Skip to main content

Advertisement

Log in

Immunological Mechanisms in the Aetiology of Epilepsy

Implications for Treatment

  • Review Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

About 30 years ago, an autoimmune reaction was hypothesised in animal models of epilepsy and for the genesis of the ‘mirror focus’ in some patients with refractory epilepsy. However, this hypothesis did not attract attention among clinicians. During the 1950s, cortisone and corticotropin appeared to be efficacious in some epileptic syndromes, but the link with the immune system was not made. Furthermore, controlled studies were not rigorously planned and the best dosage and schedule still remain unknown. Later, immune deficits were described in patients with epilepsy, but the origin (disease-related or treatment-related) of these deficits is still open. An immunogenetic predisposition was also described in these patients, but results were often contradictory. During the 1980s, the successful use of intravenous immunoglobulin (IVIg) in childhood epilepsies again suggested a possible autoimmune process in some patients.

During the last few years, specific autoantibodies have been found in Rasmussen disease and other epileptic syndromes. Immunomodulatory treatments (IVIg, plasmapheresis) have been used with significant success in refractory epilepsies, and IVIg is considered by most epileptologists as the first-choice treatment in Rasmussen syndrome.

Recent work has shown that autoantibodies directed against some brain components might interact with ion-gated channels or neurotransmitters and therefore affect the stability of neuronal membranes. Autoimmune mechanisms are considered possible in the process of epileptogenesis. Taking this hypothesis further, immunomodulatory treatment at the time of brain injury (such as by trauma, prolonged seizures or stroke) could offer a preventive approach against epileptogenesis and therefore prevent recurrent seizures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Walker AE. Allergic phenomena as basic mechanisms in epilepsy. In: Jasper HH, Ward Jr AA, Pope A, editors. Basic mechanisms of the epilepsies. London: Churchill, 1969; 812

    Google Scholar 

  2. Lim R, de la Torre JC, Mullan S. Protein and enzyme alterations in experimental brain injury. Arch Neurol 1972; 27: 314–21

    Article  PubMed  CAS  Google Scholar 

  3. Bowen FP. Immunologic reactions after cortical lesions in rabbits. Arch Neurol 1968; 19: 398–402

    Article  PubMed  CAS  Google Scholar 

  4. Proctor-Bowen F, Karpiak S, Gessinger J, et al. Epileptiform activity induced by intraventricular injection of antiserum to synaptosome membrane fraction. Proc Fed Am Soc Exp Biol 1971; 2: 30

    Google Scholar 

  5. Karpiak SE, Bowen FP, Rapport MM. Epileptiform activity induced by antisera to synaptic membrane. Brain Res 1973; 59: 303–10

    Article  PubMed  Google Scholar 

  6. Bowen FP, Kosarova J, Cassella D, et al. Focal epileptogenic activity induced by topical application of antisera to brain actomyosin-like protein. Brain Res 1976; 102: 363–7

    Article  PubMed  CAS  Google Scholar 

  7. Baltz ML, Ettlinger K, Parrish-Pepys MB, et al. Epileptic discharges produced in monkeys by injection of spleen cells from rabbits immunized with monkey brain. J Neurol Sci 1981; 49: 335–40

    Article  PubMed  CAS  Google Scholar 

  8. Karpiak SE, Graf L, Rapport MM. Antiserum to brain gangliosides produces recurrent epileptiform activity. Science 1976; 194: 735–7

    Article  PubMed  CAS  Google Scholar 

  9. Karpiak SE, Mahadik SP, Graf L, et al. Immunological model of epilepsy: seizures induced by antibodies to GM1 ganglioside. Epilepsia 1981; 22: 189–96

    Article  PubMed  CAS  Google Scholar 

  10. Karpiak SE, Huang YL, Rapport MM. Immunological model of epilepsy. Epileptiform activity induced by fragments of antibody to GM1 ganglioside. J Neuroimmunol 1982; 3: 15–21

    Article  PubMed  CAS  Google Scholar 

  11. Rappoport SI, editor. Blood-brain barrier in physiology and medicine. New York: Raven Press, 1976; 316

    Google Scholar 

  12. Sokrab TE, Kalimo H, Johansson BB. Endogenous serum albumin content in brain after short-lasting epileptic seizures. Brain Res 1989; 489: 231–6

    Article  PubMed  CAS  Google Scholar 

  13. Ettlinger G, Lowrie MB. An immunological factor in epilepsy. Lancet 1976; I: 1386

    Article  Google Scholar 

  14. Vlajkovic S, Jankovic BD. Experimental epilepsy in vitro: neuromodulating activity of anti-brain autoantibodies from rats exposed to electroconvulsive shock. Int J Neurosci 1991; 59: 205–11

    Article  PubMed  CAS  Google Scholar 

  15. Lowrie MB, Maccabe JJ, Ettlinger G. The effects of ablations on primary and secondary epileptic discharges in commissure-sectioned Rhesus monkeys. Electroencephalogr Clin Neurophysiol 1978; 44: 23–36

    Article  PubMed  CAS  Google Scholar 

  16. Moumdjian RA, Antel JP, Yong VW Origin of contralateral reactive gliosis in surgically injured rat cerebral cortex. Brain Res 1991; 547: 223–8

