Skip to main content

Advertisement

Log in

Cytokine-Based Approaches to the Treatment of Multidrug-Resistant Tuberculosis

  • Review Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

The most disturbing aspect of the current epidemic of tuberculosis (TB) is the appearance of large numbers of strains of Mycobacterium tuberculosis that are resistant to one or more of the first-line agents used to treat the disease. Mortality associated with a multidrug-resistant strain of tuberculosis (MDR-TB) infection is reported to be extremely high, in many cases no different from the mortality of tuberculosis in the pre-antibiotic era.

Infection control measures have limited the spread of MDR-TB. However, many outbreaks over the last several years have created a large reservoir of MDR-TB infection. In order to treat the cases of MDR-TB that are occurring now and which will undoubtedly occur in the future, new approaches to treatment will be needed.

Recent research into the immunopathogenesis of tuberculosis has provided insight into the important constituents of the host immune system needed to control the infection in vivo. These elements include CD4+ and CD8+ T cells as well as cytokines such as interferon gamma (IFNγ), interleukin-12 (IL-12), and tumour necrosis factor (TNF).

IL-2, IFNγ and M. vaccae vaccination have all shown promising effects in small preliminary studies. Evidence suggests that TNF antagonists and IL-12 may also prove useful in the treatment of drug-susceptible TB and MDR-TB.

Further studies are needed to determine the precise role of these recombinant proteins in the treatment of TB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Raviglione MC, SniderJr, DE, Kochi A. Global epidemiology of tuberculosis. Morbidity and mortality of a worldwide epidemic [see comments]. JAMA 1995; 273(3) 220–6

    Article  PubMed  CAS  Google Scholar 

  2. Cohn DL, Bustreo F, Raviglione MC. Drug-resistant tuberculosis: review of the worldwide situation and the WHO/WATLD) Global Surveillance Project. International Union Against Tuberculosis and Lung Disease. Clin Infect Dis 1997; 24 Suppl. l: S121–30

    Article  Google Scholar 

  3. Frieden TR, Fujiwara PI, Washko RM, et al. Tuberculosis in New York City - turning the tide. N Engl J Med 1995; 333(4): 229–33

    Article  PubMed  CAS  Google Scholar 

  4. WHO. THE WHO/1UATLD) global project on anti-tuberculosis drug resistance surveillance. Anti-tuberculosis drug resistance in the world. Geneva: World Health Organization, 1997

    Google Scholar 

  5. Bass JB,Jr.,Farer LS, Hopewell PC, et al. Treatment of tuberculosis and tuberculosis infection in adults and children. American Thoracic Society and The Centers for Disease Control and Prevention. Am J Respir Crit Care Med 1994; 149(5): 1359–74

    PubMed  Google Scholar 

  6. Goble M, Iseman MD, Madsen LA, et al. Treatment of 171 patients with pulmonary tuberculosis resistant to isoniazid and rifampin. N Engl J Med 1993; 328(8): 527–32

    Article  PubMed  CAS  Google Scholar 

  7. Park MM, Davis AL, Schluger NW, et al. Outcome of MDR-TB patients, 1983-1993. Prolonged survival with appropriate therapy. Am J Respir Crit Care Med 1996; 153(1): 317–24

    PubMed  CAS  Google Scholar 

  8. Iseman MD. Treatment of multidrug-resistant tuberculosis. N Engl J Med 1993; 329(11): 784–91

    Article  PubMed  CAS  Google Scholar 

  9. Mahmoudi A, Iseman MD. Pitfalls in the care of patients with tuberculosis. Common errors and their association with the acquisition of drug resistance. JAMA 1993; 270(1): 65–8

    Article  PubMed  CAS  Google Scholar 

  10. Whalen C, Horsburgh CR, Horn D, et al. Accelerated course of human immunodeficiency virus infection after tuberculosis. Am J Respir Crit Care Med 1995; 151(1): 129–35

    PubMed  CAS  Google Scholar 

  11. Goletti D, Weissman D, Jackson RW, et al. Effect of Mycobacterium tuberculosis on HIV replication. Role of immune activation. J Immunol 1996; 157(3): 1271–8

    PubMed  CAS  Google Scholar 

  12. Nakata K, Rom WN, Honda Y, et al. Mycobacterium tuberculosis enhances human immunodeficiency virus-1 replication in the lung. Am J Respir Care Med 1997; 155(3): 996–1003

    CAS  Google Scholar 

  13. Shattock RJ, Friedland JS, Griffin GE. Phagocytosis of Mycobacterium tuberculosis modulates human immunodeficiency virus replication in human monocytic cells. J Gen Virol 1994; 75 (Pt 4): 849–56

