Skip to main content

Advertisement

Log in

Potential of Gene Therapy in Bone Marrow Transplantation

  • Leading Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Gene therapy, initiated as a treatment for inherited disorders such as adenosine deaminase deficiency, is now a promising therapeutic strategy for malignancies and other acquired diseases. In particular, in the field of bone marrow transplantation (BMT) for haematological malignancies, the gene transfer of the suicide gene HSV-TK into donor lymphocytes allows control of the severe complication graft-versus-host disease (GvHD). The transfer of the HSV-TK suicide gene confers selective sensitivity to the drug ganciclovir, allowing in vivo elimination of the donor T-cells if severe GvHD occurs. In Italy, the first pilot study on delayed infusion of genetically engineered donor lymphocytes after T-depleted allogeneic BMT documented efficacy of engineered donor lymphocytes in terms of anti-tumour activity and efficiency of the suicide system. GvHD developed in 3 out of 8 patients and was successfully treated by ganciclovir administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anon. Gene transfer protocols. Hum Gen Ther 1997; 8: 1499–530

    Article  Google Scholar 

  2. Rosenberg SA. The immunotherapy and gene therapy of cancer. J Clin Oncol 1992; 10: 180–99

    PubMed  CAS  Google Scholar 

  3. Brenner MK, Rill DR, Moen RC, et al. Gene-marking to trace origin of relapse after autologous bone-marrow transplantation. Lancet 1993; 341: 85–6

    Article  PubMed  CAS  Google Scholar 

  4. Brenner MK, Rill DR, Holladay MS, et al. Gene marking to determine whether autologous marrow infusion restores long-term haemopoiesis in cancer patients. Lancet 1993; 342: 1134–7

    Article  PubMed  CAS  Google Scholar 

  5. Resta R, Thompson LF. SCID: The role of adenosine deaminase deficiency. Immunology Today 1997; 18: 371–74

    Article  PubMed  CAS  Google Scholar 

  6. Ferrari G, Rossini S, Giavazzi R, et al. An in vivo model of somatic cell gene therapy for human severe combined immunodeficiency. Science 1991; 251: 1363–6

    Article  PubMed  CAS  Google Scholar 

  7. Blaese RM, Culver K, Miller A, et al. T lymphocyte-directed gene therapy for ADA-SCID: initial trial results after 4 years. Science 1995; 270: 475–80

    Article  PubMed  CAS  Google Scholar 

  8. Bordignon C, Notarangelo LD, Nobili N, et al. Gene therapy in peripheral blood lymphocytes and bone marrow for ADA-immunodeficient patients. Science 1995; 270: 470–5

    Article  PubMed  CAS  Google Scholar 

  9. Bordignon C, Bonini C, Verzeletti S, et al. Transfer of the HSV-TK gene into donor peripheral blood lymphocytes for in vivo modulation of donor anti-tumor immunity after allogeneic bone marrow transplantation. Human Gene Therapy 1995; 6(6): 813–19

    Article  PubMed  CAS  Google Scholar 

  10. Horowitz MM, Gale RP, Sondel PM, et al. Graft versus leukemia reactions after bone marrow transplantation. Blood 1990; 75(3): 555–62

    PubMed  CAS  Google Scholar 

  11. Kernan NA, Collins NH, Juliano L, et al. Clonable T lymphocytes in T cell-depleted bone marrow transplants correlate with development of graft-versus-host disease. Blood 1986; 68(3): 770–3

    PubMed  CAS  Google Scholar 

  12. Kolb HJ, Schattenberg A, Goldman JM, et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood 1995; 86(5): 2041–50

    PubMed  CAS  Google Scholar 

  13. Slavin S, Naparstek E, Nagler A, et al. Allogeneic cell therapy with donor peripheral blood cells and recombinant human interleukin-2 to treat leukemia relapse after allogeneic bone marrow transplantation. Blood 1996; 87: 2195–204

    PubMed  CAS  Google Scholar 

  14. Tricot G, Vesole DH, Jagganath S, et al. Graft-versus-myeloma effect: proof of principle. Blood 1996; 87(3): 1196–8

    PubMed  CAS  Google Scholar 

  15. Papadopoulos EB, Ladanyi M, Emanuel D, et al. Infusions of donor leukocytes to treat Epstein-Barr virus-associated lymphoproliferative disorders after allogeneic bone marrow transplantation. N Engl J Med 1994; 330: 1185–91

    Article  PubMed  CAS  Google Scholar 

  16. Riddell SR, Watanabe KS, Goodrich JM, et al. Restoration of viral immunity in immunodeficient humans by adoptive transfer of T cell clones. Science 1992; 257: 238–41

    Article  PubMed  CAS  Google Scholar 

  17. Mavilio F, Ferrari G, Rossini S, et al. Peripheral blood lymphocytes as target cells of retroviral vector-mediated gene transfer. Blood 1994; 83: 1988–97

    PubMed  CAS  Google Scholar 

  18. Bonini C, Ferrari G, Verzeletti S, et al. HSV-TK gene transfer into donor lymphocytes for control of allogenic graft-versusleukemia. Science 1997; 276: 1719–24

    Article  PubMed  CAS  Google Scholar 

  19. Schiffmann R, Medin J, Ward J, et al. Transfer of the human glucocerebrosidase gene into hematopoietic stem cells of nonablated recipients: successful engraftment and long-term expression of the transgene. Blood 1995; 86: 1218–27

    PubMed  CAS  Google Scholar 

  20. Xu L-C, Kluepfel-Stahl S, Blanco M, et al. Growth factors and stromal support generate very efficient retroviral transduction of peripheral blood CD34+ cells from Gaucher patients. Blood 1995; 86: 141–6

    PubMed  CAS  Google Scholar 

  21. Medin J, Migita M, Pawliuk R, et al. A bicistonic therapeutic retroviral vector enables sorting of transduced CD34+ cells and corrects the enzyme deficiency in cells from Gaucher patients. Blood 1996; 87: 1754–62

    PubMed  CAS  Google Scholar 

  22. Xu LC, Stahl S, Dave H, et al. Correction of the enzyme deficiency in hematopoietic cells in Gaucher patients using a clinically acceptable retroviral supernatant transduction protocol. Exp Hematol 1994; 22: 223–30

    PubMed  CAS  Google Scholar 

  23. Xu LC, Karlsson S, Byrne E, et al. Long-term in vivo expression of the human glucocerebrosidase gene in non-human primates after CD34+ hematopoietic cell transduction with cell-free retroviral vector preparations. Proc Natl Acad Sci USA 1995; 92: 4372–6

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Marktel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marktel, S., Bonini, C. & Bordignon, C. Potential of Gene Therapy in Bone Marrow Transplantation. BioDrugs 11, 1–6 (1999). https://doi.org/10.2165/00063030-199911010-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-199911010-00001

Keywords

Navigation