Proc ASCO 1998; 17: 211a

    Google Scholar 

  153. Liu TJ, Zhang WW, Taylor DL, et al. Growth suppression of human head and neck cancer cells by the introduction of wildtype p53 gene via a recombinant adenovirus. Cancer Res 1994; 43: 3662–7

    Google Scholar 

  154. Xu M, Kumar D, Srinivas S, et al. Parenteral gene therapy with p53 inhibits human breast tumor in vivo through a bystander mechanism without evidence of toxicity. Human Gene Ther 1998; 8: 177–85

    Article  Google Scholar 

  155. Yamamoto T, Kamata N, Kowano H, et al. High incidence of amplification of the epidermal growth factor receptor gene in human squamous carcinoma cell lines. Cancer Res 1998; 46: 414–6

    Google Scholar 

  156. Sheikh MS, Rochefort H, Garcia M. Overexpression of p21 WAF1/CIP1 induces growth arrest, giant cell information and apoptosis in human breast carcinoma cell lines. Oncogene 1995; 11: 1899–905

    PubMed  CAS  Google Scholar 

  157. Mujoo K, Maneval DC, Anderson SC, et al. Adenoviral-mediated p53 tumor suppressor gene therapy of human ovarian carcinoma. Oncogene 1996; 12: 1617–23

    PubMed  CAS  Google Scholar 

  158. Roth JA, Nguyen D, Lawrence DD, et al. Retrovirus-mediated wildtype p53 gene transfer to tumors of patients with lung cancer. Nature Med 1996; 2 (9): 985–99

    Article  PubMed  CAS  Google Scholar 

  159. Swisher SG, Roth JA, Nemunaitis J, et al. Adenoviral-mediated p53 gene transfer in patients with advanced non-small cell lung cancer (NSCLC) [abstract 1659]. Proc ASCO 1998; 17: 431A

    Google Scholar 

  160. Nemunaitis J, Swisher SG, Timmons T, et al. Adenoviral mediated p53 gene transfer in sequence with Cisplatin to tumors of patients with non-small cell lung cancer. J Clin Oncol 2000; 18 (3): 609–22

    PubMed  CAS  Google Scholar 

  161. Clayman G, El-Naggar AK, Lippman SM et al. Adenoviral-mediated p53 gene transfer in patients with advanced recurrent head and neck squamous cell carcinoma. J Clin Oncol 1998; 16 (6): 2221–32

    PubMed  CAS  Google Scholar 

  162. Wilson DR, Merritt JA, Clayman G, et al. Clinical gene therapy strategies, phase I/II results with adenoviral p53 (INGN 201) gene transfer in advanced head and neck and non—small cell lung cancer [abstract 380]. Am Soc Gene Ther 1998: 96A

  163. Nemunaitis J, Bier-Laning CM, Costenla-Figueiras M, et al. Three phase II trials of intratumoral injection with a replication-deficient adenovirus carrying the p53 gene (Ad5CMV-p53) in patients with recurrent/refractory head and neck cancer [abstract 1661]. Proc ASCO 1999; 18: 431a

    Google Scholar 

  164. Agarvala SS, van Osterom A, Petruzelli G, et al. Phase I study of rad/p53 in patients with advanced head and neck cancer (HNC) [abstract 1470]. Proc ASCO 1998; 7: 384A

    Google Scholar 

  165. Balckwell JL, Miller CR, Douglas JT, et al. Retargeting to EGFR enhances adenovirus infection efficiency of squamous cell carcinoma. Arch Otolaryngol Head Neck Surg 1999; 125: 856–63

    Google Scholar 

  166. Nielsen LL, Lipari P, Dell J, et al. Adenovirus-mediated p53 gene therapy and paclitaxel have synergistic efficacy in models of human head and neck, ovarian, prostate and breast cancer. Clin Cancer Res 1998; 4: 835–46

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Ana Petrovich for manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Nemunaitis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nemunaitis, J., O’Brien, J. Biological Approaches to Treatment of Head and Neck Cancer. BioDrugs 13, 359–372 (2000). https://doi.org/10.2165/00063030-200013050-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-200013050-00006

Keywords

Navigation