    Article  PubMed  CAS  Google Scholar 

  17. Lowenstein DH. Recent advances related to basic mechanisms of epileptogenesis. Epilepsy Res 1996; 11 Suppl.: 45–60

    CAS  Google Scholar 

  18. Hrachovy RA, Frost DJ Jr. Infantile spasms: a disorder of the developing nervous system. In: Kellaway P, Noebels JL, editors. Problems and concepts in developmental neurophysiology. Baltimore (MD): Johns Hopkins University Press, 1989: 131–47

    Google Scholar 

  19. Glaze DG, Zion TE. Infantile spasms. Curr Probl Pediatr 1985; 15: 1–39

    PubMed  CAS  Google Scholar 

  20. Fontana A, Fulpius BW, Cuénoud S. Antibodies against muscle and brain nicotinic acetylcholine receptors in IgA-deficient patients with epilepsy. Adv Cytopharmacol 1979; 3: 287–92

    PubMed  CAS  Google Scholar 

  21. Plioplys AV, Greaves A, Yoshida W. Anti-CNS antibodies in childhood neurologic diseases. Neuropediatrics 1989; 20: 93–102

    Article  PubMed  CAS  Google Scholar 

  22. Xie XK, Tang LO. Observation on anti-brain antibody in serum of 110 epileptics. Clin Med J Engl 1990; 103: 71–5

    CAS  Google Scholar 

  23. Qu ZP, Yu LY, Lu CZ, et al. A preliminary observation on autocholinergic synapse dysfunction in patients with different types of epilepsy. Jpn J Psychiatry Neurol 1992; 46: 401–3

    PubMed  CAS  Google Scholar 

  24. Bartolomei F, Boucraut J, Barrie M, et al. Cryptogenic partial epilepsies with anti-GM1 antibodies: a new form of immune-mediated epilepsy? Epilepsia 1996; 37(10): 922–6

    Article  PubMed  CAS  Google Scholar 

  25. Guillon B, de Ferron E, Feve JR, et al. Simple partial status epilepticus and antiglycolipid IgM antibodies: possible epilepsy of autoimmune origin. Arch Neurol 1997; 54(10): 1194–6

    Article  PubMed  CAS  Google Scholar 

  26. Giometto B, Nicolao P, Macucci M, et al. Temporal-lobe epilepsy associated with glutamic-acid-decarboxylase autoantibodies. Lancet 1998; 352 (9126)

  27. Rogers SW, Hugues TE, Heineman SF, et al. Autoantibodies to glutamate receptor GluR3 in Rasmussen’s encephalitis. Science 1994; 265: 648–51

    Article  PubMed  CAS  Google Scholar 

  28. Nevsimalova S, Tauberova A, Doutlik V, et al. A role of autoimmunity in the etiopathogenesis of Landau-Kleffner syndrome? Brain Dev 1992; 14(5): 342–5

    Article  PubMed  CAS  Google Scholar 

  29. Twyman RE, Gahring LC, Spiess J, et al. Glutamate receptor antibodies activate a subset of receptors and reveal an agonist binding site. Neuron 1995; 14(4): 755–62

    Article  PubMed  CAS  Google Scholar 

  30. Herranz MT, Rivier G, Khamashta MA, et al. Association between antiphospholipid antibodies and epilepsy in patients with systemic lupus erythematosus. Arthritis Rheum 1994; 37: 568–571

    Article  PubMed  CAS  Google Scholar 

  31. Verrot D, San Marco M, Dravet C, et al. Prevalence and signification of antinuclear and anticardiolipin antibodies in patients with epilepsy. Am J Med 1997; 103(1): 33–7

    Article  PubMed  CAS  Google Scholar 

  32. Mackworth-Young CG, Hughes GRV. Epilepsy: an early symptom of systemic lupus erythematosus. J Neurol Neurosurg Psychiatry 1985; 48: 185

    Article  PubMed  CAS  Google Scholar 

  33. Aarli JA. Immunological aspects of epilepsy. Brain Dev 1993; 15(1): 41–9

    Article  PubMed  CAS  Google Scholar 

  34. Iivanainen M, Hietala J, Malkamki M, et al. An association between epileptic seizures and increased serum bacterial antibody levels. Epilepsia 1983; 24: 84–587

    Article  Google Scholar 

  35. Andersen P, Mosekilde L, Hjort T. Antibodies to Escherichia coli and serum immunoglobulin levels in epileptics on long-term anticonvulsant therapy. Clin Exp Immunol 1981; 45: 137–42

    PubMed  CAS  Google Scholar 

  36. Andersen P, Alacam R, Andersen I, et al. Cytomegalovirus antibodies in epileptics receiving diphenylhydantoin. Acta Neurol Scand 1982; 66: 561–7

    Article  PubMed  CAS  Google Scholar 

  37. Bellman MH, Ross EM, Miller DL. Infantile spasms and pertussis immunisation. Lancet 1983; II: 1031–4

    Article  Google Scholar 

  38. Sanders VJ, Felisan SL, Waddell AE, et al. Presence of herpes simplex DNA in surgical tissue from human epileptic seizure foci detected by polymerase chain reaction: preliminary study. Arch Neurol 1997; 54(8): 954–60

    Article  PubMed  CAS  Google Scholar 

  39. Jay V, Hwang P, Hoffman HJ, et al. Intractable seizure disorder associated with chronic herpes infection. HSV1 detection in tissue by the polymerase chain reaction. Childs Nerv Syst 1998; 14(1–2): 15–20

    Article  PubMed  CAS  Google Scholar 

  40. Eeg-Olofsson O, Bergstrom T, Osterland CK, et al. Epilepsy etiology with emphasis on immune dysfunction and neurovirology. Brain Dev 1995; 17 Suppl.: 58–60