    Article  PubMed  CAS  Google Scholar 

  14. Garrait V, Cadranel J, Esvant H, et al. Tuberculosis generates a microenvironment enhancing the productive infection of local lymphocytes by HIV. J Immunol 1997; 159(6): 2824–30

    PubMed  CAS  Google Scholar 

  15. Schluger N, Rom W. The host immune response to tuberculosis. Am J Respir Care Med 1998; 157(2): 679–91

    CAS  Google Scholar 

  16. Schlesinger LS. Role of mononuclear phagocytes in M. tuberculosis pathogenesis. J Investing Med 1996; 44(6): 312–23

    CAS  Google Scholar 

  17. Flesch IE, Kaufmann SH. Attempts to characterize the mechanisms involved in mycobacterial growth inhibition by gamma-interferon-activated bone marrow macrophages. Infect Immun 1988; 56(6): 1464–9

    PubMed  CAS  Google Scholar 

  18. Nicholson S, Bonecini-Almeida MdG, Lapa e Silva JR, et al. Inducible nitricoxide synthase in pulmonary alveolar macrophages from patients with tuberculosis. J Exp Med 1996; 183(5): 2293–302

    Article  PubMed  CAS  Google Scholar 

  19. Ehrt S, Shiloh MU, Ruan J, et al. A novel antioxidant gene from Mycobacterium tuberculosis. J Exp Med 1997; 186(11): 1885–96

    Article  PubMed  CAS  Google Scholar 

  20. Kumararatne DS. Tuberculosis and immunodeficiency - of mice and men [editorial]. Clin Exp Immunol 1997; 107(1): 11–4

    Article  PubMed  CAS  Google Scholar 

  21. Bermudez LE. Differential mechanisms of intracellular killing of Mycobacterium avium and Listeria monocytogenes by activated human and murine macrophages. The role of nitric oxide. Clin Exp Immunol 1993; 91(2): 277–81

    Article  PubMed  CAS  Google Scholar 

  22. Nibbering PH, Yoshida SI, van den Barselaar MT, et al. Bacteriostatic activity of BCG/PPD-activated macrophages against Mycobacterium fortuitum does not involve reactive nitrogen or oxygen intermediates. Scand J Immunol 1994; 40(2): 187–94

    Article  PubMed  CAS  Google Scholar 

  23. Rhoades ER, Orme IM. Susceptibility of a panel of virulent strains of Mycobacterium tuberculosis to reactive nitrogen intermediates. Infect Immun 1997; 65(4): 1189–95

    PubMed  CAS  Google Scholar 

  24. Romagnani S. The Th1/Th2 paradigm. Immunol Today 1997; 18(6): 263 6

    Article  PubMed  Google Scholar 

  25. Yamamura M, Uyemura K, Deans RJ, et al. Defining protective responses to pathogens: cytokine profiles in leprosy lesions. Science 1991; 254(5029): 277–9

    Article  PubMed  CAS  Google Scholar 

  26. Allen JE, Maizels RM. Th1-Th2: reliable paradigm or dangerous dogma? [see comments]. Immunol Today 1997; 18(8): 387–92

    Article  PubMed  CAS  Google Scholar 

  27. Surcel HM, Troye-Blomberg M, Paulie S, et al. Th1/Th2 profiles in tuberculosis, based on the proliferation and cytokine response of blood lymphocytes to mycobacterial antigens. Immunology 1994; 81(2): 171–6

    PubMed  CAS  Google Scholar 

  28. Zhang M, Gong J, Iyer DV, et al. T cell cytokine responses in persons with tuberculosis and human immunodeficiency virus infection. J Clin Invest 1994; 94(6) 2435–42

    Article  PubMed  CAS  Google Scholar 

  29. Condos R, Rom WN, Liu YM, et al. Local immune responses correlate with presentation and outcome in tuberculosis. Am J Respir Crit Care Med 1998; 157 (3 Pt 1): 729–35

    PubMed  CAS  Google Scholar 

  30. Sodhi A, Gong J, Silva C, et al. Clinical correlates of interferon gamma production in patients with tuberculosis. Clin Infect Dis 1997; 25(3): 617–20

    Article  PubMed  CAS  Google Scholar 

  31. Lin Y, Zhang M, Hofman FM, et al. Absence of a prominent Th2 cytokine response in human tuberculosis. Infect Immun 1996; 64(4): 1351–6