    Article  PubMed  Google Scholar 

  41. Beach TG, Woodhurst WB, MacDonald DB, et al. Reactive microglia in hippocampal sclerosis associated with human temporal lobe epilepsy. Neurosci Lett 1995; 191(1–2): 27–30

    Article  PubMed  CAS  Google Scholar 

  42. Thatte U, Dahanukar S. Apoptosis: clinical relevance and pharmacological manipulation. Drugs 1997; 54(4): 511–32

    Article  PubMed  CAS  Google Scholar 

  43. Bird SJ. Clinical and electrophysiologic improvement in Lambert-Eaton syndrome with intravenous immunoglobulin therapy. Neurology 1992; 42: 1422–3

    Article  PubMed  CAS  Google Scholar 

  44. Takigawa T, Yasuda H, Kikkawa R, et al. Antibodies against GM1 gangliosides affect K+ and Na+ current in isolated rat myelinated nerve fibers. Ann Neurol 1995; 37: 436–42

    Article  PubMed  CAS  Google Scholar 

  45. Waxman SG. Sodium channel blockade by antibodies: a new mechanism of neuronal disease? Ann Neurol 1995; 37: 421–3

    Article  PubMed  CAS  Google Scholar 

  46. McEvoy KM, Stiff-man syndrome. Mayo Clin Proc 1991; 66: 300–4

    PubMed  CAS  Google Scholar 

  47. Shmatko VG, Konev VP, Ereniev SI, et al. Morphological and immunological comparisons in epilepsy. Zh Nevropatol Psikhiatr 1991 91: 47–51

    PubMed  CAS  Google Scholar 

  48. Gahring LC, White HS, Skradski SL, et al. Interleukin-1-alpha in the brain is induced by audiogenic seizure. Neurobiol Dis 1997; 3(4): 263–9

    Article  PubMed  CAS  Google Scholar 

  49. de Bock F, Dornand J, Rondouin G. Release of TNF alpha in the rat hippocampus following epileptic seizures and excitotoxic neuronal damage. Neuroreport 1996; 7(6): 1125–9

    Article  PubMed  Google Scholar 

  50. Sundar SK, Becker KJ, Cierpial MA, et al. Intracerebroventricular infusion of interleukin 1 rapidly decreases peripheral cellular immune responses. Proc Natl Acad Sci USA 1989; 86: 6398–402

    Article  PubMed  CAS  Google Scholar 

  51. Giulan D, Chen J, Ingeman JE, et al. The role of mononuclear phagocytes in wound healing after traumatic injury to adult mammalian brain. J Neurosci 1989; 9: 4416–29

    Google Scholar 

  52. Vlajkovic S, Jankovic BD. Experimental epilepsy: electrically and chemically induced convulsions modulate experimental allergic encephalomyelitis and other immune inflammatory reactions in the rat. Int J Neurosci 1990; 54: 165–72

    Article  PubMed  CAS  Google Scholar 

  53. Rowland RR, Tokuda S, Weiss GK, et al. Evidence of immunosuppression in the genetically epilepsy-prone rat. Life Sci 1991; 48: 1821–6

    Article  PubMed  CAS  Google Scholar 

  54. Razani-Boroujerdi S, Rowland RR, Ortiz KA, et al. Evidence of altered T-lymphocyte number and proliferative responses in genetically epilepsy-prone rats. J Neuroimmunol 1992; 37(1–2): 93–7

    Article  PubMed  CAS  Google Scholar 

  55. Carr JA, Ortiz KA, Paxton LL, et al. Alterations in spleen norepinephrine and lymphocyte [3 H]dihydroalprenolol binding site number in genetically epilepsy-prone rats. Brain Behav Immun 1993; 7(2): 113–20

    Article  PubMed  CAS  Google Scholar 

  56. Basaran N, Hincal F, Kansu E, et al. Humoral and cellular immune parameters in untreated and phenytoin- or carbamazepine-treated epileptic patients. Int J Immunopharmacol 1994; 16(12): 1071–7

    Article  PubMed  CAS  Google Scholar 

  57. Bostantjopoulos S, Hatzizisi O, Argyropoulos O, et al. Immunological parameters in patients with epilepsy. Funct Neurol 1994; 9(1): 11–5

    Google Scholar 

  58. Sorrell TC, Forbes IJ. Depression of immune competence by phenytoin and carbamazepine. Clin Exp Immunol 1975; 20: 273–85

    PubMed  CAS  Google Scholar 

  59. Massimo L, Pasino M, Rosanda-Vadale C, et al. Immunological side effects of anticonvulsants. Lancet 1976: I: 860

    Article  Google Scholar 

  60. Pelliccia A, Porro G, Tribalto M, et al. Immunological study of children with primary generalized epilepsy not submitted to anticonvulsant therapy. Preliminary contribution. Neuropsichiatr Infant 1980; 228–229: 781–6

    Google Scholar 

  61. Basaran N, Kansu E, Hincal F Serum immunoglobulins, complement levels and lymphocyte subpopulations in phenytoin-treated epileptic patients. Immunopharmacol Immunotoxicol 1989; 11: 335–46

    Article  PubMed  CAS  Google Scholar 

  62. Basaran N, Hincal F, Kansu E, et al. Humoral and cellular parameters in untreated and phenytoin or carbamazepine treated epileptic patients. Int J Immunopharmacol 1994; 16(12): 1071–7

    Article  PubMed  CAS  Google Scholar 

  63. Tyomin P, Stephany D, Vinogradova T, et al. The influence of anticonvulsants on the immunological status of children with epilepsy. Epilepsia 1995; 36Suppl. 4: 125

    Google Scholar 

  64. Eeg-Olofsson O, Prchal JF, Andermann F. Abnormalities of T-lymphocyte subsets in epileptic patients. Acta Neurol Scand 1985; 72: 140–4

    Article  PubMed  CAS  Google Scholar 

  65. Margaretten NC, Warren RP. Reduced natural killer cell activity and OKT4/OKT8 ratio in epileptic patients. Immunol Invest 1986; 15: 159–67

    Article  PubMed  CAS  Google Scholar 

  66. Lenti C, Masserini C, Peruzzi C, et al. Effects of carbamazepine and valproate on immunological assessment in young epileptic patients. Ital J Neurol Sci 1991; 12(1): 87–91

    Article  PubMed  CAS  Google Scholar 

  67. Pacifici R, Zuccaro P, Iannetti P, et al. Immunologic aspects of vigabatrin in epileptic children. Epilepsia 1995; 36(4): 423–6

    Article  PubMed  CAS  Google Scholar 

  68. Pruneri C, Zamperetti M, Stangherlin ML, et al. Natural killer cell (NK) activity in epileptic patients. Boll Lega Ital Epilessia 1985; 51–52: 241–2

    Google Scholar 

  69. Pacifici R, Paris L, Di Carlo S, et al. Immunologic aspects of carbamazepine treatment in epileptic patients. Epilepsia 1991; 32(1): 122–7

    Article  PubMed  CAS  Google Scholar 

  70. Garcia Rodriguez MC, de la Concha EG, Fontan G, et al. Transient hypogammaglobulinemia in the adult. Functional assessment of T and B lymphocytes. J Clin Lab Immunol 1983; 11: 55–8

    PubMed  CAS  Google Scholar 

  71. Guerra IC, Fawcett WA. Permanent intrinsic B-cell immunodeficiency caused by phenytoin hypersensitivity. J Allergy Clin Immunol 1986; 77: 603–8

    Article  PubMed  CAS  Google Scholar 

  72. Carlander B, Baldy-Moulinier M, Clot J, et al. Reduced peripheral blood B-lymphocytes in untreated epileptics. XVIIth Epilepsy International Congress 1987; 19

  73. Xie X. An immunologie study of patients with epilepsy. Chung Hua Shen Ching Ching Shen Ko Tsa Chih 1990; 23: 182–4, 191-2

    CAS  Google Scholar 

  74. Ambrus M, Hernadi E, Bajtai G. Prevalence of HLA-A1 and HLA-B8 antigens in selective IgA deficiency. Clin Immunol Immunopathol 1977; 7: 311–4

    Article  PubMed  CAS  Google Scholar 

  75. Roberton DM, Colgan T, Ferrante A, et al. IgG subclass concentrations in absolute, partial and transient IgA deficiency in childhood. Pediatr Infect Dis J 1990; 9: S41–S5

    Article  PubMed  CAS  Google Scholar 

  76. Matsuoka H, Okada J, Takahashi T, et al. Immunological study of IgA deficiency during anticonvulsant therapy in epileptic patients. Clin Exp Immunol 1983; 53: 423–8

    PubMed  CAS  Google Scholar 

  77. Slavin BN, Fenton GM, Laundy M, et al. Serum immunoglobulins in epilepsy. J Neurol Sci 1974; 23: 353–7

    Article  PubMed  CAS  Google Scholar 

  78. Seager J, Wilson J, Jamison DL, et al. IgA deficiency, epilepsy, and phenytoin treatment. Lancet 1975; II: 632–5

    Article  Google Scholar 

  79. Bassanini M, Baez A, Sotelo J. Immunoglobulins in epilepsy. J Neurol Sci 1982; 56: 275–81

    Article  PubMed  CAS  Google Scholar 

  80. Badawy AH, Shalaby SA, Abdel-Aal SF. Hydantoin immunosuppression clinical study. J Egypt Soc Parasitai 1991; 21(1): 257–62

    CAS  Google Scholar 

  81. Fontana A, Fulpius BW. Epilepsy, IgA deficiency, histocompatibility antigens and anti-acetylcholine receptor antibodies. In: Wada JA, Penry JK, editors. Advances in Epileptology. Xth Epilepsy International Symposium. New York: Raven Press, 1980: 544–5

    Google Scholar 

  82. Gilhus NE, Aarli J, Thorsby E. HLA antigens in epileptic patients with drug-induced immunodeficiency. Int J Immunopharmacol 1982; 4: 517–20

    Article  PubMed  CAS  Google Scholar 

  83. Ariizumi M, Kuromori N, Utsumi Y, et al. CSF IgG in febrile convulsion and childhood epilepsy. Acta Neurol Scand 1980; Suppl. 79: 79–80

    Google Scholar 

  84. Fontana A, Grob PJ, Sauter R. Immunoglobulin abnormalities in relatives of IgA deficient epileptics. J Neurol 1978; 217: 207–12

    Article  PubMed  CAS  Google Scholar 

  85. Gilhus NE, Aarli JA. Immunoglobulin concentrations in patients with a history of febrile convulsions prior to the development of epilepsy. Neuropediatrics 1981; 12: 314–8

    Article  PubMed  CAS  Google Scholar 

  86. Tartara A, Verri AP, Nespoli L, et al. Immunological findings in epileptic and febrile convulsion patients before and under treatment. Eur Neurol 1981; 20: 306–11