    PubMed  CAS  Google Scholar 

  32. Toossi Z, Gogate P, Shiratsuchi H, et al. Enhanced production of TGF-beta by blood monocytes from patients with active tuberculosis and presence of TGF-beta in tuberculous granulomatous lung lesions. J Immunol 1995; 154(1): 465–73

    PubMed  CAS  Google Scholar 

  33. Toossi Z, Young TG, Averill LE, et al. Induction of transforming growth factor beta 1 by purified protein derivative of Mycobacterium tuberculosis. Infect Immun 1995; 63(1) 224–8

    PubMed  CAS  Google Scholar 

  34. Cooper AM, Dalton DK, Stewart TA, et al. Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med 1993; 178(6): 2243–7

    Article  PubMed  CAS  Google Scholar 

  35. Jaffe HA, Buhl R, Mastrangeli A, et al. Organ specific cytokine therapy. Local activation of mononuclear phagocytes by delivery of an aerosol of recombinant interferon-gamma to the human lung. J Clin Invest 1991; 88(1): 297–302

    Article  PubMed  CAS  Google Scholar 

  36. Holland SM, Eisenstein EM, Kuhns DB, et al. Treatment of refractory disseminated nontuberculous mycobacterial infection with interferon gamma. A preliminary report. N Engl J Med 1994; 330(19): 1348–55

    Article  CAS  Google Scholar 

  37. Newport MJ, Huxley CM, Huston S, et al. A mutation in the interferon-gamma-receptor gene and susceptibility to mycobacterial infection. N Engl J Med 1996; 335(26): 1941–9

    Article  PubMed  CAS  Google Scholar 

  38. Nathan CF, Kaplan G, Levis WR, et al. Local and systemic effects of intradermal recombinant interferon- gamma in patients with lepromatous leprosy. N Engl J Med 1986; 315(1): 6–15

    Article  PubMed  CAS  Google Scholar 

  39. Condos R, Rom WN, Schluger NW. Treatment of multidrug-resistant pulmonary tuberculosis with interferon- gamma via aerosol. Lancet 1997; 349(9064): 1513–5

    Article  PubMed  CAS  Google Scholar 

  40. Hancock GE, Cohn ZA, Kaplan G. The generation of antigen-specific, major histo compatibility complex- restricted cytotoxic T lymphocytes of the CD4+phenotype. Enhancement by the cutaneous administration of interleukin 2. J Exp Med 1989; 169(3): 909–19

    Article  PubMed  CAS  Google Scholar 

  41. Bermudez LE, Stevens P, Kolonoski P, et al. Treatment of experimental disseminated Mycobacterium avium complex infection in mice with recombinant IL-2 and tumor necrosis factor. J Immunol 1989; 143(9): 2996–3000

    PubMed  CAS  Google Scholar 

  42. Kaplan G, Britton WJ, Hancock GE, et al. The systemic influence of recombinant interleukin 2 on the manifestations of lepromatous leprosy. J Exp Med 1991; 173(4): 993–1006

    Article  PubMed  CAS  Google Scholar 

  43. Johnson BJ, Ress SR, Willcox P, et al. Clinical and immune responses of tuberculosis patients treated with low- dose IL-2 and multidrug therapy. Cytokines Mol Ther 1995; 1(3): 185–96

    PubMed  CAS  Google Scholar 

  44. Kovacs JA, Vogel S, Albert JM, et al. Controlled trial of inter-leukin-2 infusions in patients infected with the human immunodeficiency virus [see comments]. N Engl J Med 1996; 335(18): 1350–6

    Article  PubMed  CAS  Google Scholar 

  45. Kindler V, Sappino AP, Grau CE, et al. The inducing role of tumor necrosis factor in the development of bactericidal granulomas during BCG infection. Cell 1989; 56(5): 731–40

    Article  PubMed  CAS  Google Scholar 

  46. Chensue SW, Warmington K, Ruth J, et al. Cytokine responses during mycobacterial and schistosomal antigen- induced pulmonary granuloma formation. Production of Th1 and Th2 cytokines and relative contribution of tumor necrosis factor. Am J Pathol 1994; 145(5): 1105–13

    PubMed  CAS  Google Scholar 

  47. Flynn JL, Coldstein MM, Chan J, et al. Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 1995; 2(6): 561–72

    Article  PubMed  CAS  Google Scholar 

  48. Sampaio EP, Kaplan G, Miranda A, et al. The influence of thalidomide on the clinical and immunologic manifestation of erythema nodosurn leprosum. J Infect Dis 1993; 168(2): 408–14