    Article  PubMed  CAS  Google Scholar 

  87. Haldorsen T, Aarli JA. Immunoglobulin concentrations in first-degree relatives of epileptic patients with drug-induced IgA deficiency. Acta Neurol Scand 1977; 56: 608–12

    Article  PubMed  CAS  Google Scholar 

  88. Ariizumi M, Matsuda H, Osawa A, et al. Serum IgA levels in childhood epilepsy. Excerpta Medica 1977; 63: 427

    Google Scholar 

  89. Fontana A, Grob PJ, Sauter R. Immunoglobulin abnormalities in epileptics. In: Meinardi H, Rowan AJ, editors. Advances in epileptology. Amsterdam: Swets & Zeitlinger, 1977: 354–8

    Google Scholar 

  90. Fontana A, Joller H, Skvaril F, et al. Immunological abnormalities and HL antigen frequencies in IgA deficient patients with epilepsy. J Neurol Neurosurg Psych 1978; 41: 593–7

    Article  CAS  Google Scholar 

  91. Shakir RA, Behan PO, Dick H, et al. Metabolism of immunoglobulin A, lymphocyte function, and histocompatibility antigens in patients on anticonvulsivants. J Neurol Neurosurg Psych 1978; 41: 307–11

    Article  CAS  Google Scholar 

  92. Kanoh T, Uchino H. Immunodeficiency and epilepsy. Lancet 1976; 1: 860–1

    Article  PubMed  CAS  Google Scholar 

  93. Dosch HM, Jason J, Gelfand EW. Transient antibody deficiency and abnormal T suppressor cells induced by phenytoin. N Engl J Med 1982; 306: 406–9

    Article  PubMed  CAS  Google Scholar 

  94. Gilhus NE, Aarli JA. The reversibility of phenytoin-induced IgA deficiency. J Neurol 1981; 226: 53–61

    Article  PubMed  CAS  Google Scholar 

  95. Maeoka Y, Hara T, Dejima S, et al. IgA and IgG2 deficiency associated with zonisamide therapy: a case report. Epilepsia 1997; 38(5): 611–5

    Article  PubMed  CAS  Google Scholar 

  96. Talesnik E, Rivero SJ, Gonzalez B. Serum IgA deficiency induced by prolonged phenytoin treatment. Rev Invest Clin 1989; 41: 331–5

    PubMed  CAS  Google Scholar 

  97. Kondo N, Takao A, Tomatsu S, et al. Suppression of IgA production by lymphocytes induced by diphenylhydantoin. J Invest Allergol Clin Immunol 1994; 4(5): 255–7

    CAS  Google Scholar 

  98. Aarli JA. Drug-induced IgA deficiency in epileptic patients. Arch Neurol 1976; 33: 296–9

    Article  PubMed  CAS  Google Scholar 

  99. Ostergaard PA. Clinical and immunological features of transient IgA deficiency in children. Clin Exp Immunol 1980; 40: 561–4

    PubMed  CAS  Google Scholar 

  100. Plebani A, Ugazio AG, Monafo V, et al. Clinical heterogeneity and reversibility of selective immunoglobulin A deficiency in 8O children. Lancet 1986; 1: 829–31

    Article  PubMed  CAS  Google Scholar 

  101. Sorrell TC, Forbes IJ. Depression of immune competence by phenytoin and carbamazepine. Clin Exp Immunol 1975; 20: 273–85

    PubMed  CAS  Google Scholar 

  102. Aarli JA, Fontana A. Immunological aspects of epilepsy. Epilepsia 1980; 21: 451–7

    Article  PubMed  CAS  Google Scholar 

  103. Gilhus NE, Aarli JA. Respiratory disease and nasal immunoglobulin concentrations in phenytoin-treated epileptic patients. Acta Neurol Scand 1981; 63(1): 34–43

    Article  PubMed  CAS  Google Scholar 

  104. Gilhus NE, Strandjord RE, Aarli JA. Respiratory disease in patients with epilepsy on single-drug therapy with carbamazepine or phenobarbital. Eur Neurol 1982; 21: 284–88

    Article  PubMed  CAS  Google Scholar 

  105. Lenti C, Masserini C, Peruzzi C, et al. Effects of carbamazepine and valproate on immunological assessment in young epileptic patients. Ital J Neurol Sci 1991; 12: 87–91

    Article  PubMed  CAS  Google Scholar 

  106. Paris L, Giardina M, Pacifici R, et al. Epileptic patients refractory to drug therapy. Ital J Neurol Sci 1991; 12(5): 447–51

    Article  PubMed  CAS  Google Scholar 

  107. Duse M, Tiberti S, Plebani A, et al. IgG2 deficiency and intractable epilepsy of childhood. Monogr Allergy 1986; 20: 128–34

    PubMed  CAS  Google Scholar 

  108. Dalla Bernadina B, Andrighetto G, Fontana E, et al. Intravenous gammaglobulin in early childhood intractable epilepsies. XVIIth Epilepsy International Symposium, 1987; Jerusalem: 29

  109. Galeone D, Torelli D, Panaro A, et al. High-dose intravenous immunoglobulins therapy in children with intractable epilepsy associated with IgG2 deficiency. XVIIth Epilepsy International Symposium, 1987; Jerusalem, 44

  110. Gilhus NE, Lea T. Carbamazepine: effect on IgG subclasses in epileptic patients. Epilepsia 1988; 29: 317–20

    Article  PubMed  CAS  Google Scholar 

  111. Gilhus NE, Lea T. IgG subclasses in epileptic patients treated with phenytoin. J Neurol 1989; 236: 149–52

    Article  PubMed  CAS  Google Scholar 

  112. Wu HM, Liu CS, Sun MH, et al. Effects of lamotrigine on immunologic aspects in 20 patients with refractory epilepsy. Epilepsia 1997; 38Suppl. 3: 79

    Google Scholar 

  113. Greenberg DA, Durner M, Shinnar S, et al. Association of HLA class II alleles in patients with juvenile myoclonic epilepsy compared with patients with other forms of adolescent-onset generalized epilepsy. Neurology 1996; 47(3): 750–5

    Article  PubMed  CAS  Google Scholar 

  114. Fichsel H, Kessler M. HLA in primary generalized and partial epilepsy. In: Akimoto H, Kazamatsuri H, Seino M, et al. editors. Advances in Epileptology. XIIIth Epilepsy International Symposium. New York: Raven Press, 1982; 91–2

    Google Scholar 

  115. Eeg-Olofsson O, Soefwenberg J, Wigertz A. HLA and epilepsy: an investigation of different types of epilepsy in children and their families. Epilepsia 1982; 23: 27–34

    Article  PubMed  CAS  Google Scholar 

  116. Minev M, Martinova F, Belopitova L. On the association of the HLA system with epilepsy in children. Epilepsia 1987; 28: 74–6

    Article  PubMed  CAS  Google Scholar 

  117. Van Engelen BG, de Waal LP, Weemaes CM, et al. Serologic HLA typing in cryptogenic Lennox-Gastaut syndrome. Epilepsy Res 1994; 17(1): 43–7

    Article  PubMed  Google Scholar 

  118. van Rijckevorsel K, Delire M. HLA in severe epilepsy and response to IVIG treatment. Epilepsia 1994; 35Suppl. 7: 11

    Google Scholar 

  119. Weissbecker KA, Durner M, Janz D, et al. Confirmation of linkage between juvenile myoclonic epilepsy locus and the HLA region of chromosome 6. Am J Med Genet 1991; 38(1): 32–6

    Article  PubMed  CAS  Google Scholar 

  120. Delgado-Escuota AV, Serratosa JM, Liu A, et al. Progress in mapping human epilepsy genes. Epilepsia 1994; 35Suppl. 1: 29–40

    Article  Google Scholar 

  121. Klein R, Livingston S. The effect of adrenocorticotropic hormone in epilepsy. J Pediatr 1950; 37: 733–42

    Article  PubMed  CAS  Google Scholar 

  122. Sorel L, Dusaucy-Bauloye A. Apropos de 21 cas d’hypsarythmia de Gibbs: son traitement spectaculaire par 1’ACTH. Acta Neurol Psychiatr Belg 1958; 58: 130–41

    PubMed  CAS  Google Scholar 

  123. Hart YM, Cortez M, Andermann F, et al. Medical treatment of Rasmussen’s syndrome (chronic encephalitis and epilepsy): effect of high-dose steroids or immunoglobulins in 19 patients. Neurology 1994; 44(6): 1030–6

    Article  PubMed  CAS  Google Scholar 

  124. Lerman P, Lerman-Sagie T, Kivity S. Effect of early corticosteroid therapy for Landau-Kleffner syndrome. Dev Med Child Neurol 1991; 33(3): 257–60

    Article  PubMed  CAS  Google Scholar 

  125. Hrachovy RA, Frost JD, Kellaway P, et al. A controlled study of ACTH therapy in infantile spasms. Epilepsia 1980; 21: 631–6

    Article  PubMed  CAS  Google Scholar 

  126. Glaze DG, Hrachovy RA, Frost JD, et al. Prospective study of outcome of infants with infantile spasms treated during controlled studies of ACTH and prednisone. J Pediatr 1988; 112(3): 389–96

    Article  PubMed  CAS  Google Scholar 

  127. Rijkonen RS, Soderstrom S, Vanhala R, et al. West syndrome: cerebrospinal fluid nerve growth factor and effect of ACTH. Pediatr Neurol 1997: 17(3): 224–9

    Article  Google Scholar 

  128. Joels M, de Kloet ER. Mineralocorticoid and glucocorticoid receptors in the brain. Implications for ion permeability and transmitter systems. Prog Neurobiol 1994; 43(1): 1–36

    Article  PubMed  CAS  Google Scholar 

  129. Martin MG, WU SV, Walsh JH. Hormonal control of intestinal Fc receptor gene expression and immunoglobulin transport in suckling rats. J Clin Invest 1993; 91(6): 2844–9

    Article  PubMed  CAS  Google Scholar 

  130. Calixto Gonzalez E, Brailowsky S. Neurosteroids. Neuromodulators of cerebral excitability. Gac Med Mex 1998; 134(1): 69–84

    PubMed  CAS  Google Scholar 

  131. Baram TZ. Pathophysiology of massive infantile spasms: perspective on the putative role of the brain adrenal axis. Ann Neurol 1993; 33: 231–6

    Article  PubMed  CAS  Google Scholar 

  132. Hollrigel GS, Chen K, Baram TZ, et al. The pro-convulsant actions of corticotropin-releasing hormone in the hippocampus of the rat. Neuroscience 1998; 84(1): 71–9