    Article  PubMed  CAS  Google Scholar 

  49. Sampaio EP, Sarno EN, Calilly R, et al. Thalidomide selectively inhibits tumor necrosis factor alpha production by stimulated human monocytes. J Exp Med 1991; 173(3): 699–703

    Article  PubMed  CAS  Google Scholar 

  50. Tramontana JM, Utaipat U, Molloy A, et al. Thalidomide treatment reduces tumor necrosis factor alpha production and enhances weight gain in patients with pulmonary tuberculosis. Mol Med 1995; 1(4): 384–97

    PubMed  CAS  Google Scholar 

  51. Klausner JI, Makonkawkeyoon S, Akarasewi P, et al. The effect of thalidomide on the pathogenesis of human immunodeficiency virus type 1 and M. tuberculosis infection. J Acquir Immune Defic Syndr Hum Retrovirol 1996; 11(3): 247–57

    Article  PubMed  CAS  Google Scholar 

  52. Wallis RS, Nsubuga P, Whalen C, et al. Pentoxifylline therapy in human immunodeficiency virus -seropositive persons with tuberculosis: arandomized, controlled trial. JInfectDis 1996; 174(4): 727–33

    CAS  Google Scholar 

  53. Trinchieri G. Interleukin-12: a cytokine produced by antigen-p resenting cells with immunoregulatory functions in the generation of T-helper cells type and cytotoxic lymphocytes. Blood 1994; 84(12): 4008–27

    PubMed  CAS  Google Scholar 

  54. Heinzel FP, Schoenhaut DS, Rerko RM, et al. Recombinant interleukin 12 cures mice infected with Leishmania major. J Exp Med 1993; 177(5): 1505–9

    Article  PubMed  CAS  Google Scholar 

  55. Saunders BM, Zhan Y, Cheers C. Endogenous interleukin-12 is involved in resistance of mice to Mycobacterium avium complex infection. Infect Immun 1995; 63(10): 4011–5

    PubMed  CAS  Google Scholar 

  56. Stanford JL, Stanford CA. Immunotherapy of tuberculosis with Mycobacterium vaccae NCTC 11659. Immunobiology 1994; 191(4-5): 555–63

    Article  PubMed  CAS  Google Scholar 

  57. Skinner MA, Yuan S, Prestidge R, et al. Immunization with heat-killed Mycobacterium vaccae stimulates CD8+ cytotoxic T cells specific for macrophages infected with Mycobacterium tuberculosis. Infect Immun 1997; 65(11): 4525–30

    PubMed  CAS  Google Scholar 

  58. Bahr CM, Shaaban MA, Gabriel M, et al. Improved immunotherapy for pulmonary tuberculosis with Mycobacterium vaccae. Tubercle 1990; 71(4): 259–66

    Article  PubMed  CAS  Google Scholar 

  59. Onyebujoh PC, Abdulmumini T, Robinson S, et al. Immunotherapy with Mycobacterium vaccae as an addition to chemotherapy for the treatment of pulmonary tuberculosis under difficult conditions in Africa. Respir Med 1995; 89(3): 199–207

    Article  PubMed  CAS  Google Scholar 

  60. Stanford JL, Bahr CM, Rook CA, et al. Immunotherapy with Mycobacterium vaccae as an adjunct to chemotherapy in the treatment of pulmonary tuberculosis. Tubercle 1990; 71(2): 87–93

    Article  PubMed  CAS  Google Scholar 

  61. Stanford JL, Rook CA, Bahr CM, et al. Mycobacterium vaccae in immunoprophylaxis and immunotherapy of leprosy and tuberculosis. Vaccine 1990; 8(6): 525–30

    Article  PubMed  CAS  Google Scholar 

  62. Corlan E, Marica C, Macavei C, et al. Immunotherapy with Mycobacterium vaccae in the treatment of tuberculosis in Romania. 1. Newly diagnosed pulmonary disease. Respir Med 1997; 91(1): 13–9

    Article  PubMed  CAS  Google Scholar 

  63. Corlan E, Marica C, Macavei C, et al. Immunotherapy with Mycobacterium vaccae in the treatment of tuberculosis in Romania. 2. Chronic or relapsed disease. Respir Med 1997; 91(1): 21–9

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil W. Schluger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Condos, R., Schluger, N.W. Cytokine-Based Approaches to the Treatment of Multidrug-Resistant Tuberculosis. BioDrugs 11, 165–173 (1999). https://doi.org/10.2165/00063030-199911030-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-199911030-00003

Keywords

Navigation