    Article  PubMed  CAS  Google Scholar 

  133. Pieretti S, DI Giannuario A, Loizzo A, et al. Dexamethasone prevents epileptiform activity induced by morphine in in vivo and in vitro experiments. J Pharmacol Exp Ther 1992; 263(2): 830–9

    PubMed  CAS  Google Scholar 

  134. Crosley CJ, Richman RA, Thorpy MJ. Evidence for cortisol-in-dependent anticonvulsant activity of adrenocorticotropic hormone in infantile spasms. Ann Neurol 1980; 8(2): 220

    Google Scholar 

  135. Farwell J, Milstein J, Opheim K, et al. Adrenocorticotropic hormone controls infantile spasms independently of Cortisol stimulation. Epilepsia 1984; 25(5): 605–8

    Article  PubMed  CAS  Google Scholar 

  136. Heiskala H. CSF ACTH and beta-endorphin in infants with West syndrome and ACTH therapy. Brain Dev 1997; 19(5): 339–42

    Article  PubMed  CAS  Google Scholar 

  137. Baram TZ, Mitchell WG, Hanson RA, et al. Cerebrospinal fluid corticotropin and cortisol are reduced in infantile spasms. Pediatr Neurol 1995; 13(2): 108–10

    Article  PubMed  CAS  Google Scholar 

  138. Andrews PI, Dichter MA, Berkovic SF, et al. Plamapheresis in Rasmussen’s encephalitis. Neurology 1996; 46(1): 242–6

    Article  PubMed  CAS  Google Scholar 

  139. Campbell M, Krauss GL, Niedermeyer E. Treatment of Rasmussen’s syndrome with seizures and aphasia with I.V. cyclophosphamide therapy. Epilepsia 1994; 35Suppl 8: 50

    Google Scholar 

  140. Dabbagh O, Gascon G, Crowell J, et al. Intraventricular interferon-alpha stops seizures in Rasmussen’s encephalitis: a case report. Epilepsia 1997; 38(9): 1045–9

    Article  PubMed  CAS  Google Scholar 

  141. Andersson VG, Björk L, Skansen-Saphir U, et al. Down-regulation of cytokine production and interleukin-2 receptor expression by pooled human IgG. Immunology 1993; 79: 211–6

    PubMed  CAS  Google Scholar 

  142. Dwyer JM. Manipulating the immune system with immune globulin. N Engl J Med 1992; 326: 107–16

    Article  PubMed  CAS  Google Scholar 

  143. Péchadre JC, Sauvezie B, Osier C, et al. Traitement des encéphalopathies épileptiques de l’enfant par les gammaglobulines. Rev EEG Neurophysiol 1977; 7: 443–7

    Google Scholar 

  144. Ariizumi M, Shiira H, Hibio S, et al. High-dose gammaglobulin for intractable childhood epilepsy. Lancet 1983; II: 162–3

    Article  Google Scholar 

  145. Sandstedt P, Kostulas V, Larsson LE. Intravenous gammaglobulin for post-encephalitic epilepsy. Lancet 1984; II: 1154–5

    Article  Google Scholar 

  146. Plebani A, Duse M, Tiberti S, et al. Intravenous gamma-globulin therapy and serum IgG subclass levels in intractable childhood epilepsy. Monogr Allergy 1988; 23: 204–15

    PubMed  CAS  Google Scholar 

  147. van Rijckevorsel K, Delire M, Sindic CJM, et al. Intravenous immunoglobulins in intractable epilepsy. Adv Epileptol 1989; 17: 336–9

    Google Scholar 

  148. van Rijckevorsel K, Delire M, Schmitz-Moorman W, et al. Treatment of refractory epilepsy with intravenous immunoglobulins. Results of the first double-blind/dose finding clinical study. Int J Clin Lab Res 1994; 24: 162–6

    Article  Google Scholar 

  149. Walsh PJ. Treatment of Rasmussen’s syndrome with intravenous gammaglobulin. In: Andermann F, editor. Chronic encephalitis and epilepsy: Rasmussen’s syndrome. Boston: Butterworth-Heinemann 1991; 201–4

    Google Scholar 

  150. Wise MS, Rutledge SL, Kuzniecky RI. Rasmussen syndrome and long-term response to gamma globulin. Pediatr Neurol 1996; 14(2): 149–52

    Article  PubMed  CAS  Google Scholar 

  151. Carabello R, Tenembaum S, Cers’osimo R, et al. Rasmussen syndrome. Rev Neurol 1998; 26(154): 978–83

    Google Scholar 

  152. Fayad MN, Choueiri R, Mikati M. Landau-Kleffner syndrome: consistent response to repeated intravenous γ-globulin doses: a case report. Epilepsia 1997; 38(4): 489–94

    Article  PubMed  CAS  Google Scholar 

  153. Lagae LG, Silberstein J, Gillis PL, et al. Successful use of intravenous immunoglobulins in Landau-Kleffner syndrome. Pediatr Neurol 1998; 18(2): 165–8

    Article  PubMed  CAS  Google Scholar 

  154. Ariizumi M, Hibio S, Ogawa K, et al. Comparative study on non-treated and pepsin-treated immunoglobulin therapy for idiopathic Lennox syndrome. Brain Dev 1984; 6: 422–3

    Google Scholar 

  155. Amran D, Renz H, Lack G, et al. Suppression of cytokine-dependent human T-cell proliferation by intravenous immunoglobulin. Clin Immunol Immunopathol 1994; 73: 180–6

    Article  PubMed  CAS  Google Scholar 

  156. Yu Z, Lennon VA. Mechanism of intravenous immune globulin therapy in antibody-mediated autoimmune diseases. N Engl J Med 1999; 340(3): 227

    Article  PubMed  CAS  Google Scholar 

  157. Masson PL. Elimination of infectious antigens and increase of IgG catabolism as possible modes of action of IVIg. J Autoimmun 1993; 6: 683–9

    Article  PubMed  CAS  Google Scholar 

  158. Van Engelen BG, Renier WO, Weemaes CM, et al. Cerebrospinal fluid examinations in cryptogenic West and Lennox-Gastaut syndrome before and after intravenous immunoglobulin administration. Epilepsy Res 1994; 18(2): 139–47

    Article  PubMed  Google Scholar 

  159. Hirayama H, Kurimoto T, Wada S, et al. Antiepileptic effects of globulin-N, an intact human immunoglobulin and its tissue-distribution in kindled cats. Int J Clin Pharmacol Ther Toxicol 1986; 24(3): 109–22

    PubMed  CAS  Google Scholar 

  160. Aarli JA, Aparicio S, Lumsden E, et al. Binding of normal human IgG to myelin sheaths, glia and neurons. Immunology 1976; 28: 1171–85

    Google Scholar 

  161. Rodriguez M, Lennon VA. Immunoglobulin promote remyelination in the central nervous system. Ann Neurol 1990; 27: 110–7

    Article  Google Scholar 

  162. Hibio S, Michihiro N, Ogawa K, et al. Clinical effects and serum immunoglobulin changes following non-treated immunoglobulin administration in West syndrome. Brain Dev 1985; 7(2): 183

    Google Scholar 

  163. van Rijckevorsel K, Delire M, Rucquoy-Ponsar M. Treatment of idiopathic West and Lennox-Gastaut syndromes by intravenous administration of human polyvalent immunoglobulins. Eur Arch Psychiatr Neurol Sci 1986; 236: 119–22

    Article  Google Scholar 

  164. Baldy-Moulinier M, Parayre-Chanez MS, Echenne B, et al. Use of intravenous immunoglobulins in treatment of West and Lennox-Gastaut syndromes. XVIIth Epilepsy International Symposium, 1987; Jerusalem, 19

  165. Schwartz SA, Gordon KE, Johnston MV, et al. Use of intravenous immune globulin in the treatment of seizure disorders. J Allergy Clin Immunol 1989; 84: 603–7

    Article  PubMed  CAS  Google Scholar 

  166. Fois A, Vascotto M. Use of intravenous immunoglobulins in drug-resistant epilepsy. Childs Nerv Syst 1990; 6: 400–5

    Article  PubMed  CAS  Google Scholar 

  167. Sterio M, Gebauer E, Vucicevic G, et al. Intravenous immunoglobulin in the treatment of malignant epilepsy in children. Wien Klin Wochenschr 1990; 102: 230–3

    PubMed  CAS  Google Scholar 

  168. Ilium N, Taudorf K, Heilmann C, et al. Intravenous immunoglobulin: a single-blind trial in children with Lennox-Gastaut syndrome. Neuropediatrics 1990; 21: 87–90

    Article  Google Scholar 

  169. Etzioni A, Jaffe M, Pollack S, et al. High dose intravenous gamma-globulin in intractable epilepsy of childhood. Eur J Pediatr 1991; 150: 681–3

    Article  PubMed  CAS  Google Scholar 

  170. Echenne B, Dulac O, Parayre-Chanez MJ, et al. Treatment of infantile spasms with intravenous gamma-globulins. Brain Dev 1991; 13: 313–9

    Article  PubMed  CAS  Google Scholar 

  171. Gross-Tsur V, Shalev RS, Kazir E, et al. Intravenous high-dose gammaglobulins for intractable childhood epilepsy. Acta Neurol Scand 1993; 88(3): 204–9

    Article  PubMed  CAS  Google Scholar 

  172. Voit T. High-dose immunoglobulin therapy of epilepsy in children. Infusionsther 1993; 20Suppl. 1: 146–9

    Google Scholar 

  173. Van Engelen BG, Renier WO, Weemaes CM, et al. High-dose intravenous immunoglobulin treatment in cryptogenic West and Lennox-Gastaut syndrome; an add-on therapy. Eur J Pediatr 1994; 153(10): 762–9

    Article  PubMed  Google Scholar 

  174. Munn R, Doucette J, Connolly M, et al. Controlled study of intravenous immunoglobulin in children with intractable generalized epilepsy. Epilepsia 1995; 36Suppl. 4: 106

    Google Scholar 

  175. Nieto M, Candau R, Rufo M, et al. Intravenous immunoglobulin in severe myoclonic epilepsy of infancy. Epilepsia 1996; 37Suppl. 4: 102

    Google Scholar 

  176. Turquay S, Baskin E, Dener S, et al. Immune globulin treatment in intractable epilepsy of childhood. Turk J Pediatr 1996; 38(3): 301–5

    Google Scholar 

  177. Tyomin P, Krapivkine A, Perminov V, et al. High dose intravenous immune globulin (IVIG) in the treatment of infantile spasms and Lennox-Gastaut syndrome. Epilepsia 1997; 38(S3): 39

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenou van Rijckevorsel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Rijckevorsel, K. Immunological Mechanisms in the Aetiology of Epilepsy. BioDrugs 12, 115–127 (1999). https://doi.org/10.2165/00063030-199912020-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-199912020-00003

Keywords

Navigation